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We examine the nonlinear dynamics of the A / (  1 + sine) gratings which dominate forp- 
polarization and the complementary A /2 grating, in the amplitude range from the initialization 
level to h - ({ ') '''A. In the process, we solve the multimode nonlinear diffraction problem. We 
show that in the nonlinear stage of growth, the A /2 grating exerts a significant influence on the 
development of the fundamental gratings. 

1. INTRODUCTION 

Numerous experiments (as reviewed in Ref. 1) have 
demonstrated that surface ripples can be produced in a var- 
iety of materials (including metals, semiconductors, and 
dielectrics) by high-power laser radiation. These ripples 
most frequently form one-dimensional gratings whose peri- 
od is of the order of the incident wavelength A, with their 
grooves oriented perpendicular to the field vector En. The 
linear stage of the growth of surface ripples has by now been 
thoroughly studied the~re t i ca l ly . '~  In metals, for example, 
it is known that interference between the electromagnetic 
wave propagating through the medium and the surface- 
guided wave excited by surface irregularities will lead to the 
formation of ripples. Surface-guided waves play a dominant 
role in the formation of surface structures by virtue of the 
resonant nature of the way in which incident radiation is 
transformed into this wave, since for a fixed surface-relief 
amplitude, the conversion coefficient is larger by a factor { ' 
than for other diffracted waves (f = { ' + if " is the surface 
impedance; for metals in the wavelength range 1-10 pm,  
typical values are f ' - We will therefore refer to those 
harmonics of the surface relief at which a surface-guided 
wave is excited in the first diffraction order as being reso- 
nant. 

The linear stage of ripple growth comes to an end when 
the amplitude of the periodic surface relief is fairly low, 
h<{ 'A, and these structures still exercise a negligible influ- 
ence on interactions between the laser beam and the surface. 
The nonlinear growth stage is considerably more interesting, 
being characterized by marked changes in surface absorptiv- 
ity. Nonmonotonic growth of resonant gratings and the ap- 
pearance of compementary gratings during the nonlinear 
growth stage have been noted in a number of experiments.'-8 
Fors-polarized pump waves, the first theoretical study of the 
nonlinear dynamics of ripple formation to a depth h - f 'A 
was reported in Ref. 9. Because of a methodological error, 
however, some of the important conclusions reached in that 
paper are incorrect. Specifically, it is not true that a station- 
ary solution exists in the normal incidence case, where a 
resonant grating with spacing A and a complementary grat- 
ing with spacing A/2 are formed. We consider normal inci- 
dence below. 

In the present paper, under conditions for which ripple 
formation results from laser-induced vaporization, we ex- 
amine the nonlinear growth dynamics of resonant gratings 
with spacing A /( 1 + sin$) which are dominant forp-polar- 
ized incident radiation, and of the complementary grating 
with spacing A /2, both for amplitudes h - (5 ') '/*A which 

exceed those detected in the experiment detailed in Ref. 10. 
What we mean by a grating is a fairly compact group of 

resonant planar ripples in the surface relief, with central 
wave vectors lying in the plane of incidence. The angular 
width of such a group is determined by the intensity and 
geometry of the laser beam; under actual experimental con- 
ditions, this width would typically be 10-20" (Ref. 1 ). In our 
work, we treat the case in which the amplitudes h ,  and 
phases p ,  of the planar ripples within a group are smooth 
functions of the deviation from the central wave vector kj, so 
that one can transform to amplitudes hkJ and phases pkJ aver- 
aged over each group: 

where r is a two-dimensional vector lying in the plane of the 
surface. Groups of surface ripples then interact coherently. 

