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The weak-crystallization phase transition in an anisotropic system is considered for the example 
of a nematic liquid crystal. The phase diagram of the system with respect to the magnitude and 
sign of the coupling of the orientational order with the crystal lattice is constructed in the 
framework of the Landau theory. The effect of fluctuations on the diagram is studied. 

1. In recent years interest in the problem of describing 
weak crystallization in the framework of the Landau theory 
has arisen again (see, e.g., Ref. 1).  This interest has been 
simulated primarily by the discovery of phase transitions of 
this kind (weak first-order phase transitions) in liquid crys- 
t a l ~ . ~  However, complete or partial solidification of liquid 
crystals occurs, as a rule, from an orientationally anisotropic 
phase, and therefore the results ofthe theory of weak crystal- 
lization' are not strictly applicable to this case. The first 
attempt to take anisotropy into account in the theory of 
weak crystallization was made by Gorodetskii and P ~ d n e k . ~  
However, in Ref. 3 the authors took the anisotropy into ac- 
count as a specified external weak field. In addition, the en- 
tire analysis of Ref. 3 neglects fluctuations, and, for weak 
phase transitions, the latter turn out to be very important. In 
the present paper we use the example of a nematic liquid 
crystal to consider the crystallization of an orientationally 
anisotropic liquid. In the next section the model used will be 
described. In Sec. 3 it is investigated in the framework of the 
Landau theory. The role of fluctuations is discussed in Sec. 
4, and the limitations of the model and the possibilities for its 
development are considered in Sec. 5. 

2. The Landau free energy of a crystallizing orientation- 
ally anisotropic system in the general case can be written in 
the following form: 

where @, is the energy associated with the crystalline modu- 
lation of the density p, @, is the energy associated with the 
orientational anisotropy, and Qin,  is the interaction energy. 

The contributions @, and @, are both well known1v4: 

Here Qap is the nematic order parameter, pk is a Fourier 
component of the density, T is the temperature measured 
from the "bare " or fiduciary point of absolute instability of 
the isotropic liquid for crystalline ordering, T,, is the same 
for orientational ordering, and p ,  R, b, and c are coefficients 
of the Landau expansion. In each term in (2)  the vectors 
have a given length k, and are such that their sum is equal to 
zero. 

Using symmetry considerations, to lowest order we can 
choose the interaction energy in the following form: 

where, as above k, + k, + k, = 0. In (4)  we have omitted 
terms containing higher powers of the orientational order 
parameter, which do not qualitatively change the results of 
the analysis (see also below). The most important terms in 
(4)  are those in which k, = 0 and Ik,l = Ik31 = k,. Taking 
this into account, we have 

where 

The orientational order parameter (a  traceless symmet- 
ric second-rank tensor QaB ) can be parametrized by means 
of a set of three mutually orthogonal vectors n, m, and [nm] 
( r n X m) and two scalar parameters x and y: 

The parameter y characterizes the degree of biaxiality; with 
y = 0 we obtain the usual uniaxial nematic order (n is the 
director). 

Finally, in analogy with Ref. 1 we shall consider the 
simplest case of an interaction A that is independent of the 
momenta (more precisely, of the angles between them). 
Allowance for this dependence introduces further, arbitrary 
(in general) parameters into the theory, and the problem 
becomes too cumbersome. 

3. Even the highly simplified model to be analyzed still 
contains many unknown parameters. It is convenient to 
eliminate some of them by changing to dimensionless vari- 
ables. We shall assume that the free energy @, in measured 
in units oflr4/R ', the Fourier components of the density are 
measured in units ofp/R, the temperature T has the dimen- 
sions ofp2/R, and the fundamental period of the modulation 
has the dimensions ofp3I2/A 2. The coefficients T,, b, c, and 
Wappearing in @, and Qin,  will also be measured in units of 
p4/R 3. The construction of the phase diagram in the frame- 
work of the Landau theory reduces to the minimization of 
the total free energy ( 1 ). Taking into account the explicit 
expressions ( 2 ) ,  (3),  (5) ,  and (6),  we have 
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+a ( x )  +y zP  ( x )  +y iT+ w Z (3. ( n v )  ' - x + y  ( l n m l v )  ' 

- y ( m v )  ') ayE. (7)  

Here, following Ref. 1, in the crystal part of the energy we 
have distinguished the sums over nontrivial closed triangles 
and quadrilaterals. In addition, in ( 7 )  we have introduced 
the notation 

a ( x )  =3~ , ,~~ /4+bx~ /4+9cx~ /16 ,  

p ( x )  = .cIN/4-bx/4+ 3cxZ /8 ,  y c / l 6 .  ( 9 )  

The situation depends in an essential way on the relative 
magnitudes of the bare temperatures of the crystalline order- 
ing and orientational ordering. If these temperatures are not 
too close (for more detail, see below), there exist two possi- 
bilities: As the temperature is lowered, starting from the iso- 
tropic liquid, either Landau crystallization occurs first and 
then a nematic order parameters develops, or these transi- 
tions occur in the reverse order. 

