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A new type ofelectromagnetic wave is predicted. It is localized at an interface between two 
transparent media and travels along the interface. The presence of such waves is due to the 
difference between the symmetry of the two media in contact. Waves at an interface between an 
isotropic medium with a permittivity E and a uniaxial crystal, characterized by , and E, , are 
considered in the case when the optic axis is parallel to the interf-ce. It is shown that such surface 
waves exist if E~~ > E > E, and that they can propagate in a certain range of angles with respect to 
the axis. 

1. We shall consider a new type of electromagnetic 
waves localized at an interface between two transparent me- 
dia and propagating along this interface. The existence of 
such waves is due to differences between the symmetry of the 
media in contact and, in contrast to the familiar cases, these 
waves do not appear because the permittivity is negative or 
has spatial dispersion. 

We shall consider only the case of an interface between 
an isotropic medium with a permittivity E and a uniaxial 
crystal for which the principal values of the permittivity ten- 
sor are E~~ , E ~ ,  and E, . The values of&, ell, and &,, are assumed 
to be real and positive. The properties of these surface waves 
and the very possibility of their propagation are governed by 
the relationships between E,  q ,  and E,, as well as by the 
relative orientations of the normal to the interface, optic axis 
of the crystal, and the wave vector. We can easily show that 
in the simplest case when these three directions lie in the 
same plane, and particularly if the optic axis is perpendicular 
to the interface, there are no surface waves of the new type. 
The need to consider the more general geometry explains 
why the existence of localized waves at such an interface has 
remained undetected in spite of the fact that the reflection 
and refraction of light at an interface between an isotropic 
medium and a crystal have been studied for a long time and 
very thoroughly (see, for example, Ref. 1 ) . 

We shall consider the case when the optic axis of a crys- 
tal is parallel to the interface. We shall show that surface 
waves exist if > E > E, and that they can propagate in a 
certain range of angles relative to the axis. The boundaries of 
this range are governed by the values of E ,  E , ~ ,  and E ~ .  

2. We shall assume that the interface coincides with the 
x = 0 plane. The half-spacex > 0 is occupied by the isotropic 
medium, whereas the crystal with its optic axis parallel to 
the interface is in the half-space x < 0. The direction of the 
phase velocity of a surface wave making an angle q, with the 
optic axis is assumed to be the z axis (Fig. 1 ). 

We shall solve the Maxwell equations in the form of a 
monochromatic wave traveling along the z axis and charac- 
terized by a wave vector q; this wave decays along the x axis 
in either direction away from the interface. In the isotropic 
medium there are two independent solutions with different 
polarizations and with the wave vector q, = (ik, ,O,q) , where 

units of w/c ,  where w is the wave frequency and c is the 
velocity of light in vacuum. 

Two independent solutions in the crystal (extraordin- 
ary and ordinary waves) have the wave vectors 
q2 = ( - ik2,0,q) and q, = ( - ik,,O,q), respectively, and 
are governed by the dispersion laws 

The components of the wave vectors along the x axis are 
assumed to be purely imaginary so as to ensure decay away 
from the interface. Clearly, it is necessary to ensure that k ,  , 
k, , and k, are all positive. 

Solutions of the Maxwell equations [qE] = H and 
[qH] = - ZE have the following form in the half-space 
x < 0 .  For an extraordinary wave, we have 

E = ( i k 2 q  cos cp, - E L  sin cp, ( e , - q z )  cos cp), 

H = ( q e ,  sin cp, i k z e ,  cos cp, i k n ~ ,  sin 9 ) .  ( 4 )  

For an ordinary wave, we find that 

E= ( q  sin cp, ik? cos cp, i k ,  sin cp), 

H= ( - i q k ,  cos cp, E ,  sin cp, k,' cos c p )  . (5)  

In the half-space x > 0 the two independent solutions 
will be assumed to represent TM and TE waves: 

T M :  E = ( q ,  0 ,  - i k l ) ,  H=(O, E ,  0 1 ,  ( 6 )  

