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We consider a Weber detector with an optical readout system from the standpoint of the quantum 
theory of measurement. We take explicit account of the effect on the antenna of the measurement 
device, which consists of three circulators, a homodyne detector, and two degenerate parametric 
amplifiers, which determine the state of the field in the backward wave. Relative to external 
effects on the mechanical oscillator, the sensivity of such a system is limited, within the scope of 
this model, by the squeezing factor in the parametric amplifiers. There is no need in our approach 
to postulate any reduction in the state of the system due to the act of measurement. 

1. INTRODUCTION 

The high-Q-solid-state Weber detector with an electro- 
magnetic parametric detection system for mechanical vibra- 
tions is one type of existing ground-based gravitational an- 
tenna.' The mechanical resonator (detector) is usually no 
more than 2-3 m in size, and the fundamental longitudinal 
mode typically has a frequency of - lo4 rad/sec. Such a de- 
tector would produce an extremely weak response to a burst 
of gravitational radiation that conforms to astrophysical 
predictions.' In particular, the amplitude of the end-face vi- 
brations can be comparable to, or even less than, the quan- 
tum certainty in the state of the oscillator in coordinate 
space. In this respect, future progress in gravitational-wave 
detection experiments is tied to a new measurement tech- 
nique, that of so-called quantum nonperturbative measure- 
ment (QNM).3-5 The problem dealt with by QNM involves 
the search for measurement techniques and specific devices 
which make it possible, using the response of a test oscillator, 
to detect forces weaker than the quantum sensitivity thresh- 
old or "standard quantum limit": 

  ere <- 1 is a statistical factor, m and w, are the mass and 
eigenfrequency of the test oscillator, and .i is the duration of 
the external signal. 

Various gravitational antenna models geared toward 
the construction of a "quantum-consistent" QNM system 
have already been discussed in the literature (see Refs. 4-7, 
for example). Usually, the first two sections of the antenna 
are studied from the standpoint of quantum mechanics, 
namely the mechanical oscillator (gravitational detector) 
which responds directly to the external signal, and the elec- 
tromagnetic oscillator connected to it (the so-called detec- 
tion element, or mechanical-to-electromagnetic energy 
transducer). One quite specific goal of these analyses has 
been to find a QNM variable, that is, an observable (at the 
transducer output) whose measurement enables one to de- 
termine the amplitude of the external force to any desired 
accuracy. The actual instrument which is to measure the 
QNM variable, however, in the form of a real device, has 
itself been left unspecified. Instead, a "thought measure- 
ment" has been introduced, accompanied by the collapse of 
the wave function induced by measurement of the QNM 

variable. This affects the subsequent evolution of the state of 
the measurement system as a whole, as well as the final accu- 
racy of the external force estimate."' Obviously, such a par- 
tially reasoned approach is only justified as a first approxi- 
mation to a means of circumventing the quantum sensitivity 
limits (1.1). 

A real experiment requires readings obtained from a 
complete measurement system with a final stage (or classi- 
cal sensor) that produces a direct indication of the measure- 
ment information and "dequantization" of the measured 
variable (that is, quantum noise can be neglected following 
the final stage). The problem of the final stage is therefore 
nontrivial. A simple adaptation of classical measurement 
methods to situations involving quantum noise will not suc- 
ceed, as the effect of the measurement instrument back on 
thesystem being measured will generally not allow the quan- 
tum limit ( 1.1 ) to be circumvented. 

In the present paper, we attempt to solve the problem of 
a complete QNM system in principle by modeling the gravi- 
tational antenna as a resonant mechanical detector with a 
Fabry-Perot optical interferometer as a transducer. In this 
model, quantum noise plays a fundamental role at sufficient- 
ly low temperatures, leading to the limit ( 1.1 ) when a simple 
photodetector is used to measure the interferometer output. 

