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Dynamical effects associated with fluctuations of the order parameter near the transition point of 
a second-order smectic-A-smectic-C transition are considered. A system of long-wavelength 
dynamical equations for the smectic, including an equation for the order parameter, is found. The 
fluctuation effects are studied by means of a diagram technique in which the vertices are 
determined by the nonlinearities in the dynamical equations. An effective action describing the 
critical mode is found by elimination of the weakly fluctuating degrees of freedom, and turns out 
to be renormalizable. This leads to scaling behavior of the correlators of the order parameter, and 
the corresponding indices can be determined from the first terms of the perturbation-theory 
series. The fluctuation contributions to the parameters of the low-frequency spectrum of the 
smectic are analyzed. The velocities of first and second sound tend to zero in the vicinity of the 
phase transition, and the bulk-viscosity coefficients determining their damping diverge. The 
corrections to the other kinetic coefficients (the shear viscosity, thermal conductivity, and 
permeation coefficient) do not contain divergences. The critical behavior of the parameters of the 
orientational mode in the Cphase is also investigated. 

1. INTRODUCTION 

A large amount of experimental data pertaining to criti- 
cal phenomena in liquid-crystalline phases has been accu- 
mulated.' However, an adequate theoretical description of 
the critical behavior of liquid crystals in largely lacking. This 
regrettable situation is due primarily to the strong anisotro- 
py inherent in liquid crystals. Because of this, the usual uni- 
versal models in which the components of the order param- 
eter are defined in "isotopic" space are, at best, applicable to 
the description of phase transitions in liquid crystals only in 
an extremely narrow region (difficult to reach experimental- 
ly) near the transition. The actual critical phenomena ob- 
served in experiment, however, usually correspond to cross- 
over behavior and therefore require a detailed analysis. 

One of the simplest transitions for theoretical investiga- 
tion is the second-order smectic-A-smectic-C phase transi- 
tion. The region of strongly developed fluctuations in this 
transition is rather wide, and is sharply delineated in experi- 
ment. The thermodynamics of the smectic-A-smectic-C 
phase transition has been considered theoretically in Ref. 2. 
However, the dynamical phenomena near the transition 
point of this phase transition are considerably richer and 
more informative than the static phenomena, and this stimu- 
lated us to conduct a theoretical investigation of the critical 
dynamics in the smectic-A-smectic-C transition. 

2. THE THERMODYNAMICS OF THE TRANSITION 

To describe the layer structure of the smectic it is con- 
venient to use a function W(t,r) such that the equation 
W =  const specifies the position of a certain smectic layer. 
Correspondingly, A W gives the direction of the normal to 
the layer, and 

v=VWIIVWI (1 

is the unit vector along this direction. 
The average direction of the principal axes of the aniso- 

tropic molecules of which the liquid crystal consists is speci- 
fied by the unit vector n (the director). In a smecticd the 

director is perpendicular to the layer, and therefore the vec- 
tors n and v coincide. In a smectic-C the principal axes of the 
molecules are tilted through a certain angle with respect to 
the normal v. In this case the intermolecular forces fix only 
the component of the director along the normal to the layer. 

To describe the smectic-A-smectic-Cphase transition it 
is natural to introduce the following order parameter2: 

q=[nv]. (2)  

Its value is equal to zero in the A phase and is nonzero in the 
C phase. The modulus of the order parameter gives the tilt 
angle of the director with respect to the normal to the layer. 
According to the definition (2 )  the order parameter has 
nonzero components only in the plane of the smectic layer. 

In the energy density the principal term associated with 
the nonuniform deformation of the director has the follow- 
ing form: 

Here K,, K,, and K, are the Frank constants. 
The energy of deformation of the smectic layers is given 

by the well-known expression 

The coefficient B is called the compression modulus of the 
smectic layers, and I is the equilibrium spacing between the 
smectic layers in the A phase. In the expansion of the energy 
density there are also terms specifying the relation between 
the orientation of the normal to the layer and the orientation 
of the director: 

The constants D and U' appearing in ( 5 )  are of the order of 
the modulus B. A phase transition occurs with respect to the 
parameter A: When A < 0 the C phase is realized, and when 
A > 0 the A phase is realized. 
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It follows from the definition (2) that 

n=v (I-$")'"+ [v*] . (6)  

Substituting this expression into (3)  and (5 )  we find the 
necessary terms of the expansion of the energy in the order 
parameter. The total energy density of the smectic is ob- 
tained by adding the expression for the internal energy 
E(P,u), where p is the mass density and u is the specific 
entropy. Thus, the energy density E of the smectic is a func- 
tion of the following variables: 

