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The stationary self-similar distribution of electrons in a spatially inhomogeneous plasma with 
fully developed ion-acoustic turbulence is derived and the anomalous charge and heat fluxes 
corresponding to this distribution are determined. 

1. INTRODUCTION 

Spatially inhomogeneous self-similar electron distribu- 
tions that evolve in the course of time have frequently been 
discussed in the literature in connection with the theory of 
anomalous resistance and heating of plasma during the exci- 
tation of ion-acoustic turbulence (IAT) I-' (see also the re- 
views in Refs. 4 and 5).  These distributions evolve over a 
time interval of the order of the reciprocal of the effective 
frequency of electron energy relaxation, and their form does 
not depend on the form of the initial distribution function, 
but it is determined by quasilinear interaction with ion- 
acoustic waves. The quasilinear approach was used in Refs. 1 
and 2 to develop a theory of the IAT spectrum and of the ion 
and electron distribution, while the self-similar distributions 
were investigated in Ref. 3 on the assumption of agiven IAT 
distribution. The approach to IAT theory proposed in Ref. 6 
was based on the simultaneous inclusion of quasilinear ef- 
fects and stimulated scattering of sound by ions, and was 
used in Refs. 7 and 8 to investigate spatially inhomogeneous 
electron distributions. In particular, Bychenkov et a1 "nves- 
tigated the relaxation of an initially Maxwellian distribution 
function to the self-similar distribution derived in Ref. 8. 

The electron distribution problem can be formulated 
for spatially inhomogeneous turbulent plasma in another in- 
teresting way that has not yet been discussed. A nonequilib- 
rium stationary self-similar distribution of electrons may be 
expected to exist in inhomogeneous plasma and be main- 
tained by potential, pressure, or temperature gradients. In 
this paper, we shall establish the conditions for the existence 
of this type ofdistribution, and will determine its form using 
the approach to IAT theory proposed in Ref. 6 .  We shall also 
determine the anomalous electron heat and charge fluxes. 

In Sec. 2, we start with the transport equations for elec- 
trons and ion-acoustic waves, and derive the equations for 
the isotropic part of the distribution function in an inhomo- 
geneous plasma with fully developed IAT. In Sec. 3, the sta- 
tionary inhomogeneous self-similar electron distribution is 
found analytically, and conditions are determined for its ex- 
istence. The results of a numerical integration of the equa- 
tion describing this distribution are also given in Sec. 3. The 
electron heat and charge fluxes are calculated in Sec. 4 for 
the self-similar inhomogeneous distribution, and the range 
of validity of the self-similar distribution is examined in ve- 
locity and ordinary space. 

2. EQUATION FOR THE ISOTROPIC PART OF THE 
DISTRIBUTION FUNCTION 

Our analysis will be based on the transport equation for 
the electron distribution function f = f (u, g, t ) ,  which we 

shall write down on the assumption that all the gradients and 
the electric field E(z)  point along thez axis, and the positive 
values of E(z )  correspond to the positive direction of the z 
axis ( v  is the magnitude of the velocity of v, 6 = cos O,, 
8, = Qv, R, R = en, (z)E(z)  - V p ,  (z) is the effective 
force density vector, and e, n ,  (z) = n , ,  p ,  ( z )  are, respec- 
tively the electron charge, density, and pressure. We shall 
assume that the instability excitation threshold has been sub- 
stantially exceeded. Neglecting binary electron-electron and 
electron-ion collisions, we haves.6 

where rn, is the mass of the electron and the components of 
the quasilinear diffusion tensor Da8 are determined by the 
number distribution N(k, x )  ( x  = cos 8, ) of the ion-acous- 
tic waves over the angles 8, Qk, the vector R and the acous- 
tic wave numbers k. These components are given by 

where 77 (x)  = 1, x>O, x < 0; wLi is the Langmuir frequency 
of ions, K,,, and k,,, are the limits of the range of values of 
k in which the number density of the ion-acoustic waves is 
positive, w,  = kv, ( 1 + k *r;, ) - ' I 2  is the frequency of 
sound, u,  = w,, r,, , r,, is the Debye radius of electrons, and 
the quantities da8 have the form 

We shall seek the solution of ( 1 ) in the form of the sum 
of the isotropic part f;, =f; , (u ,  t )  and the small anisotropic 
f, =f,(v, 6, t )  d o :  