The key physical concept which we wish to exploit in 
designing a complete QNM system is the idea of producing a 
specific back reaction of the final stage (that is, choosing its 
structure) so as to maintain the possibility of circumventing 
the limit ( 1.1 ) . Examples of such "artificial manipulation" 
of the backward radiation in an instrument which measures 
the quadrature component of the electromagnetic field in a 
nonperturbative fashion may be found in Refs. 9-12; there 
the back reaction of the instrument consists of augmented 
noise in the associated quadrature component. In our case, 
as we shall shortly see, the form of the back reaction of the 
final stage is more complicated, as it depends on the struc- 
ture of the leading sections of the receiving system. 

Our calculations support the notion that it is possible to 
surpass the quantum sensitivity threshold ( 1.1 ), as predict- 
ed previou~ly.~-' Moreover, if we use a device whose back 
reaction squeezes the noise in a specially chosen spectrally 
selective manner, there is in principle no limit to the avail- 
able improvement in sensitivity (within the confines of the 
specific model). . 
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2. MODEL OFTHE MEASUREMENT SYSTEM stationary white One feature of our analysis will 

The measurement system which we analyze is shown in be Our specific choice of nonstationary noise E,, , which in 

Fig. 1. It consists of a mechanical test oscillator of mass rn fact reflects the ~hosen device design. - 
and frequency w, acted upon by the measured force F( t ) .  To 
this mass we affix the movable mirror 6 of a Fabry-Perot 
interferometer. The pump beam for this interferometer 
comes from the external laser 4 (frequency w, ) through the 
fixed mirror 5. The output radiation from the resonator, 
E,,, , passes through the movable mirror to a device which 
measures the quadrature component of the electromagnetic 
field. Following the ideas put forth in Refs. 9-1 1, this device 
includes the three-input circulator 7. The interferometer 
output, falling upon channel 1, is directed to the measure- 
ment channel 2, which contains the optical local oscillator 
13, 14, providing a reference field, and the photodetector 15. 
The backward wave from the local oscillator through the 
circulator enters the auxiliary channel 3, consisting of a pair 
of degenerate parametric amplifiers 9, 1 1 and the blackbody 
absorber 12. Thus, the only wave returning to the interfer- 
ometer comes from channel 3, and is derived from the black- 
body background (with kT<&,) of the parametric ampli- 
fier system. 

In the linear single-mode approximation, the abbreviat- 
ed equations of motion for this system take the form (see 
Appendix 1 ) 

3. CALCULATION OF THE SENSITIVITY 

In estimating the background noise it must be borne in 
mind that the measurement channel collects not only the 
interferometer output E,,, , but also the device return noise 
E,, reflected from the output mirror [see (A1 1 ) 1 .  The over- 
all field at the measurement device is then 

=E,, cos oOt+Ezm sin mot. (3.1) 

For the sake of definiteness, let there be a phase-sensi- 
tive device measuring only the quadrature component E,, 
in a narrow filter passband Amf <a,. We can easily quantize 
(2.1); that is, we replace the variables by the appropriate 
operators, which satisfy the canonical commutation rela- 
t i o n ~ . ' ~  Proceeding in the usual way to a Fourier representa- 
tion 

c.z 

f ( t )  = 1 [ f  ( a )  e-I"' + f +  ( w )  e lwf]  d o ,  
0 

1 
f ( o )  = zJ f ( t )  eIWi dl.  

- ,z 

ooEo p=-  -- SEO F ( t )  A 

' ' - 4 n m t o z  ' A=op-oo, f # ( t )  = -, 
2 20 m we obtain for the spectrum of noise fluctuations in E,, 

( a  = 28,$,$ = f l y )  
(2.1) 

i a  where En is the amplitude of the forced field at the stationary c,, (o )  = [&+io + -(d+-' - d-- ' ) I  
mirror [see (A12) ] due to the pump laser, Eb , and Eb2 are 6,-zo 6,-io 

the field components of the back reaction from the device, so - aBc(o) (d+ -~+  d-,) 
that (6,-io) 