A self-consistent examination of the nonlinear growth 
of resonant A / (  1 + sin 8) gratings and the compementary 
A /2 grating requires that one take account of electrodynam- 
ic nonlinearities. The discussion of nonlinear effects is most 
conveniently based on expressions for the amplitude of sur- 
face-guided waves excited by a sinusoidal grating of ampli- 
tude h, as derived from a solution of the diffraction prob- 
lems. 

where k = 2r/A is the wave vector of the light, H, is the 
incident wave amplitude, and a is a factor of order unity. It is 
clear from this expression that even for fairly small h -{'A, 
the amplitude of the excited surface wave can be comparable 
to H,, the amplitude of the pump wave. The interaction of 
counterpropagating surface waves leads to the formation of 
a A /2 grating (intermodal electrodynamic nonlinearity). 
There are, furthermore, unimodal electrodynamic nonlin- 
earities associated with virtual multiple scattering of surface 
waves by resonant gratings when h -  ({')"*A, and the re- 
sulting self-action of the gratings. Two similar scattering 
channels exist. In the first, a resonantly excited surface wave 
is virtually scattered into a specularly reflected wave, and 
then back into a surface wave. In the second, second-order 
diffraction waves act as intermediaries between virtual scat- 
tering events. The electrodynamic nonlinearities listed thus 
require that one solve the multimode nonlinear diffraction 
problem, taking second-order waves into account. 
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2.THE NONLINEAR DIFFRACTION PROBLEM 

The problem we solve is that of ap-polarized plane wave 
diffracted by irregularities on a metallic surface which is rep- 
resented by a combination of three gratings: 

t ( t ,  x ) = a ( t )  exp [irpi  ( t )+ iq ,x l  
+b(t)exp[icp2(t)+iq2x]+c(t)exp[irpa(t) f i2kx]+ c.c., 

( 1 )  

where a ( t )  and b ( t )  are the amplitudes of resonant gratings 
with wave vectors q,,, = ( 1 f sin O ) k  respectively, and c ( t )  
is the amplitude of a grating with wave vector 2k.  

According to the Rayleigh method, the vacuum field 
may be written in the form 

H=Ho esp [ i ( k , x + k , z - o t ) ] + H ,  esp [ i ( k , x - k , z - a t ) ]  

+H,+,  exp[ i (kx-o t )+I ' z ]+H,- ,  e x p [ - i ( k x + o t ) + F z ]  

Y, esp [ i (k+q , )x+y , z - io t ]  +Hz exp [ i ( k + q 2 ) x  
+yzz-iwt] +H, esp [ - i ( k + q , ) x + y , z - i o t ]  

+HI esp [ - i ( k +  q2)x+yZz- io t ]+H,  exp [ i ( 3 k x - a t )  
+2"kz] +He esp [ - i (3kx+ot )+2"kz]  

+H7 esp [ - i ( k , x + k , z + o t ) ] ,  (2)  

in which the H ,  . , are the surface-wave amplitudes, H ,  is 
the amplitude of the specular wave, H ,_, are the amplitudes 
of the second-order diffracted waves, k ,  = k  sin 8  is the tan- 
gential component of the incident wave vector, 
l? = ( 6  ' + 16 " 1 ) k  is the normal component of the surface 
wave vector in vacuum, and 

are the normal components of the second-order wave vec- 
tors. 

The scattered wave amplitudes are obtained from the 
Leontovich boundary condition with z = g ( t , x )  : 

where n = (V,{; 0 ;  - 1 )  [ l  + ( ~ , g ) ~ ]  - ' I 2  is the exterior 
unit normal. We then easily obtain a set of algebraic equa- 
tions for the scattered wave amplitudes; these can clearly be 
solved as follows: 

7 -  
qzb H - - e i q t ~ ( - ) - i  - e-'QsH,+), 

cos 0  cos 0  
cos 0 - t  9ta 

q2b e-*H,-,, H,=-Ho-i-e-iQ*H,+)-i- 
cos o+c cos 0  cos 0  

where the amplitudes H ,  . , are given by 

in which 

r (9c)=+(92b)=  k  (qia)2 P-b4-i- 4- 
k cos 0 Y i  

k - i - (gab) '-i2"' (kc)', 
'fa 

~ i ~ q 2 ~  e-l(gl+v,)+ikCe-t* F=2(- 
cos 0  

Equations (4)  and (5 )  solve the diffraction problem, as 
required for a self-consistent discussion of the growth of 
gratings to a depth h - (6  ' ) ' / ,A .  Higher-order diffracted 
waves are negligible, inasmuch as h / A  is a small parameter. 