E=E (p, 0, V W, V V  W, $, V*). (7) 

Near the smectic-A-smectic-C transition only the order 
parameter fluctuates strongly. The other variables appear- 
ing in (7)  are weakly fluctuating, and we shall denote their 
deviations from equilibrium by the symbol p, : 

(PP=P-PO, cp,=a-oo, qw=V (W- W,) . (8 

Here p,, uo, and W, are the equilibrium values. 
To investigate the distinctive features of the phase tran- 

sition under consideration, in the energy density ( 7 )  it is 
sufficient to retain the terms of lowest order in $. In the 
terms coupling the order parameter with the weakly fluctu- 
ating variables we can confine ourselves to the approxima- 
tion linear in the latter. In that part of the energy which does 
not contain $ it is sufficient to confine ourselves to the term 
quadratic in p, . As a result, the energy density acquires the 
following form: 

E=Ei ($, V$) +Ez($, ~ u ) + E s ( ~ r )  

Here, 

E3=& (p, o) +'lsB[12(V W)Z-1]+i~2K12(VZW)2, ( 12) 

where K = K,, and in the formula ( 11) the repeated indices 
p are summed over and the following notation has been in- 
troduced: 

(13) 

In the expression (10) the normal vector v appears. 
Allowance for the fluctuations of v leads to the appearance 
in the energy density of terms of higher order than the terms 
that we have kept. Therefore v in ( 10) must be set equal to 
its equilibrium value (we shall assume it to be directed along 
the z axis). Correspondingly, by virtue of the identity 
v.J, = 0 [which follows from the definition (2)  1, it follows 
that the order parameter has nonzero components only 
along the x and y axes. Henceforth, we shall indicate vector 
components along these axes by Greek indices a, B,..., so 
that the components of the order parameter are written in 
the form $a. 

To investigate the fluctuation effects associated with 
the self-interaction of the order parameter $ it is convenient 

to effectively eliminate the weakly fluctuating variables q, 
from the analysis. This elimination reduces to the calcula- 
tion of the extremum of the energy density with respect to 
these variables. As a result of taking the extremum of the 
energy ( 11 ) with respect to p, we obtain an effective energy 
that depends only on the order parameter: 

Eeff ='l2K1 ( ~ ~ ~ V ~ $ e ) ~ + ' l z K z  (Va$a) 
+'I2K3 (V,$a) 2+i14U~4+1/2A$2. (16) 

Here E , ~  is the two-dimensional antisymmetric unit tensor, 
and 

The expansion ( 16) makes it possible to investigate the 
critical behavior of correlators of the order parameter. The 
critical behavior of such quantities as the specific heat and 
compressibility can be analyzed on the basis of the following 
expression [obtained from the form of the energy (9)  ] for 
the exact pair correlators of the weakly fluctuating quanti- 
ties: 

Here T is the temperature. The first term in the right-hand 
side of ( 19) is the bare contribution to the correlator and the 
second term is the fluctuation contribution. 

The expression ( 16) corresponds to the energy density 
of a model with a two-component order parameter and inter- 
action proportional to $4. However, the order parameter is 
specified in real, not isotopic space. This circumstance leads 
to the result2 that there exists a broad region of values of the 
parameter A in which is realized an intermediate asymptotic 
form described by nonuniversal critical indices that depend 
on the ratio of the bare Frank constants. Universal critical 
behavior is realized only in a very narrow region (not experi- 
mentally accessible, apparently) near the transition point. 

3. THE DYNAMICAL EQUATIONS 

To study the dynamical effects associated with the fluc- 
tuations of the order parameter it is necessary first of all to 
derive the system of nonlinear equations describing the dy- 
namics of the long-wavelength degrees of freedom of the 
smectic near the transition from the A to the C phase. The 
complete set of long-wavelength degrees of freedom of the 
smectic-A consists of the momentum-density components 
j,, the mass density p, the specific entropy a, and the smectic 
variable W. Near the smectic-A-smectic-C transition it is 
necessary to take one further variable into account-the or- 
der parameter 1C, introduced above. In the C phase outside 
the critical region the modulus of the order parameter is 
fixed, but not its phase, which must be included among the 
hydrodynamic variables. 

The nondissipative equations of the system are con- 
structed most simply using the method of Poisson  bracket^.^ 
Dissipative terms are then added to the hydrodynamic equa- 
tions in the standard manner. 