E6,=Ebl cos oot+Eb2 sin o o t ,  

while the field leaving the interferometer is 

+ a&.(o) { erp( i2p)  + exp (-i2rp) 
(2.2) 6,-io [6,-i(o+2A) Id+ [6,-i(w-2A) Id- 

+ iuE,.(o) { erp(i2rp) - exp (-i2cp) 
6,-io [a,-i(o+2A) ]d+ [ 6 , - i ( o - 2 ~ )  ]d- 

E,,,=E, cos oot+Ez sin mot, (2.3) 

and F ( t )  is the external force being measured. (3.2) 
Equations (2.1) are typical equations for a parametric where 

measurement system consisting of a test oscillator plus para- 
metric sensor, and have been thoroughly studied in both the d=d ( a )  = 0;-w2 -,  

4$A d* = d(m*A).  
(6,-io) + A2 ' 

classical and quantum limits for the case in which E,, is (3.3) 

FIG. 1. The gravitational antenna with its measurement 
equipment. 1 )  Communications channel between the an- 
tenna and the measurement equipment; 2 )  measurement 
channel; 3)  return noise channel; 4 )  pump laser (frequency 
0,); 5) "perfect" mirror, with lr,J - 1, lt,l-0; 6) partially 
transmitting mirror with reflection and transmission coeffi- 
cientsr, t (  t , /  <It 1 ); 7 , 8 ,  10) circulators;9,ll) narrow-band 
degenerate amplifiers (four-wave mixers) operating in re- 
flecting mode, with pump frequencies 20,, and 2(0 , ,  + 2 A ) ;  
12) absorber; 13) homodyne detector reference laser at fre- 
quency w,; 14) homodyne mirror ( r l z 0 ) ;  15) photodetec- 

) 
tor (quantum efficiency g c  1 ). 
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In Eq. (3.2), we have explicitly introduced the quadrature 
20ise components at frequencies w, and w, + 2A, for which 
E,, must be written in the form 

cos oot+2, sin oOt+iz, cos(%t-t-at) 

+ g,, sin (a ,  + 2A) t. (3.4) 
A h  A A 

Ec, Es and E,,, E,, are the quadrature components of the 
noise in (overlapping) narrow spectral bands near the lower 
(a, - A = w,) and upper (a, + A = w, + 2A) sidebands 
of the pump frequency w, (with an offset of A). These are 
just the frequencies which affect measurements, in accor- 
dance with (2.1). This situation is typical of parametric re- 
ceiving systems: the desired information is carried by one of 
the IF product frequencies (the so-called signal frequency, 
here given by w, = w, - A), while noise is introduced at 
both the signal frequency and the idler frequency (mi = w, 
+ A). 

From (2.1 ), we obtain 

for the spectral amplitude of the signal being measured, 
where we take f, ( t )  =f, sinw, t for 0 < t < 'i and f, ( t )  = 0 
for 0 for t < 0 and t > b, with w, 82 2 ~ .  Measurement of the 
signal (3.5) in channel 2 (Fig. 1 ) should therefore take place 
in a quantum noise background with the spectrum (3.2). 

According to the theory of QNM,4-6 quantum mechan- 
ics imposes no limitations on the attainable measurement 
accuracy for one quadrature component of a single (isolat- 
ed) oscillator. In the setup shown in Fig. 1, however, the 
field oscillator is not isolated: it is coupled to the mechanical 
oscillator through the external classical field. The ulgmate 
measurement accuracy of a quadrature component E,, is 
therefore not obvious; one needs to guarantee both a special 
type of interaction between the ~sc~l la to rs ,~~%nd a special 
type of back reaction of the device (E,, in Fig. 1). This turns 
out to be possible if one selects the device design on the basis 
of channel 3, and controls the free parameters of the prob- 
lem, namely the classical pump frequency and phase. From 
an experimental standpoint, this means precisely controlling 
a measurement system incorporating a device with suitable 
performance. 