By using a surface profile of the form ( 1 ) to solve the 
diffraction problem, we have neglected the finite angular 
size AD of the groups of resonant surface ripples, and have 
assumed the scattered-wave polarization vectors to be co- 
planar. For hp( 1 ,  the error involved in this approximation 
is (AD) ' /2 .  AS we pointed out earlier, the magnitude of AD 
is governed by the angle of incidence 0  and the degree to 
which the threshold for ripple formation has been exceeded. 
We can make use of the expression for the amplitude of the 
surface wave excited by the initialization grating hg, and 
propagating at an angle P to the plane of incidence: 

2i (cos p - sin 0 )  khoHo 
H p = -  

t+iI'/k I 

as well as the equation ( A1. lO)  of Appendix 1 for ripple 
amplitude evolution in a periodic surface grating: 

where X, c, are the thermal diffusivity and heat capacity of 
the metal, To is the uniform component of the temperature, 
U is the specific heat of vaporization, and Q =  ( c < ' /  
2?r)Re{Hg .H,*) is the inhomogeneous component of the 
absorbed thermal flux." One then easily obtains an expres- 
sion for the rate corresponding to the initial stage of ripple 
growth: 

2t'A 
y  = cos ( C O S  !3 - sin 0 )  --- , Z + ~ J Z  ?', 

- ( I  + sin 0-2 sin 0  cos p) v, 

where A  = ( T / k )  - If " I ,  y, = kJ,/c, U,J, is the mean 
pump intensity, and v = T a k  2 / U .  

We find from this expression, then, that the /2 / 
( 1  - sin 8 )  grating has the lowest threshold intensity, 
J ,  = ( 1 - sin 8 )  kxT,,.  Significantly above threshold 
(J,,  > 5 = 2 k x T 0 ) ,  the A /( 1 + sin 8 )  grating have the lar- 
gest growth rate. The behavior of growth rate just above 
threshold (J,,  >, J ,  ) is shown as a function of the angle P in 
Fig. la. Positive growth rates are clearly localized to the 
range near cos f l =  1 ,  corresponding to the A / ( 1 - sin 8 )  
grating. At low angles of incidence ( 8 5 4 5 " ) ,  the R / 
( 1 + sin 8 )  grating (cosp = - 1 ) has the least attenuation 
( y  < 0 ) .  Figure lb shows the angle dependence of the growth 
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rate well above threshold (yr ,  % 1). Here a fairly broad 
spectrum of harmonics of the surface relief is excited. If rip- 
ple development proceeds at a fairly low level ( h < f  'A), 
however, then to the extent that it approaches the nonlinear 
development stage, the effects of harmonics at large angleso 
from the plane of incidence will be mitigated. The principal 
contribution will come from harmonics near the local maxi- 
mum of the growth rate at cos ,8 = -1- 1. Our analysis of the 
linear stage of grating development thus makes it possible to 
identify a range of laser beam parameters for which the A / 
( 1 + sin 8) gratings which are formed, at least in an approx- 
imation to the nonlinear stage, are made up of compact 
groups of surface harmonics (AD( 1 ) . The approximation 
used to solve the diffraction problem for this case will then be 
valid. In an actual experimental situation, the error induced 
by the scalar approximation lies within a range of a few per- 
cent ( (hp)2 5 0.06). 

3. NONLINEAR DYNAMICS OFTHE GROWTH OF 
INTERACTING GRATINGS 

Grating growth during laser vaporization is governed 
by the corresponding spatial components of the absorbed 
thermal flux; these form the basis for the expressions for the 
scattered wave fields (4)  and (5) :  

The dynamical equations for the grating amplitudes a ( t ) ,  
and c ( t )  and the spatial phase @( t )  = p, - p, - p2 are ob- 
tained by substituting ( 7 )  into ( A  1.10). The complete set of 
dynamical equations valid to a grating depth of h - (< ') "*A 
is fairly complicated, and we relegate it to Appendix 2. 