1 

1 
f = f o + f 1 ,  f o  = 5  id^ f .  (4) 

- 1  
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Substituting f = f, + f,, and integrating with respect to [ 
between - 1 and 1, we obtain the equation for f,. Subtract- 
ing this equation from ( 1 ), we obtain the equation for f,. 
Next, for electrons with v %  v,, we have the following rela- 
tionship between the components of the diffusion tensor ( 2 )  : 

These inequalities enable us to decouple the equations for f, 
and f,. The stationary solution of the equation for f, then 
has the form (see, for example, Ref. 6) : 

af i  v2 { e E ( z )  dfo v  dfo -=-- -- +--+ Dv, dfo 
a k  D,, 2m. dv  2  dz  ~ ( 1 - g ~ ) ' ~ ~  

(6) 

Substituting this into the equation forf,, we obtain 
i 

d f o  eE ( z )  d  dg 1-g2 eE ( z )  v2 dfo -+-- I--[ ------ 
at 2m,v2 a~ -, 2 D,, 2m. a v  2  a~ 

v  a dg 1-g2 e E ( z ) v 2  dJ, v3 df, --- J--[---+--+-- 
- I  

2 az 2 D,, 2m, d v  2  az ( ~ - g ~ ) " ~  dv 

The coefficients Da8 that describe the evolution off, depend 
on the distribution of ion-acoustic waves given by (2) .  To 
determine the stationary distribution N(k, x ) ,  we can use 
the condition that the sum of the growth rate of the Cheren- 
kov interaction between sound and electrons and the growth 
rate of stimulated scattering of sound by ions" is zero: 

kv 
+ 4nnimiv,2 k 2 h " ' )  

( )  SdXtQ ( x ,  x f )  N ( k ,  x') =o. 

where w,, is the Langmuir frequency of electrons and n;, 
mi, and u,  , are, respectively, the density, mass, and thermal 
velocity of ions. The kernel of the nonlinear wave interaction 
in (8)  is given by 

where p,. is the azimuthal of the vector k'. 
We assumed that (8)  is valid in the range between 

kmin rD, < 1 and k,,, r,, % 1, where k,,, is determined by 
collisional damping of sound by ions and k,,, is due to the 
strong Landau damping of sound by ions. We emphasize 
that (8)  does not take into account the Cherenkov interac- 
tion with ions. This assumption is valid when the rate at 
which turbulent acoustic pulsations are damped by ions is 
lower than that for  electron^.^ We now turn to the solution of 
(8 )  and, following Ref. 10, we assume that (w,/k) A,(w,/ 

k, t )  z v ,  fo(O, t ) .  According to Ref. 10, the is type 
of approximation for the last term in braces in .ias very 
little effect on integrals of the wave distribution N(k, x )  
encountered in IAT theory. Next, substituting (6) in (8),  
and neglecting small corrections on the order of w, /kv ( 1, 
we obtain the solution of (8)  in the limit of small turbulent 
Knudsen numbers ( K N  ( 1 ). We then have N(k, x )  
= N(k)@(x),  where N(k)  and @(x)  are given by6.','' 

where 

v, = w,, rD, , /Z z 0.5, and r,; is the Debye radius of ions. The 
density n, (z),  pressurep, (z), and Debye radius of electrons 
in ( 12) are functionals of the isotropic part of the distribu- 
tion function: 

Following (2 ) ,  and recalling that w, is small in comparison 
with kv, and also the fact that k,,, r,, >) 1 ) k,,, rD, , we ob- 
tain the following approximate formulas for the components 
of the quasilinear diffusion tensor: 

1 g xo ( ( I  -- pp) 1 
I D v 4  ..3 

where v, = ( 9 ~ / 8 )  'I2R /ne me us U, and the functionsx, (y) 
(n = 0 ,1 ,2  depend on the function @ (x )  given by ( 1 1 ) : 