An analysis of Eq. (3.2)Amakes it clear what is needed 
for this control. To measure E,, to an accuracy exceeding 
the quantum limit, noise attributable to one of the conjugate 
quadrature components must be eliminated from the spec- 
trum at frequencies w -0 and o - 2A (that is, in the vicinity 
of w, and w, + 2A). "Squeezing" of the noise in the remain- 
ing components will then result in a nonperturbative mea- 
surement. 

A 
An appropriate choice of offset A can eliminate the 

E, (w) term at w 0, and the right choice of pump phase p 
can take out the E,, (w) term at w = 0. The first of these 
offsets is the solution of the equation 

A 

The noise contribution of E,, (w) goes to zero at w = 0 if the 
phase q, satisfies 

~ X P  (2%) exp (-i2q) -+ -- 
(6,-i2A) d+ (0) (6.+i2A) d- (0) 

= 0, 

6,-i2A 
exp (i29) = 

(6,2+4A" "" 

If (3.6) and (3.7) are satisfied, the only noise left in the 
s y s t e ~ a t  w~ 0 will b2in one of the two quadrature compo- 
nents E, or E,, (or in E,, ). If the design of the measurement 
device makes it possible to squeeze the noise in these compo- 
nents, it shouldAhen be possible in principle to measure sig- 
nal variations E,, below the quantum limit. Physically 
speaking, condition (3.6) provides for frequency balance in 
the parametric system, and ( 3.7 ) provides for phase balance. 

The signal-to-noise ratio is obtained from (3.2) and 
(3.5) in the usual wayz0: 

To calculate the noise spectral density 

we need to specify the spectral densities 

and their correlations as According to (3.4) (see 
also Fig. 1 ) , we can take the spectral components at w - w, 
and w -w, + 2A to be uncorrelated (to zeroth order in 2A/ 
w, (Ref. 19) ), and furthermore, we have for the squeezed 
noise in channel 3 

where No is the spectral density of the vacuum fluctuations, 
and go and g, are the squeezing parameters at o, and 
w, + 2A. Since in general the expression for the signal-to- 
noise ratio is quite unwieldy, it makes the most sense to con- 
sider several special cases. 

1. Large damping, S, 9 w,, . Here the expression for ,u 
simplifies. Retaining only the principal terms (in w,/S,) 
and bearing in mind that the filter bandwidth satisfies 
Awf w, , we obtain 

from (3.2), (3.5 ), ( 3 . 8 ) ,  and (3.9), whereupon with $<wP3 
we find 

Finally, 
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P = P & = P ~ ~ J A ~ , ~ ,  p P ~ f o 2 ~ ~ / 8 ~ o r o r 6 C ,  (3.12) 

in whichpq is the conventional quantum limit for the signal- 
to-noise ratio. The filter bandwidth (that is, the bandwidth 
of an optimal filter) given by the integrand in (3.8) is 

Amf = 2'"$/6.o,=oU/g. (3.13) 

Notice that the magnitude of the coupling can be 
changed quite easily (by changing the pump laser power W, 
- E i ,  for example), while at the same time the maximum 
attainable squeezing g is dictated by the technical specifica- 
tions of the parametric amplifiers. Equation (3.1 1) should 
be looked upon, then, as the condition which determines the 
optimal coupling in a system with given squeezing g. On the 
one hand, the signal-to-noise ratio is maximized for a given 
g, and on the other, the filter bandwidth is also maximized 
(the discrimination time is minimized, reducing the role of 
thermal noise in the antenna). If for a low value of the 
squeezing (3.11 ) is not true (the coupling + is too strong), 
the first relation in (3.12) will still hold, but the filter band- 
width will be less than the maximum possible for given p 
(3.13). 