Here we present the dynamical equations which hold in 
the approximation h 4 (< ') 'I2A: 

i+v,x=Pt [ ~ ( l - 2 z 2 )  +2 (sin @+ZZ.%OS @)Yz], 

~+v2y=P2[y(1-2z2)+2(-sin @+2z2 cos (D)xz], 

i+v,z=-xy(l+2z2)cos @+(xZ+y2)z, 
18) 

XY @=2 tg 0 (1+2z2) +y2-x2+ - (1-2z2) sin cD 
Z 

FIG. 1. a )  Theoretical behavior of resonant grating growth rates 
y as a function of their orientation, with periodically pulsed p- 
polarized pumping (curve 1 is for B = 10", curve 2 for B = 45"). 
The growth rates y are normalized to 
yp = ~+,Tp&/c~ U(A = 10 pm,JO = 3.10' W/cm2, 
c p U =  5.10' J /cm3,~,f l  = lo- ' ,  
T,, ~ 4 . 1 0 ' K . x  = 0.1 cm2/sec). b) Behavior of the resonant- 
grating growth rate y as a function of its orientation when 
y ~ , ~ l ( c u r v e  1 , B =  1O0;curve2, 6=45").  

where 

1 * sin 8 (1- sin 6)' kxTo 
Pi.2 VI = 

cos e ' cos e J o  

(l + sin 0) a kxT,  4kxTo 
9 2  = v,=-, 

cos0 Jo ' JO 

and differentiation is performed with respect to 
1 

dt' 
T =  Jm 

(see Appendix 2).  
Let us consider the behavior of the solution of (8 )  in 

certain asymptotic ranges of the variables x, y, and z. 
a)lnitialstage (x, y, z< 2). In this region, the solution is 

of the form 

x=x, exp [(Pi-vl)tl ,  y=y, exp [ (P2-~2)t) 1, 

Clearly, when the difference in the rate of growth in x and y is 
small (P, - v,=P2 - v2) and the initial amplitudes are 
equal (x, =yo) ,  the variables x, y, and z all attain values of 
the order of unity simultaneously, the growth in z being de- 
termined by the spatial phase @. If the initial phase is such as 
to make the nonlinear feedback from x and y and z negative 
and dampz, then the main term in the equation for the phase 
(at least from some time onward) will be the one with z in 
the denominator. This induces a change in the phase which 
ensures that x and y will feed back positively to z, with z 
increasing as a consequence. This interaction process, 
wherein the phase is maintained near a certain value provid- 
ing optimal conditions for the growth of the least of the three 
gratings, is known as phase localization. l 2  

6) The large-amplitude case (x, y, z, > I )  In this limit, the 
dynamic equations become conservative: 

YZ 52  + 2P, - (cos @--22' sin @) - 2P2 - (cos @+2z2 sin @) , 
x Y 

Here we have transformed variables: 

685 Sov. Phys. JETP 67 (4), April 1988 Bol'shov eta/ 685 



Integrals of the motion for the system (8') take the form 

The existence of such integrals of the motion enables us 
to transform to the following set of equations: 

where 

and to investigate the behavior of the solutions using nonlin- 
ear potential theory: curves showing the potentials n-, (x ) ,  
r2 (y),  and n-, (z)  are shown in Fig. 2. Here we must point out 
that values z < 1 correspond to the stationary points x ( t ) ,  
y ( t ) ,  and that the large-amplitude approximation breaks 
down in this region, with the system of equations ceasing to 
be conservative. For z > 1, the system executes conservative 
oscillations, with the maxima ofz corresponding to the mini- 
ma of x and y; the minima of z are less than unity. There are 
segments of thex and y trajectories near the minima ofz that 
correspond to regions of exponential growth in x and y, since 
the coupling between them through z is small, while the in- 
herent nonlinearity is still negligible. In this respect, the be- 
havior of trajectories near the minima ofz is similar to that in 
the initial stage, although since x and y are large, phase local- 
ization and the nonlinear growth in z are more abrupt. 

We consider the case of normal incidence (8 = 0", 
x = y )  separately: 

i+v,x=x (1-2z2) +4xz3 cos (D, 

i+v3z=-x2 (1+2z2) cos @+2x2z, 

It can be shown that just above threshold ( E  = 1 - v, 4 1 ), 
( 11 ) has the following stable stationary solution: 

FIG. 2. 