Since the diffusion tensor is now known, we can write equa- 
tions (7)  for f, in the form 

a f o  I a -=-- a f [ A  ( z )  v5++B(z) v - ' ] -  
dt v2 dv  d v 

(17) 
where 

730 Sov. Phys. JETP 67 (4), April 1988 V. P. Silin and S. A. Uryupin 730 



and also p = 0.18 and p, = 0.3. As in Refs. 7 and 8, we 
assume in the derivation of ( 17) that the anisotropic part of 
the distribution function f, is much smaller for most of the 
particles than the isotropic part f,. Substituting ( 15) in (6), 
we readily see (cf. Ref. 7 and 8 )  that the inequality f, e0 is 
valid only for velocities that are smaller than the limiting 
velocity u,,, determined from the condition f, -A,. Equa- 
tion ( 17), which describes the space-time evolution of the 
electron distribution in plasmas with fully developed IAT, 
can therefore be used to findf,, but only in the region of low 
velocities u 5 u,,, . We note that, in the special case of a spa- 
tially homogeneous distribution of electrons and E ( z )  = E 
= const, equation ( 17) becomes identical with the equation 

examined in Refs. 7 and 8 in the self-consistent theory of the 
electron distribution and fully developed IAT. 

3.STATlONARY SELF-SIMILAR DISTRIBUTION OF 
ELECTRONS 

We shall now examine the stationary df;,/dt = 0 self- 
similar solution of (17).  First, we note that if we seek the 
self-similar solution in the form 

where the unknown velocity is w,,(z) > 0, we can verify that 
the solution exists provided 

where a and I are numbers. The number a in ( 19) can have 
either sign (sign a = f I ) ,  which corresponds to the two 
possible orientations of the pressure gradient, i.e., either par- 
allel or antiparallel to the electrostatic force eE(z).  The con- 
dition given by (20) signifies that, for the self-similar distri- 
bution, the electron density and, hence, other microscopic 
quantities, must be definite functions of the effective velocity 
wo(z). 

In view of the foregoing, and substituting 
~ ( z )  = w,,(z)/( la1 ) 'IZ, we seek the self-similar solution of 
(17) in the form 

where a and C are unknown constants. The pressure p, (z) ,  
the characteristic electron velocity u,,, the velocity of sound 
v,, the electron density n, (z) ,  and the turbulent electron 
momentum relaxation frequency v,, are uniquely determined 
by the velocity w(z) and the moments p,, of the functions 
F (y )  : 

provided the function f, is given by (2  1 ) and y, = u,,, / 
~ ( z ) ,  n = 0,1,2 ... Using (12)-(15) and the identity (19),  
we have 

4n 
pe (z) = , C m , p & ~ ~ + ~  (z) , n, (z) = 4 n C p 2 ~ a + 3  (z) , 

3 
( 2 3 )  

uo=u,OLelOLi=w (z) ( ~ 2 / P a ) ' ~ ,  yoBymF( ym) , 

where the y-functional of the distribution F (y )  is 

1 3  1 7 = -- [? P. - - (a+5) pi sign a . 
P(0)  2 I 

According to (24),  solutions such as (21) exist if 
eE(z )y>  0. In view of (23)-(25), the coefficients (18) that 
determine the electron distribution are given by 

Pg me 8(z)=-- 
4yw2 (z) eE (z) ' 

whereg = C L ) ~ ~ W ~ ' ( , U ~ / , U ~ )  ' I 2  

The equation for the function F ( y )  then follows directly 
from ( 17), and can be written in the form 

Since the original equation (17) is valid for particles with 
velocities u smaller than the limiting maximum velocity 
v,,, , equation (27),  which is derived from it, is meaningful 
only for y <y, = u,,,/w(z). To  determine y,, , we use the 
condition that the anisotropy of the distribution function is 
small, i.e., f, G,. We therefore rewrite ( 6 )  for the case where 
the distribution function is given by ( 2  1 ). Recalling ( 15), 
(19),  and (23)-(25), we have 

Since, according to ( 11 ) and ( 16), we have x,(yl)  zy" as 
y'-0, the first integral with respect t o y '  in (28) diverges 
logarithmically as g- 1. As in the situation established pre- 
viously in the self-consistent theory of the electron distribu- 
tion in plasmas with fully developed IAT,'.' this divergence 
can be removed by taking binary electron-electron collisions 
into account: 

where K,, is the excess above the threshold for IAT.'Equat- 
ing the expression given by (28) to unity, we obtain the 
equation that determines the value ofy,, for which the ratio 
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f , / f ,  is less than unity for arbitrary c. In particular, when 
y ,  > 1 ,  we have 