2. Small damping, 6, <a,. Here the expression for p 
depends strongly on the relation between the system param- 
eters and w,Sf/2. The coupling coefficient between the 
optical resonator and the mechanical system is 
x = (2+/w, ) "', so in going from x > 6, (+ > w,Sf/2) to 
x < S, ($  < w,S2/2), the nature of the coupling between the 
oscillators changes. In general, the integral fo rp  can still not 
be evaluated exactly, so we make use of approximate series 
expansions (which are accurate to within a factor of order 
unity). For $ 5  w,S2/2(x < 6, ) we obtain 

.D 

z Z c z  i3 f o  r o: j ($'+o.'6.'02) da, 
'" 4Non A+BoZ+Co' ' (3.14) 

where 

Equation (3.14) is maximized when 

which corresponds to noise reduction at the frequency 
w, + 2A by the narrow-band resonant response of a tuned 
circuit with S, gw, (the squeezing g, is rather less than for 
6, sw, ,  when the measurement system transforms noise at 
w, and w, + 2A identically). Calculating (3.14) when 
(3.16) holds, we obtain the signal-to-noise ratio 

P=Pqgo. (3.17) 
This equation holds for optimal coupling 

~ o ~ t = ~ , ~ 6 , / g ~  (3.18) 

and filter bandwidth 

If the coupling is less than the optimum value (3.18), the 
signal-to-noise ratio (3.17) will remain the same, but the 
filter bandwidth will be less than that given by (3.19): 

A calculation of the signal-to-noise ratio for +> w,~:/2 
(x > S, ) andg, < 2w,/S, shows that the coupling +must be 
reduced until += w,, S2/2, at which point the limiting value 
(3.17) of p is obtained and the filter bandwidth is 
Aqif=S,/2. 

To sum up, we have found that for small damping 6, 
< w, and g, > 2w,/S,, the optimum coupling is given by 
(3.18), while the signal-to-noise ratio and filter bandwidth 
are given by (3.17) and (3.19) [if + < $,,, , the filter band- 
width corresponds to (3.20) ]; for g, < 2w,/S,, the optimum 
coupling is $,,, = w,Sf /2 and (3.17) and (3.20) give the 
signal-to-noise ratio and bandwidth. 

When the coupling $ is optimized, therefore, p grows 
linearly withgo for either high or low damping (although in 
the latter instance, g, can be smaller (w,,/S,)2 than in the 
former). The actual experimental value is += lo5  
secC3 =: 1012 sec-', and it is therefore impossible to sat- 
isfy (3.1 1 ) for moderately small values ofg, and large damp- 
ing S, > w, . In other words, the filter bandwidth (3.13) will 
not have been optimized (it will be less than the maximum 
possible for the given signal-to-noise ratio), which will then 
have a negative impact on the system's immunity to thermal 
noise from the mechanical oscillator. At the same time, the 
filter bandwidth (3.20) is much larger than (3.13) when the 
damping is small, thereby reducing the relative importance 
of oscillator noise. 

4. DISCUSSION 

In the preceding sections, we discussed a self-contained 
model of a parametric measurement system which differs 
from its predecessors most notably by its incorporation of a 
third signal path, a device with a specified structure which 
makes a nonperturbative measurement of a quadrature com- 
ponent of the electromagnetic field. The main result ob- 
tained with this model is its indication of a special operating 
mode in which the sensitivity to an external force exceeds the 
standard quantum limit ( 1.1). In fact, according to Eqs. 
(3.12) and (3.17), the minimum detectable external force is 

so that the improvement in sensitivity is determined by the 
return-noise squeezing factor g obtained with this instru- 
ment. With the problem stated in this way, the traditional 
quantum mechanical question of the physical realizability of 
the measurement process'-8 is no longer an issue, since the 
device which provides the measurement and produces the 
backward noise wave (the dequantization noise) is indicat- 
ed explicitly. 