In the first scheme the Landau crystallization occurs in 
an isotropic system, and we can make direct use of all the 
results of Ref. 1. As in Ref. 1, in the absence of fluctuations 
there are three absolutely stable phases-a bcc lattice, a 
planar triangular lattice of liquid filaments (A), and a one- 
dimensional density wave (S) . The energies of these phases 
and the crystallization temperatures are 

For an orientational transition superposed on this crystal- 
line order the parameter A plays the role of an external field. 
Because of the condition TrQaD = 0 the interaction energy 
for the bcc lattice is equal to zero. But the triangular and one- 
dimensional phases do interact with the nematic order. 
Here, depending on the relative magnitudes of the param- 
eters of the model, different sequences of phases are possible. 
We note only certain possibilities, which are of interest from 
the experimental point of view. For Wx < 0 the "external 
field" makes the nematic order parameter biaxial. A one- 
dimensional crystal structure with biaxial orientational or- 
der corresponds to a smectic-C. In this case, as the tempera- 
ture is lowered the following sequence of phases, which is 
actually observed in liquid crystals,5 is possible: smectic-A 
(i.e., a one-dimensional crystal with uniaxial orientational 
order)-bcc (the so-called smectic-D)-smectic-C. We 
note also that, depending on the amplitude of the field A, 
these phase transitions can be either first-order or second- 
order. 

We now consider the second transition scheme. In its 
bare form the nematic order parameter is uniaxial.' Let 
Wx > 0. It is obvious that the triangular phase is formed in 

the plane perpendicular to the director n. Then 
a ,  = a, = a, = (A /3)  ' I2 ,  and 

Consequently, the interaction leads simply to a shift of the 
transition temperature. The one-dimensional phase is also 
formed in the plane perpendicular to the director. The ener- 
gy Qi,, is given by the same formula ( 11 ), but the interaction 
does not reduce merely to a shift T-+ T - Wx/2 in the transi- 
tion temperature. In fact, crystallization into the S phase for 
Wx > 0 necessarily induces the appearance of the biaxial ne- 
matic order parameter y. The energy of the one-dimensional 
phase has the form 

@ , = b y Z + 2 ~ A + 6 h A 2 -  W x A +  W y A  cos 2rp, (12) 

where q, is the angle between m and v. It is obvious that ( 12) 
has an extremum at 

and, at this extremum, 

As already noted, such a one-dimensional phase corre- 
sponds to a smectic-C. We shall denote it by SC, in contrast 
to the uniaxial one-dimensional phase (smecticd), which, 
as before, we denote by S. The triangular phase does not 
interact with the biaxial order parameter, and therefore is 
not modified. 

Now let Wx < 0. For the one-dimensional phase the sit- 
uation is trivial. It is formed along the director, and the inter- 
action reduces simply to a shift T -  T + Wx in the transition 
temperature. The situation in the triangular phase, however, 
is more complicated. The director lies in the plane of crystal- 
lization. Two possibilities correspond to an energy mini- 
mum (we denote the corresponding structures by A, and 
A,).  In the first structurev,lln and a ,  >a ,  =a3,  whilein the 
second structure v , l n  and a ,  <a2  = a,. 

It is easy to calculate the energy of the two phases. We 
set a, = a, = a (A = 2a2 + a: ). The structure-dependent 
part of the energy (7)  has the form 

The amplitudes of the Fourier harmonics of the density are 
determined by the system of equations obtained by minimiz- 
ing ( 15) with respect to the amplitude a ,  and minimizing the 
total energy (7)  with respect to the order parameter A. Un- 
fortunately, the solution of the corresponding algebraic sys- 
tem is so complicated as to be useless, and further investiga- 
tion can be carried out only numerically. A typical phase 
diagram is given in Fig. 1. An important feature of the dia- 
gram in Fig. l ,  characteristic specifically of anisotropic sys- 
tems, is the possibility of the re-entrant appearance of the 
one-dimensional (smectic) phase. We note also that, in con- 
trast to the isotropic case, in the lower part of the A,-S tran- 
sition curve a tricritical point A can appear, at which the first 
order phase transition is replaced by a continuous transition. 
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FIG. 1. 