The form of the Poisson brackets for the hydrodynamic 
variables of a smectic is well known3: 
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Making use of the bracket (21 ), in accordance with the de- 
finition ( 1 ) we obtain 

To construct the Poisson bracket between the momentum 
density and the order parameter it is necessary to know the 
bracket { j,n). This bracket has the following form4: 

Here A is a dimensionless phenomenological parameter - 1. 
Using the expressions (23) and (22) and the definition (2)  
of the order parameter, we find 

All the quantities in the right-hand sides of (23) and (24) 
are functions of r,. 

The expressions given in ( 19), (21), and (24) exhaust 
the nonzero Poisson brackets for the system under consider- 
ation. All these brackets have a structure of the same type: 

Here, by pa we mean the complete set of hydrodynamic vari- 
ables j ,  p,, $a. The concrete expressions for the functions 
R :k are determined by the right-hand sides of the formulas 
(19), (21), and (24). 

We can now write out the nondissipative hydrodynamic 
equations, which are Liouville equations with the Hamilto- 
nian 

The equation for the momentum density has the form 

In Eq. (27) repeated indices are summed over, and we have 
introduced the notation 

ha=6H/6cpa; (28) 

ha is the molecular field conjugate to the variable pa. 
For variables pa other than the momentum density 

(i.e., for $, and p, ) the hydrodynamic equations, in accor- 
dance with (25), have the following form: 

where v = j /p  is the velocity. The right-hand side of (27) 
reduces to an exact divergence - V k  Tik . Here the stress ten- 
sor is represented in the form of the sum 

where 

One can convince oneself that the first term in (30) is expli- 
citly symmetric in the indices i, k ( P  = pdE /dp - E is the 
pressure). The antisymmetric part of the second term is 
equal to zero by virtue of the rotational invariance of the 
energy density (7).  The divergence of the third term in (30) 
can be reduced to the divergence of a tensor that is symmet- 
ric in the indices i, k. Thus, the right-hand side of (28) can be 
transformed to the divergence of a symmetric tensor. There- 
fore, irrespective of the explicit form of the energy (7),  the 
angular momentum is conserved. 

To the nondissipative hydrodynamic equations con- 
structed by means of the method of Poisson brackets we 
must add kinetic terms. When these are taken into account 
the equations acquire the following form: 

dqalat=(H, cpO)+I;,,hb. (31) 

The differential operator pa, in (3  1 ) is determined by the set 
of kinetic coefficients. Thus, for the order parameter and the 
momentum density Eq. (3  1 ) acquires the following explicit 
forms: 

We recall that here R $ is the quantity defined by the right- 
hand side of the Poisson bracket (24) in accordance with Eq. 
(25), and ha is the molecular field conjugate to $,. The 
coefficient r-' in (32) has the dimensions of viscosity and is 
analogous to the torsional viscosity of a nematic. The viscous 
dissipative contribution appearing in the right-hand side of 
Eq. (33) can be represented conveniently in the form 

II I 
~ i k l m = ~ i k l m + ~ i k l m  

Here, 
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For the notation of the viscosity coefficients we have fol- 
lowed Ref. 5. A 

The remaining part of the operator T,, is constructed in 
the standard manner6 with the use of the permeation and 
thermal-conductivity coefficients. For us, the important 
point in the following will be the fact that in smectics, as in 
all liquid crystals, we have a dimensionless small parameter 

pK/q2<1. (35 

Here K is a quantity of the order of the Frank constants and 
v-T-' is the characteristic viscosity. 

4. THE EFFECTIVE ACTION 

The dynamical effects associated with the fluctuations 
of the order parameter can be investigated conveniently by 
means of a diagram technique. The corresponding formal- 
ism was developedin Ref. 7, in which a generating functional 
for the determination of dynamical correlators of long- 
wavelength variables was constructed. For the system de- 
scribed by Eqs. (3  I ) ,  this generating functional has the fol- 
lowing form: 

Z(m.. Y.) -1 Dlp Dp erp [ i  dt d3r(P+marpr+p.~.)] . 
(36) 

Herep, are the auxiliary fields conjugate to the variables pa ,  
and the Lagrangian density 

By expanding the generating functional (36) in the 
fields ma and ya we obtain correlators, of different orders, of 
the long-wavelength variables pa and fields pa .  We intro- 
duce the following notation: 

The function Dab is simply the pair correlator of the long- 
wavelength variables, and Gab determines the linear suscep- 
tibility of the system; consequently, the singularities of the 
function Gob (w,k) give the spectrum of the normal modes. 