In general, when the distribution given by (21 ) is valid, 
the excess K,, over the threshold may depend on position. 
However, since the dependence of y,  on K,, is slower than 
the logarithmic dependence, we shall assume throughout 
that y,  is approximately independent of position. Before we 
solve ( 2 7 )  on the interval O<y<y,, we make one further 
remark about the shape of the function F, which will enable 
us to restrict, and at the same time simplify, our discussion. 
Integrating the original equation ( 1 ), we obtain the follow- 
ing continuity equation for F: 

It follows from this that the stationary distribution an,/ 
at = 0  exists provided the electron current density 

is either generally zero ( j  = 0 )  or, if j = j ,  # O ,  it is indepen- 
dent of the position coordinate z .  In current-free plasmas, 
the condition j = 0  leads to an additional equation for the 
unknown parameter a: 

up7  sign a = 6 b 2 -  I - !  1  + 6 p l - 8 p 7  sign a, 
P 

which, together with ( 2 5 )  and ( 2 7 ) ,  can be used as a basis 
for studying the existence of the stationary self-similar dis- 
tribution. However, from now on, we shall concentrate our 
attention on another special case of current-carrying plas- 
ma, which is of interest from the experimental point of view. 
Substituting ( 2 8 )  in ( 3 0 ) ,  and using the explicit form off,  
given by ( 2 1 ) ,  we can readily verify that the integral ( 3 0 )  is 
independent of z  for a current-carrying plasma ( j , # O )  only 
for a = - 4. This value of a corresponds to I = - 1 in ( 2 0 ) .  
Consequently, the inhomogeneous stationary self-similar 
distribution in current-carrying plasma must be sought by 
putting a = - 4  in ( 2 7 ) .  The order of ( 2 7 )  can then be re- 
duced, and its positive solution that vanishes at y  = y,  is2' 

y" d y f f  
F = S J  

' 2 p 0 y 2 f  PyN6 (I-y"' sign a)' 

exp{j d y ,  8.1 ( 1 - P )  Y " - ~ B ( Y ' ~ - Y ~ ~  signs)), ( 3 1 )  
2 p 0 y 2 + p ~ ' 6  ( I - y "  sign a ) '  u 

where, without loss of generality, we can assume that the 
constant S >  0  is equal to unity, which is equivalent to a rede- 
finition of the constant C in ( 2  1 ). The constant y is then 
found from the equation that follows from the definition 
( 2 5 )  if we substitute ( 3 1 )  into it. 

Let us first consider the distribution F+ described by 
( 3 1 )  with sign a = 1 ,  so that the direction of the pressure 
gradient and the direction of the effective force density are 
the same. From ( 2 5 )  and (21 ), we then find by numerical 
integration that y+ = 0.077. The calculation of y+ was car- 
ried out for y,, = 3 ,  5 ,  7, and 9,  and showed that, to within 

FIG. 1. Dependence of identically normalized F+ and F on y. 

the precision with which the quantities0 andPo were speci- 
fied, the parameter y+ did not depend on the variation o f y ,  . 
Figure 1 shows an example of F+ for y+ = 0.077. The func- 
tion F+ falls rapidly (by almost eleven orders of magnitude) 
between y -0.8 and y  - 1.2. Consequently, the integrated 
characteristics of the electron distribution are largely deter- 
mined by particles with y < 1 and can be evaluated by using 
the following approximate expression instead of ( 3  1 ) : 

Let us now consider the distribution F- described by 
( 3 1 )  with sign a = - 1. The resulting numerical value of 
y- depends on y, , i.e., the upper limit of the range of valid- 
ity of the distribution ( 3 1 )  (see Fig. 2 ) .  As y,  increases, 
there is a tendency for y- to reach the limiting value 
y- = 0.024. While all this is happening (see Fig. l ) ,  the 
function F- falls much more slowly than F+, so that its 
higher moments depend significantly on y,  , i.e., they are 
determined by fast particles ( y  > 1 ). We note that, whatever, 
the sign of a ,  the functional y is always positive. Moreover, 
as noted earlier [see ( 2 4 )  1, the self-similar solution (21 ) 
exists when e E ( z )  y > 0 .  Thus, since e < 0  and y > 0 ,  the solu- 
tion defined by (2  1 ) and ( 3  1 ) exists when the electric field 
E(z) is antiparallel to the z axis. 