4. We now discuss the role of fluctuations. As is usual in 
the theory of weak crystallization (see, e.g., Ref. I ) ,  we are 
concerned with fluctuations associated with the large phase 
volume (a  sphere of radius k,) over which they are built up. 
The condition for the validity of a model limited to terms of 
fourth order in the expansion of the free energy is given by 
the following inequalities: 

An analysis of such fluctuations in an isotropic system was 
first carried out by Brazovskii,' who showed that the entire 
modification of the Landau theory reduces to self-consistent 
allowance for just one fluctuation diagram, depicted in Fig. 
2, in which the solid line denotes the Green's function (cor- 
relator) (pp) and the small circle denotes the interaction 
vertex A. 

In anisotropic systems the situation can be altered sub- 
stantially in comparison with that in Refs. 7 and 1. As can be 
seen from (7),  the energy necessary to excite fluctuations 
with k = k, depends on the angular coordinates. In addition, 
the possibility is not ruled out that in certain regions of the 
sphere (at the poles or equator) this energy vanishes com- 
pletely. In this case, the self-consistent description in Refs. 7 
and 1 breaks down and the main fluctuation contribution 
will come from precisely these parts of the sphere. In the 

present paper we confine ourselves to the case when the cou- 
pling of the orientational and translational degrees of free- 
dom is not too strong, when the fluctuations, like those in 
isotropic systems, are built up over the whole sphere of radi- 
us k,. 

We shall consider for simplicity a uniaxial nematic or- 
der parameter. In this case, from (7)  it is easy to obtain the 
following forms for the bare Green's functions in the nema- 
tic and crystalline phases: 

Here P,(t) is a Legendre polynomial in t = cos 8, where 8 is 
the angle between n and v. Self-consistent allowance for the 
self-energy contribution depicted in Fig. 2 results in replac- 
ing 7 with the inverse square of the correlation length x, 
which in our case depends on the angle 8. In the nematic 
phase we have 

i 

x,(t) =r+wxp2(t) +ah J dt x;' (t), (19) 

where a = k ; / 487~ .  Obviously, x, ( t )  has the form 

where r, satisfies the equation 

Expressions for the correlation length in the crystalline 
phases are obtained analogously. For example, in the one- 
dimensional phase, 

1 

From ( 19)-(22) we obtain the explicit form ofthe equations 
for r, and r,. For Wx < 0 we have (23), (24), while if 
Wx>O we have (25), (26): 

r,-~+ Wx/2 
=ah (2/3 Wx)'" In {[ (3 Wx/2) '"+ (rN+3 Wx/2) '/']rN-'"1 

(25) 

-r,-z+ Wx/2 

=ah(2/3 Wx)" ln{[ (3Wx/2) "f (r,+3 Wx/2) "']ri" ). 

(26) 

When fluctuations are taken into account the expres- 
sions for the energies of the phases are changed. In analogy 
with Ref. 1, we have 

FIG. 2. 
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xZ ax" a  31WxI " 
P ( A ) = F ( x ) =  [-+--- - 

12h 6 6 (  2 ) 

N 

The connection between A and x  is established by the rela- 
tions 

Of the two possible solutions (30) we must choose the larg- 
er. In an anisotropic system, the energy expression (27), 
(28) contain the values of the functions xN,xS,  and x, that 
give the minimum energy. For Wx > 0 this corresponds to 
t = 0 and nN = r,,x, = r,, while for Wx < 0 it corresponds 
t o t =  1, i.e., nN =rN + 3Wx/2, x, = r, + 3Wx/2. 

For Wx > 0 the procedure described is easily extended 
to the triangular phase. We have the system of equations 
(301, (31): 

1 

x. ( t )  =r+12hAA+ WxP2  ( t )  + ah I d l  x;" ( t )  . (31) 
" 

Solving the system ( 30), ( 3 1 gives 

x,  ( t )  =rA+3 Wxt2/2,  (32) 

The extremal value of x,  ( t )  is attained, of course, at t = 0. 
The phase diagram of the system with allowance for 

fluctuations and for Wx = 1/4 is depicted in Fig. 3 in the 
variables T and a = k ;/4.rr. It can be seen that enhancement 
of the fluctuations (i.e., growth of the parameter k,) rapidly 
destroys the intermediate triangular phase and lowers the 

FIG. 3. 

FIG. 4. 

crystallization temperature. We note that this result agrees 
with the conclusions of Ref. 1. For W = 0 our equations go 
over directly into the equations of Ref. 1. 