TE: E=(O, 1, 0 ) ,  H = ( - q ,  0, i k , ) .  (7)  

We shall now find linear combinations of the solutions 
(4)  and (5)  for x <O and of the solutions (6 )  and (7)  for 
x > 0, and we shall postulate that the tangential components 
of the fields E and H are continuous at the interface. This 
gives the equation 

q2-ks2=e .  (1)  
The system of equations ( 1 ) - ( 3 )  and (8)  yields four 

Here and below all the wave vectors will be measured in unknowns k, , k, , k, , and q if the angle q, is given. 
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FIG. 1. Coordinate system. The half-space x i 0 is occupied by an isotrop- 
ic medium, and the half-space x < 0 is occupied by a crystal; Cis  the optic 
axis of the crystal. The phase velocity of a surface wave is directed along 
the z axis. 

3. Using Eqs. ( 1)-(3), we find that after fairly tedious 
algebraic transformations we can reduce Eq. ( 8 )  to a more 
convenient form: 

Hence, it is clear that solutions with k ,  , k, , k, > 0 corre- 
sponding to a wave localized at the interface exist if either 

> E > E, or E, > E > . However, we can readily show that 
in the latter case Eqs. ( 1 )-(3) and (9 )  have no solutions. In 
fact, it follows from Eq. (8 )  that for p = 0 and p = 7~/2 
there are no solutions characterized by k,, k,, k, > 0. Conse- 
quently, such a solution can exist only in a certain range of 
anglesp. Then, at the limit, of this range one of the quantities 
k, , k, , or k, should vanish and the other two should be 
positive. For k, = 0 the conditions k ,  > 0, k, > 0 cannot be 
satisfied, as can be seen from Eq. ( 9 ) .  However, if we have k ,  
= 0 or k, = 0, then for E, > E > we have in both cases 

k : < 0, which follows from Eqs. ( 1 )-(3). Therefore, we 
need to consider only the case when clI  > E > E, . 

We shall determine the limits p, and p, of the range of 
angles p in which surface waves of the new type can propa- 
gate, The values of p, and p, are found from the conditions 
k, = 0 and k, = 0, respectively. Equations ( 1 )-(3) and (9 )  
yield 

where 

In the case under discussion we have 7 > 0, 0 < 6 < 1. 
We can then demonstrate that sin'p, > sin2p,. If we consider 
the range 0 < p < ~ / 2 ,  we find that surface waves exist for 
pI  < p < p2 (Fig. 2 ) .  If p = p , ,  then surface waves trans- 
form into a plane wave in the isotropic medium, whereas for 
p = p, they transform into an extraordinary wave in the 
crystal. At the boundaries in the range ( p , , p 2 )  the phase 
velocity of the surface wave is equal to the phase velocity of 
the corresponding internal wave. Within this range the 
phase velocity of the surface wave is obviously less than the 
phase velocities of all the internal waves (propagating at the 
same angle p). Figure 3 shows the dependences of the angles 
p, and p, on the value of 6 calculated from Eqs. ( 10) and 
( 11 ) on the assumption that 17 = 4. 

FIG. 2. Range of angles (shown shaded), relative to the optic axis C, 
where the phase velocity of a surface wave may be located. The boundaries 
of the range p, and p, are described by Eqs. (10) and (1  1) .  

By definition, the angle p lies between the directions of 
the phase velocity of a surface wave and the optic axis of the 
crystal. The direction of the group velocity of this wave gen- 
erally does not coincide with the direction of the phase veloc- 
ity (as is true also of internal waves in an anisotropic medi- 
um).  This direction can be found if we know the dependence 
4(4'). 

Figure 4 shows how the quantities k , ,  k,, k,, and q de- 
pend on the angle p ,  obtained by numerical solution of Eqs. 
( 1 ) - ( 3 ) a n d ( 9 ) i n t h e c a s e w h e n ~ ~ ~  = 5 a n d & =  1 . 8 , ~ ~  = 1 
(7  = 4, f = 0.2). 