The part of the Lagrangian quadratic in the variables p, 
and pa determines the bare values of the correlators. The 
higher terms of the expansion, starting from the third, speci- 
fy the vertices of the coupling of the fluctuations. Because of 
this coupling, fluctuation corrections to the bare correlators 
arise. For the case that we are considering the only impor- 
tant corrections are those associated with fluctuations of the 
order parameter $. 

In view of this, in the analysis of the fluctuation effects 
we can substantially simplify the Lagrangian (37). In this 
Lagrangian it is sufficient to retain terms quadratic in the 
weakly fluctuating variables j, and p, listed in (8),  and also 
the terms quadratic in the fields pi andp, conjugate to them. 
In the terms describing the coupling ofj,, p, ,pi, andp, with 
the order parameter it is sufficient to retain the terms linear 
in these variables. In this case the unit vector v that appears, 

in particular, in the viscosity tensor (34) must be assumed to 
be constant (and directed along the z axis). Then, in accor- 
dance with its definition ( 2 ) ,  the order parameter will have 
only components along the x and y axes. 

In the study of fluctuation effects in the dynamics, as in 
the statics, it is convenient to eliminate from the analysis the 
weakly fluctuating degrees of freedom. For this, in the func- 
tional integral (36) it is necessary to integrate over the vari- 
ables j, , p, , pi,  and p, . After the simplifications of the La- 
grangian that were described above, this integration reduces 
to Gaussian integrals and is performed explicitly. As a re- 
sult, the generating functional is represented in the form of a 
functional integral, over $, and the field pa conjugate to it, 
of exp(iIeff), where Ieff is the extremum of the exponent in 
(36) with respect to the fields j,, p, ,pi ,  andp, . To calculate 
the extremum of the Lagrangian density (37) with respect to 
the fields j, andp, it is convenient to represent the velocity v 
in the form of a sum of two components: 

The symbols 1 1  and 1 indicate the velocity components longi- 
tudinal and transverse to the wave vector in the plane of the 
smectic layer. For example, the transverse component is 
specified by the formula 

As a result of this calculation we obtain 

+p, (dcp,/dt+?;ifh,) + i ~ p , ~ ~ ~ ' p , .  (42) 

The molecular fields ha and h, needed for the construction 
of the Lagrangian (42) should be calculated from the energy 
(9)  in accordance with the definition (28). 

h 

The linear operators Teff appearing in (41 ) have a rath- 
er co~;?plicated structure. They can be represented in the 
form Yff = Teff (id /at, - iV) . The explicit expressions have 
the following form: 

rzlf ( w ,  k )  =r,, ( k )  +ikmRmkPgkir (a, k )  ~ P R P ; ,  (44) 

where 

In the expressions (43) and (44) the quantities R 2 and R 2 
[which, we recall, are determined from the Poisson brackets 
( 19), (21 ), and (24) in accordance with (25) ] are equal to 
their equilibrium values, and the quantities 7fkrm and ?7!k1m 
were defined in (34). 

As a result of the elimination of the remaining weakly 
fluctuating variables we obtain a rather cumbersome expres- 
sion for the generating functional. We give the leading terms 
of this expression, omitting the dependence on the external 
fields m,, y,, ma, and ya : 
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-m2 ~k)1RwYDpT'm$2]  1. (47) 

Here, in analogy with (40) and (41 ) we have introduced the 
longitudinal and transverse components mil, ml, yll, and yl. 
In accordance with (38) and (39) the expansion of the gen- 
erating functional (44) in the fields ml, yl, mil, and y l l  deter- 
mines the correlators G ;, = (p ,  viL ) and gik = ( P ~ L J ~ ~ ~  ) ). 

In the expression (47) the linear operators r:;, &, 
h 

andgyk appear. The first two of these are defined in (43) and 
(45), and the operator 2, in the Fourier representation has 
the form 

where g; and l7$ are given by the expressions (44) and 
(46). The quantity h appearing in (47) is determined as 
follows: 

In the study of the softest (critical) mode the terms 9, and 
9, in the Lagrangian can be omitted. The corrections to the 
spectrum of the critical mode that are generated by the term 
2, in (52) are small in proportion to the smallness of the 
ratio of the frequency of the critical mode (the slow director 
mode) to the frequency of the fast shear mode [see (35) 1. 
As regards the corrections associated with Y,, they are 
small in the hydrodynamic parameter. Thus, to investigate 
the self-interaction of the long-wavelength fluctuations of 
the order parameter, in the Lagrangian density (52) we 
must confine ourselves to just the term YO. (We note that 
2, contains terms having a singularity at the frequency of 
the thermal-diffusion mode. However, the corresponding 
terms are smaller than 9" in the hydrodynamic parameter, 
since they originate from dissipative, rather than reactive 
interaction vertices.) Substituting into Y o  the explicit ex- 
pressions for the molecular field conjugate to the order pa- 
rameter and for the kinetic coefficients (43), we obtain in 
the quadratic approximation an expression determining the 
bare correlator Gap = ( p a p p  ): 

ha*''= 6E""/6$a-2D,~~[g,v ( i d l d t ,  -iV ) -g,, (0;-iV ) ] D,$,. 
where 

(49) 