4. ANOMALOUS TRANSPORT OF HEAT AND CHARGE. 
DISCUSSION 

The above electron distribution can be used to find the 
electric current j and the electronic heat flux q. Using ( 2 8 ) ,  

0 2 Y 6 Y", 

FIG. 2. Dependence of y _  on y,,, . 
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we obtain 

z PO B 5 38 - n.msu.uo {-; rc + ( I - B )  a - - PI sign a} 
Pz 4Y 

where the electron density n, and the velocities v, and v, can 
be expressed in terms of w ( z )  by ( 2 3 )  with a = - 4. Formu- 
las ( 32) and (33 ) take into account the fact that F(y ,  ) = 0 
and a = - 4. Since the electron distribution is known, the 
constants I and Q that determine the anomalous transport 
can be calculated. When sign a = 1, we have I+ z 1.60, 
Q+ ~3.07. Like y+ ,  the quantities I+ and Q+ are indepen- 
dent ofy, to the accuracy of the calculations. In the second 
case, when sign a = - 1, the strong dependence of the mo- 
ments of the function F- on y,  ensures that I- ( y ,  ) and 
Q- ( y ,  ) depend significantly on y,  . The functions I- ( y ,  ) 
and Q- ( y ,  ) are plotted against y,  in Figs. 3  and 4. It is 
clear that the limiting electron flux increases with increasing 
y,  , so that it is largely determined by fast particles with y  > 1 
(or u >  w ) .  

The fact that the function I i s  positive, whatever the sign 
of a, means that the electric current j is antiparallel to the z  
axis, since e < 0, i.e., it is parallel to the electric field E ( z ) .  In 
its turn, the fact that the function Q is positive for any sign a 
means that, whatever the direction of the pressure gradient, 
the electronic heat flux is parallel to the z  axis, i.e., it points 
in the direction of the effective current density generating 
the instability. 

We must now determine the constant C'  = CS in (21 ) 
and ( 3  1 ), which determines the electron distribution, and to 
interpret in greater detail the characteristic velocity w. Ex- 
pressing C '  in terms of the density n,, and introducing the 
concept of the mean energy of random motion 

we obtain the following electron distribution: 

FIG. 3.  Dependence of I on y,, . 

FIG. 4. Dependence of Q- on y, . 

In accordance with the necessary condition for the existence 
of the inhomogeneous self-similar stationary distribution 
[see ( 19) 1, and using the relation E ( z )  = - d@ ( z ) / d z ,  we 
find that the mean energy ( E )  is determined by the potential 
@ ( z )  in the plasma: 

If we look upon @ ( z )  as a given function, and demand that 
the current ( 3 2 )  be independent of position, then equation 
( 3 5 )  provides a complete description of the variation of the 
functions n, and ( E )  in space and, hence, of the electron 
velocity distribution in the current-carrying plasma. 

Several assumptions were made in the derivation of the 
self-similar distribution given by ( 3 4 ) .  First, we used the 
solution of the equation for the ion-acoustic waves for 
KN 4 1, which gives 

Second, the electron-electron collision integral was ignored 
in the equation for f,, which is possible i f7  

where the electron-electron collision frequency is 
Y,, -4.rre4n, n/rnLl2 ( E ) " ' ,  and A is the Coulomb logarithm. 
Inequality ( 3 7 )  shows that the collisional instability thresh- 
old has been substantially exceeded and that the effect of ion- 
ion collisions on the distribution of resonance ions with 
v - u,  can be negle~ted.~ The distribution of resonance ions is 
then characterized by a high effective temperature 
KT, $ Z  ( E ) ,  where Z is the valence of the ion and K is the 
Boltzmann constant. Third, when N ( k ,  x )  was derived, we 
neglected the Cherenkov interaction between sound and 
ions, which means that, when KT, $ Z  ( E ) ,  we must satisfy 
the inequality 

where n, is the density of resonance ions. Since, in plasmas 
with fully developed IAT, n, <dn, and KT, %Z ( E ) ,  in- 
equality ( 3 8 )  is satisfied relatively simply. 

In deriving the equation for f,, we used the solution 
N ( k ,  x )  for the case where most thermal ions were described 
by the Maxwell distribution. This assumption is definitely 
valid, for example, for plasmas with frequent ion-ion colli- 
sions' 

733 Sov. Phys. JETP 67 (4), April 1988 V. P. Silin and S. A. Uryupin 733 



if we can neglect the distortion of the ion distribution by 
stimulated ~ c a t t e r i n ~ . ~ '  Moreover, under real conditions, 
there are factors (other than ion-ion collisions) which en- 
sure that most of the ions are described by the Maxwell dis- 
tribution. These factors include collisions of ions with nu- 
clear particles. 