When the system is in fact well above threshold ( v <  1 ), ( 11 ) 
has no stationary solutions. In the region x, z > 1, the system 
executes nonlinear oscillations as described above. Gande1'- 
man and K ~ n d r a t e n k o , ~  arbitrarily putting @ = - .ir in 
( 11 ), came to the mistaken conclusion that the system has a 
stationary solution in the weak damping case, with a zero- 
amplitude A-spaced grating (that is, Xo = o,x(, = 0 )  and a 
finite-amplitude /Z /2-spaced grating (Zo- l,Zo = 0) .  

4. DISCUSSION AND SUMMARY 

A numerical solution of the full set of dynamic equa- 
tions A2.1 is consistent with the qualitative behavior dis- 
cussed above for the trajectories x ( t ) ,  y ( t ) ,  z ( t ) .  For exam- 
ple, Fig. 3 shows the computed results for normal incidence 
in the initial stage of growth. Here the grating amplitudes 
start from h &<'A and grow all the way to h-( 'A .  Phase 
localization in the vicinity of .ir and the consequent nonlinear 
growth in z are clearly evident. In the nonlinear stage, the 
behavior of the grating amplitudes depends strongly on how 
far above threshold the system is operating. Just above 
threshold, when only the x-grating grows exponentially in 
the initial stage, the system behaves as follows (see Fig. 4) .  
When the x values are of order unity ( h  -5 ' A ) ,  the y-and z- 
gratings start to develop, due to a dissociation instability in 
x. The system proceeds to execute several damped oscilla- 
tions, and finally reaches the steady state, with the station- 
ary x-value being greater than the stationary y-and z-values. 
The stationary grating amplitudes are at a level h -< 'A. 

When the threshold is exceeded by a considerable 
amount, y can exhibit a large growth rate compared with x,  
and can outstrip x in the initial stage (see Fig. 5 ) .  The phase 
will therefore be localized around values for which the non- 
linear coupling betweenx andz is positive, but between x and 
y it is negative. The net result is that x outpaces y when x,  y, 
z- 1. The theoretically predicted occurrence of an integral 

Time 

FIG. 3. The initial stage of growth of periodic surface relief (normal inci- 
dence). Grating amplitude values are normalized to < 'A; the unit of time is 
( 2 ~ ~ )  ~ ' .  
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Time 

FIG. 4. Evolution of the dominant gratings under p-polarized vulsed veri- 
odic illumination. Grating amplitudes are normalized to $ 'A, and thenunit 
oftimeis (2y, ) - ' .  TheangleofincidenceBis 10" (curve 1 : A  / (  1 - sin 8 ) :  
curve 2: A /(I + sin 0);  cirve 3: R/2).  

of the type x2 - y2 = const in a system with almost conser- 
vative behavior will dictate the predominance of x over y 
beyond that region as well, and this is also consistent with 
the calculations. Furthermore, a numerical treatment en- 
ables one to track the approach of the maximum x-and y- 
values to the steady state engendered by an inherent nonlin- 
earity (h - (f')112A), with the steady-state nonlinear 
oscillation stage near the maximum values being insensitive 
to the choice of initial conditions (our calculations were car- 
ried out with initial values x ,  y, z-0.01-0.1). 

Our qualitative analytic study of the system of equa- 
tions (8)  and numerical calculations using the full dynami- 
cal system enable us to make the following statements. 

0. B 

2 
E 0 

-0.4 

-0,e 
0 20 40 60 60 

Time 

FIG. 5. Evolution of the dominant gratings under p-polarized illumina- 
tion with yr, $1. Grating amplitudes are normalized to <'A and the unit 
of time is (2yp ) -'. Angle of incidence B is 10" (curve 1: R /( 1 - sin 8); 
curve2:/2/(1 +sinB);curve3:A/2).  

1 ) Notwithstanding the conclusions of Ref. 4, there is 
an intensity threshold associated with the production of pe- 
riodic surface structures by pulsed periodic excitation which 
is related to the equalization of temperature differences by 
thermal diffusion between one pulse and the next. The A / 
( 1 - sin 8 )  grating has the minimum mean threshold inten- 
sity (see Fig, la) .  