Here, 

gPY-' (a ,  k )  =i[d',? (o, k )  + (gllVo) -'I, (50) 

where g;, was defined in ( 18). 
Now, finally, we can write out the expression for the 

effective Lagrangian density: 

+ i ~ ~ , I ' " , y  (idlat, - i V ) p b .  (51) 
The correlator (50) determines the bare linear susceptibility 
of the weakly fluctuating variables pp . The poles of this cor- 
relator describe the spectrum of the oscillations of pp (in 
particular, the first-sound and second-sound spectra), cal- 
culated in the linear approximation. 

5. RENORMALIZATION OF THE CRITICAL MODE 

The effective Lagrangian ( 5 1 ) can be conveniently rep- 
resented in the following form: 

2"" ( p ,  I@) = 2 o + P l + 2 ' 2 ,  (52) 

The first term Yo  in (52) corresponds to the case of purely 
dissipative dynamics of the system with energy density ( 16). 

By virtue of the fact that A - Tv - 1, the two terms in (56) 
have the same order of magnitude. Therefore, the bare spec- 
trum is strongly anisotropic, both on account of the anisot- 
ropy of the elastic constants and on account of the anisotro- 
py of the kinetic coefficients. 

Knowing Gap, we can use the fluctuation-dissipation 
theorem [a derivation of which is given in the Appendix- 
see Eq. (A6)]  to calculate the pair correlator DaD 
= ( p a p p ) .  The bare equal-time correlator Dan found from 

formula (A7) with the use of (56) coincides, of course, with 
that obtained from the energy density ( 16) in the quadratic 
approximation. 

In the Lagrangian density Y o  the term 

describes the self-interaction of the order parameter. Thus, 
the Lagrangian 9, generates the standard diagram tech- 
nique, with the bare four-point vertex (58) (depicted on the 
diagrams by a point) and with the bare pair correlators DaD 
and Gap (depicted, respectively, by a solid line and by a solid 
line with an arrow that specifies the direction from $a to 

PO ). 
In four-dimensional space all the fluctuation correc- 

tions generated by (58) reduce to a logarithmic renormal- 
ization of the constants appearing in the expression for Yo. 
This renormalization is described by the corresponding re- 
normalization-group equations. In three-dimensional space 
the fluctuation effects in this case can be studied by the meth- 
od of the &-expansion from four-dimensional space. For us, 
however, it will be more convenient to apply the so-called 
real-space renormalization-group m e t h ~ d , ~  since then the 
problem of the continuation to four-dimensional space of a 
Lagrangian 3, in which the order-parameter indices are 
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coupled to the vector indices of spatial gradients does not 
arise. 

The fluctuation correction to the parameter A in the 
one-loop approximation is depicted by the diagram given in 
Fig. 1. Corrections to the constants K arise only in the two- 
loop approximation (Fig. 2). The same two-loop diagram 
depicts fluctuation corrections to the kinetic coefficients l? 
and r, in (56). 

As already noted above, there exists in the vicinity of 
the transition a wide range of temperatures in which an in- 
termediate asymptotic form, described by critical indices 
that depend on the ratio K, /K2 ,  is realized. The kinetic coef- 
ficients r and r, and the Frank constants remain constant in 
this region, but the parameter A is renormalized in accor- 
dance with the law 

where T, is the transition temperature. In the one-loop ap- 
proximation the index y was calculated in Ref. 2. 

Universal dynamical behavior of the order parameter is 
realized only in a very narrow region near the transition, 
where the behavior is determined by the isotropic fixed point 
of the renormalization-group transformation. The renor- 
malized elastic constants K ,  and Z2 in this region are equal, 
and the constant K3, although different from K ,  and K,, 
obeys the same scaling law. The kinetic coefficients are iso- 
tropized in an analogous manner. According to the results of 
Ref. 8, for an isotropic relaxation model with a four-point 
interaction the renormalized kinetic coefficients obey the 
following law: 

where z is the dynamical critical index and v is the critical 
index describing the temperature dependence of the correla- 
tion length. 