Next, assuming that the ion distribution has the neces- 
sary properties, let us examine in greater detail the restric- 
tions (36) and (37). In view of (19),  (23), and (24), and 
using (32) to express n, (z) in terms of the given current 
density j,, we can write (36) and (37) in the form 

' I2  w''/2 i0e3 wLe2 
C ,  (emdo)' (2) B eE ( z )  w3BC2 - - 2 7 

me O L ~  
(39) 

where 

In particular, for the distribution f, corresponding to 
sign a = 1, for which we have F+(O)/p,z1.95, (p,/ 
p2) ' I2z3 .02 ,  (3p2/p4)1'2z3.48, y+ ~ 0 . 0 7 7 ,  I+ z 1.60, 
U+ ~ 0 . 8 1  independently of y, , the constants are 
C,  - 6 . 7 ~  1 0 - h n d  C2- lo3 A. We shall assume, without 
loss of generality, that inequalities (39) are satisfied at z = 0, 
so that, using (19),  we can write w(z) in the form 

1 

2 
w 2 ( z )  = wz (0) + - 1 dz' eE ( 2 ' )  sign a. (40) 

me 0 

Since eE(z) > 0, the function w (z) increases monotonically 
with increasing z for sign a = 1, but decreases monotonical- 
ly for sign a = - 1. We shall illustrate the consequences of 
(39) and (40) by considering two examples. First, we take 
E ( z )  = const < 0 and assume the z dependence of u, to be 
such that 

so that w/v,, is constant. According to (39) ,  w(z) is then 
greater than w,,, : 

w ( z )  2 w,,, = max 

so that, according (40),  w(z) = w(0) [ 1 + 2eE,, z sign a/ 
w2(0) ] 'I2. If we compare w(z) with w,,, , we see that, when 
sign a = 1, inequality (39) is satisfied for z between z,,, < 0 
and + W ,  where zmi, is found from the condition 
W +  (zmin ) = wmin, whereas for sign a = - 1, the inequality 
is satisfied between z and - w up to z,,, > 0, where z,,, is 
determined from w- (z,,, ) = wmi,. 

The other example involves the nonuniform distribu- 
tion of the field E(z )  = E, coshK2(z/L), where E, < 0, L 
is the size on the inhomogeneity, and the potential 
@ (z) = @ (0 )  - E, L th (z/L ) can to some extent be real- 
ized experimentally. I 2 , l 3  Inequalities ( 39) then have the 
form 

1 /4 

1 + p sign atanh L) L -)coshK2(t )  

where 

C,'=Ci( jom,w ( 0 )  /eEm2)'" (mLi /aLe)  ' I 2  ( w / v T , )  ' ,  

~ ~ ' = C ~ e ~ j ~ ~ ~ , ~ / m , E , w ~  ( 0 )  wLi2, p=2eE,L/m,w2 (0) >0,  

and, to be specific, the ratio w / u ,  is assumed constant. Let 
us examine these inequalities in relation to a d.c. discharge in 
a finite gap of length d > 0. Suppose that the "anode" is at 
z = 0 and is held at @ ( 0 )  >0 ,  and the "cathode" is at 
z = - d, so that the potential @(z)  falls from @(O) to 
@ (  - d ) .  The velocity w(z) is then found to decrease for 
sign a = 1 and to increase for sign a = - 1 as z varies from 0 
to - d, and the product eE(z) decreases with increasing z. 
Whenp tanh(d /L) < 1, the function w(z) is essentially con- 
stant over the length of the discharge gap, and eE(z) de- 
creases. The result is that, if C ;  cosh2(d /L) > 1, the right- 
hand inequality in (39) breaks down at large distances from 
the "anode." On the other hand, when C;  cosh2(d /L) < 1, 
the above distribution f, is established over the entire length 
of the discharge gap. When p tanh ( d  /L ) > 1, the function 
w (z) increases for sign a = - 1, and the region in which f, 
(34) is established is wider than that for p tanh(d /L)  < 1. 
On the contrary, when using a = 1 andp tanh(d /L)  > 1, the 
velocity w(z) decreases and may vanish with the interval 
[ - d, 01, which violates the right-hand inequality in (39).  
The distribution f, (34) is then definitely not established 
near the "cathode." These examples demonstrate the extent 
to which the region in which this distribution is established 
in coordinate space depends on the structure of the field that 
generates the IAT. 