The case Wx < 0 is more complicated for the calculation 
of the energy of the triangular phase, since even in the Lan- 
dau theory, as we have seen in the preceding section, the 
relation between A and x  can be found only numerically. The 
phase diagram for Wx = - 1/4 is given in Fig. 4. The 
dashed line denotes the boundary of the region of applicabili- 
ty of the model (see Sec. 5).  For small a it evidently corre- 
sponds to a line of transitions to the smectic-A phase. 

5. We now give a more rigorous discussion of the condi- 
tions of applicability of the model. As already stated, the 
main assumption is that the fluctuations are built up over the 
entire sphere. For Wx < 0 and r,  5 3 / Wx1/2 our model loses 
its meaning. This instability appears for any Wx < 0 at tem- 
peratures below 

(only for Wx-0 does the absolute-instability temperature 
satisfy T, - - rn ). Fluctuations stabilize the nematic 
phase, and for large a the crystallization to the one-dimen- 
sional phase by the Brazovskii mechanism occurs before the 
model loses its applicability (see Fig. 4) .  

We note that it would seem that an analogous singular- 
ity appears in the one-dimensional phase [see Eqs. (23 ) and 
(24) 1. However, this instability is unimportant for our anal- 
ysis, since the transitions being studied occur at T < 0 and the 
instability occurs at T > 0. 

Up to now we have been concerned only with the self- 
interaction of these crystallization fluctuations in an aniso- 
tropic system. However, these fluctuations also change the 
coefficients in the nematic part (3 )  of the energy. This renor- 
malization is described, in particular by the diagrams of Fig. 
5 (the wavy line symbolizes the Green function (QaB Q,,, ) of 
the orientational fluctuations). The diagram of Fig. 5a re- 
normalizes T , ~ .  In order that this renormalization be unim- 
portant, it is necessary that the nematic and crystalline tran- 
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FIG. 5. 

sitions be sufficiently separated. A simple estimate of the There are grounds to assume (see the discussion at the 
diagram of Fig. 5a gives the condition end of Ref. 1 ) that the general conclusions of the model do 

not depend on its simplifying assumptions. For example, 
( W X ) ~ ~ Z - ' < ' G ~ N - Z .  fluctuations always stabilize the nematic phase. As the am- 

plitude of the fluctuations increases, the regions of stability 
In an analogous manner the diagram of Fig. 5b renormalizes of the ,.intermediate., phases on the phase diagram disap- 
the coefficient b in ( 3 ) ,  and the diagram of Fig. 5c renormal- pear, 
izes the coefficient c. The restrictions arising from this have In conclusion, the authors express their gratitude to I. 
the form E. Dzyaloshinskir for formulating the problem and for use- 

( W X )  3t17-'''e:b, (Wx)k~ar-"~<c. ful discussions. 

Weak crystallization occurs at a-r3I2. Thus in effect, these 
inequalities reduce to the conditions 

Therefore, with increase of the amplitude a of the fluctu- 
ations the diagrams of Figs. 5b and 5c become less impor- 
tant. 

A detailed comparison of the above scheme with experi- 
ment is difficult at the present time, since quite a few un- 
known parameters appear in it. Nevertheless, in the frame- 
work of this approach it is easy to give a qualitative 
description of all the observed sequences of phase transitions 
in lyotropic and thermotropic liquid crystals. 

"The authors originally omitted the term - W X A  from Eq. ( 15). Fig- 
ures 1 and 4 have been modified to incorporate this correction. 

IS. A. Brazovskii, I. E. Dzyaloshinskii, and A. R. Muratov, Zh. Eksp. 
Teor. Fiz. 93, 1110 (1987) [Sov. Phys. JETP 66,625 (1987)l. 

'P. G. de Gennes, The Physics ofLiquid Crystals, Clarendon Press, Oxford 
(1974) [Russ. Transl., Mir, Moscow (1977) 1 .  

'E. E. Gorodetskii and V. E. Podnek, Pis'ma Zh. Eksp. Teor. Fiz. 41,244 
(1985) [JETP Lett. 41,298 (1985)l. 

4E. F. Gramsbergen, L. Longa, and W. H. de Jeu, Phys. Rep. 135, 195 
(1986). 

'D. Guillon and A. Skoulios, Europhys. Lett. 3, 79 (1987). 
'V. L. Pokrovskii and E. I. Kats, Zh. Eksp. Teor. Fiz. 73, 774 (1977) 
[Sov. Phys. JETP 46,405 (1977)l. 

'S. A. Brazovskii, Zh. Eksp. Teor. Fiz. 68, 175 (1975) [Sov. Phys. JETP 
41, 85 ( 1975) 1. 

Translated by P. J. Shepherd 

740 Sov. Phys. JETP 67 (4), April 1988 E. I .  Kats and A. R. Muratov 740 