2) The exponential growth of the A / (  1 * sin 8)  grat- 
ings is accompanied by nonlinear growth of the complemen- 
taryA /2 grating. Withnormalincidence, theA andA /2 grat- 
ings reach a depth h -5 'A practically simultaneously, and 
the spatial phase shift between gratings is exactly r a t  finite 
times (see Fig. 3 ) .  The system of gratings behaves similarly 
under oblique incidence of the pump beam as well. 

3) Just above threshold, the2 /( 1 - sin 6 )  grating may 
be the only one with a positive growth rate. The A / 
( 1 + sin 0)  and A /2 gratings begin to grow, due to a disso- 
ciation instability of the A / (  1 - sin 6 )  grating after the lat- 
ter reaches a depth h - f 'A. The grating amplitudes reach 
steady-state values h -5  'A, with the A /( 1 - sin 6 )  grating 
being the most pronounced (see Fig. 4).  

4 )  Well above threshold, the amplitudes of the princi- 
pal gratings grow to a depth h - (f ') ' I2A and perform in- 
phase oscillations about that value; the amplitude of theA/2 
grating oscillates in antiphase with the other two, at a level 
h - f 'A. Saturation of the principal grating amplitudes re- 
sults from their intrinsic combined nonlinearity. The pres- 
ence of a complementary grating is the decisive factor in 
determining which of the principal gratings will dominate 
when they saturate in amplitude. The concomitant growth 
of the gratings may result in the grating which dominates the 
nonlinear stage not being the one with the greatest growth 
rate (see Fig. 5).  

5. CONCLUSION 

In closing, we wish to discuss the relationship between 
our results and the published experimental data. Even 
though the nonlinear stage in the growth of periodic surface 
ripples has not yet been thoroughly investigated experimen- 
tally, there are a number of experimental factors suggesting 
that our theoretical model is consistent with reality. One 
example is the ripple production threshold observed experi- 
mentally with pulsed periodic laser excitation (see Ref. 1 1 ) . 
Keilmann and Bail3 and Ursu et al. l 4  have detected an inter- 
mediate growth stage in the A-spaced grating in which the 
sinusoidal shape of the grooves is distored; this takes place 
when the grating amplitude is still rather small. Unfortu- 
nately, these authors do not cite any experimental data taken 
at oblique incidence (8 #O). It ought to be possible to use 
these data to establish whether the distortion of the sinusoi- 
dal shape of the grating is due to the nonlinearity of the 
thermophysical mechanism or the formation oftheA /2 grat- 
ing. Bazhenov etal.15 indicate that they haveobserved theA / 
2 grating (with 0 # O )  by means of its reflected diffraction 
pattern, but they do not provide the corresponding photo- 
graphs. A number of authors have observed nonmonotonic 
growth of the principal gratings, in both single-pulse mode 
(well above the ripple production t h r e~ho ld )~  and pulsed 
periodic but ripple production in these experiments 
was not due to vaporization. Even though our present treat- 
ment of the nonlinear stage of grating behavior relies largely 
on an electrodynamic nonlinearity, an extension of these re- 
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sults to any other growth mechanism requires a certain 
amount of caution and further investigation. 

APPENDIX 1 

We consider laser-induced vaporization as the thermo- 
physical basis for the growth of periodic surface structures. 
In Ref. 4, Emel'yanov et al. discussed the initial stage of 
ripple formation when yr, < 1 ( y is the growth rate and rP is 
the laser pulse duration). This corresponds to ripple forma- 
tion well above threshold. Here we adapt these arguments to 
the nonlinear problem. In addition, we examine the grating 
dynamics for the case in which a pulse is made up of a series 
of subpulses (mode-locking), with yr, 4 1 (r, here is the du- 
ration of a subpulse). It is then possible for a beam just above 
threshold to produce ripples. The existence of a production 
threshold results from the equalization of thermal inhomo- 
geneities through thermal diffusion in the time between sub- 
pulses. Both modes of ripple growth (yr, ) 1 and yr, 4 1) 
have been observed experimentally.' 