Thus, the renormalized spectrum of the critical mode in 
this region of temperatures is isotropic in the plane of the 
smectic layer: 

6. RENORMALIZATION OF THE DIFFUSION-MODE 
SPECTRUM 

We shall consider the fluctuation corrections to the 
spectrum of the oscillations of the transverse component 
(41 ) of the velocity. The law of relaxation of this shear mode 
is determined by the poles of the corresponding linear sus- 
ceptibility G f k .  In the calculation of this correlator we can- 
not neglect the term 2, in the Lagrangian (52): 

FIG. 2. 

[in obtaining this formula we used the explicit expressions 
(43) and (45) 1. The point is that in the frequency region 
under consideration this term is singular. 

We shall consider the fluctuation corrections to the 
function G ik that arise from (62) (corrections of the type 
represented in Fig. 3). In Fig. 3 the wavy line depicts a differ- 
ence of bare correlators 

g<kl(o, k)-gikL(O, k ) .  (63 

In this diagram this difference is integrated over the frequen- 
cy. Since the pole of the function gl(w,k) corresponds to the 
frequency of the shear mode, on account of the integration 
this correction is small in the parameter (35). To the extent 
that (35) is small, all diagrams containing integration of the 
difference (63) over the frequency should be omitted. In the 
study of the shear mode, such a frequency integration always 
occurs in the fluctuation corrections originating from 2,. 
Therefore, the contribution of 2, (55) to the Lagrangian 
density (52) can be omitted if the ratio of the frequency of 
the diffusive critical mode to the frequency of sound is small. 

Thus, only diagrams in which the difference (63) is not 
integrated over the frequency are important for the renor- 
malization of the spectrum of the shear mode. The sum of 
such diagrams is represented in Fig. 4, in which the rectangle 
denotes the quantity 

These diagrams can be summed, since they form a geometri- 
cal series. As a result, we obtain (the technical details are 
given in the Appendix) 

According to the formula (A10) in the Appendix, 

Here all quantities except the exact linear susceptibility Gpa 
of the order parameter are bare quantities. Since in the hy- 
drodynamic region we have wGaa <aa8, the position of the 
pole of G1(w,k) turns out to be independent of the distance 
from the transition point. Using the explicit expressions 

FIG. 1. 
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I + W + U  

FIG. 4. 

(23), (25), (43), and (45) for the quantities appearing in 
(64), we find the spectrum of the oscillations of the velocity 
component (41 ) transverse to the wave vector in the plane of 
the smectic layer: 

o=- (qlk,2+'/~q3k,Z) I'll?-', (65 

where the coefficient TI is given by the formula (57).  
To investigate the renormalization of the reactive pa- 

rameter A we must study the fluctuation corrections to the 
correlator 

We can convince ourselves that these corrections have the 
same structure as the corrections to the shear-mode spec- 
trum. Therefore, in the hydrodynamic region there are only 
unimportant small corrections to the reactive parameter A. 

This circumstance leads to an interesting result for the 
orientational mode in the C phase. Since in a smectic-C the 
angle of tilt of the director n to the layer normal v is fixed, the 
spectrum of the orientational mode in the low-frequency 
limit is fully coupled to the oscillations of the azimuthal an- 
gle p. It can be specified conveniently by means of the vari- 
ation 

From Eq. (32), by virtue of the definition (67), it follows 
that 

Equation (68) contains two reactive parameters A, and A,, 
describing the dynamical anisotropy in the smectic-C layer: 

Since A remains a constant, the reactive coefficient A, in- 
creases in accordance with the following scaling law as the 
transition point is approached: 

Here /3 is the index of the order parameter. Taking into ac- 
count the narrowness of the temperature range of existence 
of the smectic-C, we arrive at the conclusion that the coeffi- 
cient A ,  is anomalously large. Therefore, despite the small- 
ness of the angle of tilt of the director with respect to the 
normal to the layers in smectics-C, the anisotropy of the 
smectic layers is important in the dynamical effects. We note 
that, by virtue of (68)-(70), the spectrum of the orienta- 
tional mode in the C phase does not have critical singulari- 
ties. 