Finally, let us consider the range of validity of the distri- 
bution defined by (31) and (34) in velocity space. Since 
(31) was obtained for y ~ y , ,  , the distribution (34) occurs 
for u<u,,, = wy,. To be specific, let us suppose that 
K,, = lo2 - lo3, so that when sign a = 1, we have 
y m z ( l . l - 1 . 2 ) ( A / Z ) l i x ,  where Z=e , i e l - I ,  e, is the 
charge on the ion, and A = m, /m, is the ratio of the mass of 
the ion m, to the mass of the proton m,. Hence, it would 
seem at first sight that, for realistic K,, and A /Z, the region 
in which the distribution ( 34) is established for sign a = 1 is 
relatively small. Actually, it corresponds to the velocity 
range u s  ( 4  - 7)  ( (&)/me )I1 ' .  However, it is clear from 
Fig. 1 that, because of the rapid fall in F+ near y- 1, the 
electron currents established in this case are essentially inde- 
pendent of y, (or u,,, ) .  This corresponds to the situation 
where the region in which the self-similar distribution (34) 
is established covers practically the entire region occupied 
by the electron velocity distribution. In the opposite case, 
when a = - 1, the characteristic values y, have the same 
order of magnitude. However, in this case, the values of y K  
and of the dimensionless electronic fluxes I and Q (see 
Figs. 2-4) depend significantly on y,,, , which imposes more 
stringent conditions on the precision with which the range of 
validity of ( 3  1 ) must be defined. 

APPENDIX 

The electron distribution defined by (31) and (34) is 
established when the particle flux in velocity space is non- 
zero. In particular, the flux differs from zero near v = 0 and 
leads to the outflow of particles from the low-velocity region. 
To appreciate the extent to which this outflow is significant 
from the establishment of the above electron distribution, let 
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us determine the electron flux near the point v  = 0. We shall 
do this by considering ( 17), retaining only the leading term 
[proportional to B ( z )  for v-0] in the right-hand side: 

Integrating ( A l )  with the weight 4n-v2, we find that the out- 
flow of particles near v  = 0  is characterized by the current 
density. 

B(2)  d f o  I= -4n lim - - 
u+o v d ~ '  

Next, substituting for v, from ( 3  1 )  and (34) with S = 1 in 
(A2) ,  we find that 

Using (24) and (27) ,  we can rewrite the last expression in 
the form 

where T,  is the characteristic time for turbulent heating of 
electrons. Substituting yz0.077 andp"z2.1 lo t3  in ( A 4 ) ,  
which corresponds to the value of the integral ( 2 2 )  of the 
function ( 3  1 ) for S = 1 ,  we finally have 

This formula leads to an anomalously long characteristic 
time for the depletion of the main mass of electrons, namely, 

Since, in typical experiments, T ,  - 10-5-10-7 s, the time 
given by (A6)  exceeds by several orders of magnitude the 

duration of the experiments. We note that the large value of 
t ,  as compared with T ,  is to an extent analogous to that 
found by Galeev and Sagdeev5 for electron drag as compared 
with heating in homogeneous plasma with IAT. 

"The terms (dw,/dk) (dN/az) - (dw,/dz) (dN/dk) are omitted from 
(8) .  This is justified when the characteristic plasma scale L is relatively 
large L S  r, (3wL,/8v,,)r~,r, '1n K ,  ' ) - I .  

"Equation (27) also has a solution with S = 0, F(y, ) #O. Analysis of this 
solution for the most interesting case sign a = 1 shows that the corre- 
sponding values of y and the electronic fluxes j, (32) and q, (33) are 
equal (to within the accuracy of the calculations) to the corresponding 
values for S #O, and the function F+ (y) has the form shown in Fig. 1. 
The reason for the similarity between solutions with S = 0 and S #O is 
the smallness of the electronic flux near v = 0 for S # O  (see Appendix). 

"The left-hand inequality means that we can ignore the influence of ion- 
ion collisions on the IAT spectrum for kr,, - 1. 
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