4. In the case of real crystals the difference between E~~ 

and E~ is usually small, i.e., we have 17 < 1. Then, Eqs. ( 1 )- 
( 3 )  and ( 9 )  can be solved analytically. When the necessary 
inequality > E > E, is satisfied, the isotropic medium and 
the crystal under consideration differ in their optical proper- 
ties. Therefore, it is clear a priori that if 7 < 1, then the new 
surface waves have a phase velocity close to the phase veloc- 
ities of internal waves and the decay lengths in both media 
should be long compared with the wavelength. We shall 
show below that the range of angles p in which surface waves 
can propagate is very narrow. 

It is clear from Eq. ( 9 )  that if 7<  1, then k,,k,<k,. 
Bearing this point in mind, we find from Eq. ( 9 )  that 

FIG. 3. Dependence of the angles p, and p, on { = ( E  - E, ) / ( E ,  - E, ), 
calculated for E = 5 ~ ,  . The inset shows the range of small values of 4. 
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FIG. 4. Dependence of k , ,  k ,  , k ,  , and q on the angle q, calculated for 
E , ,  = 5, E = 1.8, and E, = 1. 

whereas Eqs. ( 1 ) - ( 3 )  yield 

We have introduced here a new angle a & 1 by adopting the 
definition a = q, - q,,, where apart from terms of the order 
of 17, we have 

sinZ cp,=g. (16) 

Solving Eqs. ( 13 )-( 15 ), we finally obtain 

The quantity 

represents the width of the range of angles which contains 
the direction of the phase velocity of a surface wave. The 
midpoint of this interval (angle p,,) is defined by Eq. ( 16). 
Equations ( 16) and ( 18) can also be derived directly by 
expanding Eqs. ( 10) and ( 11 ) as a series in 77 to quadratic 
terms. We then obtain p2 - 9, = S and (p,  + p 2 ) / 2  = pO. 

It therefore follows that k ,  and k, vanish for a = - S/ 
2 and a = S / 2 ,  respectively, and their maximum values are 
of the order of y3',. On the other hand, we have 
k3 - 3 kl,k2. 

The dispersion law of the surface wave can easily be 
found using Eqs. ( 1 ) and ( 17). Adopting dimensionless 
units, we obtain 

We recall that a is the angle between the direction of the 
phase velocity and the optic axis, measured from the value of 
Po. 

We shall now find the range of angles within which the 
group velocity direction may be located. The angle $ 
between this direction and the optic axis can be represented 
in the form $ = q0 + 0, where 1. We then have 

q(am/dq) - - F 
cos (a-p) - 

ql doldql [Fz+(dF/da)zl 'b '  (20) 

Hence, using Eq. ( 19), we readily obtain 

a+6/2 
a-p = 

q (1-8 . 
Variation of the angle a within the permissible range - S/  
2 <a < S/2 corresponds to variation of the angle in an in- 
terval of width 

The center of this interval is still given by the angle qo, apart 
from small terms. A comparison of Eqs. (18) and (22) 
shows that the range of permissible directions for the group 
velocity is considerably wider than for the phase velocity. 

The polarization of the surface waves can be deter- 
mined if we find the coefficients in the initial linear combina- 
tion of the solutions ( 6 )  and (7 ) .  We can readily show that if 
7 & 1, the wave is almost transverse and the vector E is prac- 
tically parallel to the interface: iE, /E, o~ ?71'2 and Ez / 
E, a 72. 

The existence of surface waves due to the differences 
between the anisotropy of the two media has been shown for 
a relatively simple case. Obviously, there should be a greater 
variety of waves of this type in more complex cases (when 
the optic axis is not parallel to the interface, biaxial crystals, 
gyrotropic media, etc.). We note also that surface waves 
may exhibit certain special features in the angular depen- 
dence of the reflection coefficient. 
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