7. RENORMALIZATION OFTHE SOUND SPECTRUM 

We shall consider the fluctuation contribution to the 
equations determining the propagation of sound near the 
smectic-A-smectic-C transition. The spectra of both the 

sounds existing in smectics are determined by the poles of 
the linear susceptibility G 'I. This bare susceptibility calculat- 
ed by means of the generating functional (47) in the qua- 
dratic approximation coincides with (46).  However, in the 
calculation of fluctuation corrections to this correlator we 
must not neglect the contribution of (55) to the Lagrangian 
density ( 52) : 

~ z = 2 ~ , ~ i m " ~ ~ [ p , I ' ~ ~  (idldt, -iV) $a] 
[-gikl'(ia/dt, -iV) f gikll(O, -iV) ]DvRkmVV,q2, (71) 

since this term has a singularity at precisely the frequencies 
of the sound modes. 

For the same reasons as were discussed in the preceding 
section, all diagrams in which the difference 

g,,"(o, k) -gt,I1 (0, k) I 
(72) 

is integrated over the frequency are small, on the order of the 
ratio of the frequency of the soft critical mode to the sound 
frequency. An example of such a diagram is given in Fig. 5 
(the difference (72) is depicted by the dashed line). All dia- 
grams of this type must be omitted. 

In diagrams describing fluctuation corrections to G 
the difference (63) appearing in the term 9, (54) of the 
Lagrangian density is always integrated over the frequency. 
Therefore, to the extent that the parameter (35) is small, 
Y ,  can be omitted in the investigation of the sound spec- 
trum. 

The remaining series of ladder diagrams can be summed 
explicitly. As a result, we obtain 

(73) 
where 

Q1'(t, r)=<$2(0,,0)paI'~f (ialat, -iV)q8(r, t) ). 

In the hydrodynamic region the fluctuation corrections 
to the imaginary part of the spectrum, which determine the 
renormalization of the viscosity tensor, are much smaller 
than the real part. Taking this into account, with the aid of 
the formula (A7)  we can show that the real part of the pole 
of G (the part which determines the fluctuation corrections 
to the sound velocity) reproduces the static limit (19). The 
imaginary part of the pole determines the renormalized vis- 
cosity tensor 

where 

FIG. 5 
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Using the explicit form of the functions ( 14), ( 15), (20), 
(25), and (45) appearing in (74), we find the following fluc- 
tuation contributions to the viscosity coefficients: 

In the vicinity of the smectic-A-smectic-C transition 
the quantity M appearing in (74) diverges. We shall denote 
the exponent of this singularity by x: M a  T - X. The critical 
index x can be related to the specific-heat index a, correla- 
tion-length index v, and dynamical index z. In fact, accord- 
ing to the scaling relation, 

J y ( t ,  r) $' (0,O) e-'.' dt h r ~ ~ - ~ j ( w r - " ' ) ~  

On the other hand, the fluctuation part of the specific heat is 
determined by the correlator 

Comparing the expressions (76) and (77) we find that the 
critical index is equal to 

x=a+zv. (78) 

Up to now we have not been concerned with the renor- 
malization of the spectrum of the thermal-diffusion mode. 
To calculate corrections to the spectrum of this mode it is 
necessary to follow a procedure analogous to that described 
above for the sound modes, since 9, contains a pole corre- 
sponding to the thermal-diffusion mode. As a result, the 
static renormalization of the specific heat is reproduced. As 
regards the thermal-conductivity and permeation coeffi- 
cients, these have no divergent corrections. This is connect- 
ed with the fact that the corresponding fluctuation terms 
contain dissipative vertices that are small in the hydrody- 
namic parameter in comparison with the reactive vertices. 

8. CONCLUSION 

Thus, we have shown that in a rather wide temperature 
region about the smectic-A-smectic-C transition the spec- 
trum of the critical mode is anisotropic and has the form 
(56). The parameter A appearing in this formula obeys the 
law A a rY. The critical index y of the susceptibility depends 
on the bare ratioK,/K2 of Frank constants and varies2 in the 
range 1-1.25. Universal dynamics is realized only in a very 
narrow region near the transition. In this region the critical- 
mode spectrum, consisting of the oscillations of the director 
components transverse and longitudinal to the wave vector 
in the plane of the smectic layer becomes isotropic and is 
described by the formula (61). The kinetic coefficient T 
obeys a scaling law: T a 7"- "". However, the critical index 
of this kinetic coefficient is small: (z - 2)v  ~ 0 . 0 1 5  (Ref. 8).  

As the smectic-A-smectic-C transition point is ap- 
proached the velocity of the first sound and second sound 
decrease as ra',, where a is the critical index of the specific 
heat. In the one-loop approximation, depending on the bare 
elastic ani~otropy,~ a = 0.06-0.14. In addition, the viscosity 
coefficients appearing in the dispersion laws for the sounds 
diverge in the neighborhood of this transition in accordance 
with the law ij2,4,5 E T - ~ ,  where the critical exponent 

x = a + z v z  1.1. The fluctuation corrections to the viscos- 
ity coefficients are related by AT: = (Avz) (Av5), which 
can be checked experimentally. 