Let a metal occupy the semi-infinite space z>l( t ,x) ,  
with a thermal flux 

being absorbed at the boundary (the summation is over the 
harmonics of the thermal flux distribution corresponding to 
the dominant gratings). We shall assume that the param- 
eters of the laser beam interaction are such that we can ne- 
glect gas-phase processes above the surface.I6 The surface 
heating and vaporization problem then reduces to the ther- 
mal diffusion equation in the metal: 

at z = [(t,x), where C, is a constant which is roughly equal 
to the speed of sound in the metal ( C 0 z 3 .  lo5 cm/sec. With 
the change of variables x'=x, t ' r t ,  z' = z  - <(t,x), Eq. 
( A l . l )  gives 

d ' T  (3 T 

d z '  dz" 

with boundary conditions 

at z' = 0. Equation (A1.3) is the condition for thermal flux 
balance at the boundary; it can further be used to derive the 
dynamic equations for the gratings. We will be interested in 
the situation where the thermal diffusion flux in (A1.3) can 
be neglected; the vaporization rate will then be determined 
by the absorbed flux Q. The dynamics of the spatially nonun- 
iform surface relief will thus, in general, be governed by the 
nonlinear dependence of the absorbed flux on its amplitude. 
We have in mind here electrodynamic nonlinearities, as dis- 

cussed above. Thermal diffusivity manifests itself in the grat- 
ing dynamics as damping, which is important when yr, 4 1 
due to the gaps between pulses. Equation (A1.4) describes 
the kinetics of vaporization within the scope of the model 
detailed in Ref. 16. We seek a solution of (A  1.2) in the form 

T ( t ,  x, z') = T o ( <  z')  + [ T ~  ( t .  z t )  eiqx + C.C. I 
'2 

and 

where u, is the uniform speed at which the vaporization front 
moves, and 

h ( t ,  2) = [ h q ( t ) e i q x  + c.c.] 
'3 

specifies the spatially periodic surface relief. The thermal 
problem can be framed in terms of its Fourier components; 
we rewrite Eq. (A1.2) and the boundary conditions (A1.3) 
and (A1.4) after Fourier transformation: 

Tq-u,, ( t )  - - 

and at z' = 0, 

where 

is the spatially nonuniform surface temperature distribu- 
tion. Note that we intentionally left out the nonlinear terms 
in Eq. (A1.2'); these are shown below to be small compared 
with the linear terms. We first consider the case in which the 
system is well above the threshold for producing periodic 
surface structures ( yrp % 1 ) . 

a )  Initial stage of growth. We assume that a stationary 
vaporization wave is established by surface heating during a 
pulse (7, $ ~ / v , ~ ) .  Then 

A solution of Eq. (A1.2') of the form T, ( t ,z l )  = T, (z')eYt 
which satisfies the linearized version of the boundary condi- 
tion (A1.4'), 

liq=uoL'Tq/To2, 

will take the form 

Substituting the solution thus obtained into (A1.3'), and 
bearing in mind that Q, = qJ,h, in the initial growth stage, 
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leads to an expression for the growth rate. In the parameter 
range under consideration, 

the expression for the growth rate is of the form 

where the damping v induced by the thermal diffusivity is 
much lower than the pump factor yp = qJo/c, U-qvo/4[ '. 
We use the expression for the damping v below when we 
consider ripple production just above threshold. 

b )  The nonlinear stage ofgrowth. In the nonlinear stage 
of grating growth IQ, I -Q,, so if we write (A1.3') in the 
analytically more tractable form 

we have I h, / - u,,, and the thermal problem becomes nonlin- 
ear by virtue of the boundary condition (A1.4'). The in- 
equality (A1.5), however, enables one to neglect the ther- 
mal nonlinearity, which appears in the thermal diffusion 
term of (A1.3'), by comparison with the electrodynamic 
term. Based on (A1.3'), then, the evolution equation for 
spatially periodic surface relief takes the form 