The shear-viscosity coefficients 7, and 7, and the reac- 
tive parameter R are not affected by the fluctuations. This 
result leads to a large magnitude of the dynamical anisotro- 
py of the layers in the smectic-C phase. This circumstance 
implies, in particular, a strong coupling of the orientational 
mode with oscillations of the smectic layers. 

Finally, fluctuation corrections to the permeation coef- 
ficients and thermal conductivity tensor are absent. The lat- 
ter fact leads to the result that the dispersion law of the ther- 
mal-diffusion mode, 

( 2  is the thermal-conductivity tensor and C, is the specific 
heat at constant pressure), becomes less "hard" because of 
the order-parameter fluctuations, which, according to Eq. 
(19), decrease the magnitude of the specific heat. 

In our analysis we have not been concered with singu- 
larities of the smectic spectrum at small values of k,  or k, . In 
this case, propagating second sound is absent in the spec- 
trum, and in its place there appear two diffusion modes, as- 
sociated, respectively, with the relaxation of the velocity 
component transverse to the wave vector and with the relax- 
ation of the layer-displacement vector. The spectrum of 
these modes is determined by the moduli B and K introduced 
in (12), and also by the viscosity coefficients 7, and 7,. 
Analysis shows that the corrections to v,, v3, and Kassociat- 
ed with the fluctuations of $ are unimportant, i.e., the renor- 
malization of the spectrum of the above-mentioned modes is 
due entirely to the renormalization of the modulus B. 

It is well known that the long-wavelength spectrum of a 
smectic is modified substantially by fluctuations of the dis- 
placement of the smectic 1aye1-s.~ Therefore, the question 
arises as to what role is played by fluctuations of the layers in 
the critical region. Analysis shows that fluctuations of the 
displacements of the layers in the critical region can be ne- 
glected. This is explained principally by the fact that, be- 
cause of the fluctuations of the order parameter, the elastic 
modulus B in the critical region decreases substantially with 
increase of the scale. 

Thus, we have both qualitative predictions (e.g., that 
the shear mode displays no particular critical behavior, etc. ) 
and quantitative predictions pertaining to the specific law of 
softening of the sound velocities and to the growth of the 
bulk-viscosity coefficients. The presently available experi- 
mental data on the critical dynamics at the smectic-A-smec- 
tic-C phase transition" agree qualitatively with our pro- 
posed picture. However, for a quantitative comparison to be 
possible we need a more detailed knowledge of the material 
parameters of the systems under investigation than we have 
at our disposal. 

APPENDIX 

We shall derive the fluctuation-dissipation theorem for 
purely relaxational dynamics. Such a system is described by 
the Lagrangian 
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where r is a kinetic coefficient. We shall consider the corre- 
lators 

($"ti),  p r $ ( t z )  ) = ~ z ( t i - t z ) .  (A31 
In order to find the relationship between them we replace the 
auxiliary fieldp in the Lagrangian 2' by means of the formu- 
la 

In the new variables the Lagrangian is explicitly symmetric 
under time reversal t - +  - t .  Therefore, 

Returning to the original variablep, for the Fourier compo- 
nents of the correlators (A2) and (A3) we obtain the fol- 
lowing relation: 

- D 2 ( 0 ) = ( 2 T / o )  [ G z ( w ) - - G Z ( - o ) l .  (A61 

Since the function G, (w)  is analytic in the upper half-plane, 
and G,( - w )  is analytic in the lower half-plane, after inte- 
grating (A6) over the frequency we obtain the fluctuation- 
dissipation theorem: 

D ( t ,  - t ) = 2 i T G ( t ,  - t ) .  (A71 
This relation can be generalized to the many-component 
fields $ and p and to correlators of all other orders. In addi- 
tion, all the arguments remain valid when the kinetic coeffi- 
cient r depends on the time as r ( t ,  - t , ) .  

In the case of purely dissipative dynamics the correla- 
tors (p,h ) and ($$) can be related in an analogous manner. 
For this we represent the molecular field h in the form 

h=r-' [68/6p-d$/dt-2iTI'p 1. (A81 

Taking into account that the correlator (pp) is equal to 
zero,' we obtain 

Integrating the first term by parts, we find 

This relation permits us to sum the series of diagrams depict- 
ed in Fig. 4. 
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