We next examine the growth of periodic surface struc- 
tures induced by a laser beam with temporal structure typi- 
cal of mode-locked operation. We shall assume that the aver- 
age surface heating produced by the laser is sufficient to 
induce well-developed vaporization (T*  <,y/v,, ,u,, 
~ 4 5  'J<,,/c, U,T* is the length of interaction, J,,, = rpRJo  is 
the mean intensity, fZ is the subpulse repetition rate). The 
spatially periodic surface relief is enhanced during each sub- 
pulse, while thermal diffusion-induced equalization of tem- 
perature irregularities and attenuation of the grating ampli- 
tudes takes place more slowly, in the intervals between 
subpulses. Under these circumstances, then, it only makes 
sense to speak of a rate of grating growth averaged over 
many subpulses. 

Using (A1.3'), we now derive an equation describing 
the average growth of ripples. During each subpulse, ther- 
mal balance is maintained at the surface between the pump 
radiation (as manifested in the absorbed flux) and the re- 
sponse of the medium (as manifested in nonuniform vapori- 
zation); between subpulses, thermal diffusion-induced grat- 
ing attenuation takes place. The expression for the thermal 
diffusion flux comes from the balance condition obtained by 
integrating (A1.2') from zero to infinity: 

Ce 

--xTqt= (Lq+Xq'hq) T.+u.T, + J ( P , + ~ ~ ~ T , )  dz'. 
0 

(A1.8) 

Here we note that the nonlinear terms previously left out of 
the derivation of (A1.2') make a negligible contribution to 
the right-hand side of (A1.8), of the order of 
(hqp ,  + xq2hq_,  ) T, (since T, I To). Furthermore, 
(A1.8) can be transformed to the simpler form 

by using the linearized condition (A1.4'), and some simple 
estimates which allow for the fact that just above threshold 
1 h, I SXq2/ h, I .  Substituting the average thermal diffusion 
flux and pump beam into (A1.3'), we obtain the dynamic 
equation 

This implies that in the initial growth stage, growth rate is 
given by 

I t  is clear from ( A l .  11 ) that the system can be slightly above 
threshold for production of periodic surface structures when 
J,, 2 qxcp TO. If yrP & 1, the analogous expression for low 
attenuation ( v  = Toxq2/U) is valid for v,,&xqT0/4{ 'U. 

APPENDIX 2 

We present here the complete set of dynamic equations; 
for convenience, we use the same variables as in ( 8 )  : 

-%'gy (G,Z+G22+U,2+U22) ); W12+ W22)-i, 

iSy,z=- {(G,U,+G,U,) cos cD+ (G,U,-G,U,) sin (D+2-'"%'2 
- ( G 1 2 + G 2 ~ U 1 2 + U ~ z ) ) ( W 1 2 + W ~ ) - ' ,  (A2.l)  

6=( [(GlUl+G2U,) sin cD+ (G,Ul-GlU2) cos @] /Z  

- (G,W,+G,W,) P,/x- (U, W,+U,W,) P,/y+ (2%'/cos 8) 
- (Gi2+GZ2-Ui2-UZ2)} (W12+ W Z 2 )  -', 

where differentiation is with respect to r = 2kJot /cp U; 

W,= [ l + ~ ' ( ~ ~ + y ' ) ] ~ -  [I-b'(dx2f gyZ+@z2)] ', 
W2=2 [I+b'(xZ+ y2)] [ l-b '(dr2+gy2+fi2] -S%'x!yz cos (D, 

G,=x[I-%'(dx2f g y 2 + ~ ~ z 2 ) ]  -2yz cos (D, 

G,=x[1+%'(x2-y2)] +2yz sin (D, 

~ , = y  [ ~ - b ' ( d z ' + ~ ! ~ ~ + f i z ~ ) ]  -252 cos (D, 

Uz=y [I-c'(x2-yz)] -2xz sin @, 

cos 8 cos 8 
d =  [(2-sin8)2-I] 'h ' g =  [(2+sin8)"1]'" 

"We note that when a surface-guided wave is generated, the calculated 
heat release in the impedance approximation differs from that comput- 
ed using the volume formulas. Here we have used the exact volume 
formulas of Ref. 11. 
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