To conclude, let us discuss the limitations introduced 
by imperfections of the individual design elements (Fig. 1 ) .  
We will be most interested in those that result primarily in 
losses in the measurement system, leading to spreading of 
the squeezed state. 
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We assume finite damping 6, (or finite Q, ) of the me- 
chanical oscillator. The signal-to-noise ratio in the thermal 
noise background of a mechanical oscillator at temperature 
T, is 

Comparing (4.1) with (3.12) and (3.17), we obtain a lower 
limit on the filter bandwidth: 

Awf 2o1,Q;"~ for kT,4&, ,  

(:>,)'" for k~,>+im,,. Awf>w,  - 

whereupon we have for maximum signal-to-noise ratio 

'h 
p r n o x = ~ q Q u  for ICT, 9 fiw,, 

or for the force (see Ref. 18), 

kT, >fiw,,, 
(4.4) 

For T =  l op3  K%fiw,/k --lo-' K and Q, =:loi0, we have 
Fm,,/Fq -3. l o p 2  

Losses S in the optical resonator, due for example to the 
finite transmission coefficient of the "perfect7' mirror, will 
also lead to the destruction of squeezed states of the field. 
The preservation of squeezed states requires that 

whereg, = max(g,,g,). Note that in general the damping S 
can come from anywhere: absorption in the mirrors, diffrac- 
tion, and so on. Similarly, losses in the photodetector and 
circulators of the setup shown in Fig. 1 will generate equilib- 
rium noise with a spectral densityt2 Nab = ( 1  - 7)No 
(where 7 is the quantum efficiency of the photodetector or 
( 1  - 7 )  is the optical loss of the circulators), so that as 
7- 1, these noise sources will vanish asymptotically (the 
effects of a nonideal photodetector can be reduced by the use 
of a degenerate parametric amplifier"). Taking all limita- 
tions into account is only possible when one analyzes a spe- 
cific hardware implementation of the design in Fig. 1, which 
is a problem in its own right. Here our objective has been to 
ascertain the basic structure of a closed-loop QNM design 
for detecting weak external signals with a test oscillator. Our 
motivation has come from the first experiments to produce a 
squeezed state of the electromagnetic field, even though the 
squeezing values achieved are still only 30-40%.22.23 

APPENDIX 

We obtain the equation of motion of the present system 
from the correspondence principle. For simplicity, let 
r ,  = -r,, and r =  -r ,  be real, with r , ,>Oand r,>O; t i  
and t should then be purely imaginaryt3: t i  = it,,, t = it,,. 

Assume further that the mirrors are lossless: 6,  + t g,  = 1, 
1.2, + t i  = 1. If we consider only one polarization, the field 
incident on the measurement device is 

where k = w/c,l is the length of the resonator, Em is the field 
incident on the measure device, EL is the field due to the 
pump laser, and Eb, is the noise field due to the back reaction 
from the device. 

Next we consider the classical pump limit r,, - 1, 
It, I +0, but with t,,EL = const. Then from the left, only the 
laser pump field passes into the interferometer, and 

t,Z exp (2ikl) it, exp (ikl) . 
Ern=-roEbn - Ebo f ELti. 

I-r, exp (2ikl) 1-ro exp (2ikl) 

The measured field Em therefore consists of a back-reaction 
field E,, reflected from the input mirror of the interferome- 
ter, and the field E,,, which exists the interferometer (the 
forced oscillation field, the third term in (A2) ,  contains no 
noise when / t, I -0) .  Expanding the factors of E,, and EL in 
(A2)  near one of the resonator eigenfrequencies w, = n m / l  
and introducing the damping 6 ,  = c(  1 - r,)/21r,, we obtain 
( / w - w, 11 /C & 1, and we are in the single-mode regime) 

(A31 
We find then from (A3)  that the resonant terms satisfy 

E + ~ ~ , E + ~ , ~ E = F ,  (A41 

where E = Ep + E,,, is the output radiation from the reso- 
nator, consisting of forced oscillations plus a perturbation 
due to the back reaction of the measurement device, F = F, 
+ F,, , FL is the "driving" force due to the pump laser, F,, is 

the "force" due to the back reaction from the measurement 
device, and 

F,,+=-4ioo6.Eb,+, F ~ + = 2 i o ~ t ~ , E ~ + ( 6 . c / l r ~ ) ' "  (A51 

are the amplitudes of the driving forces: 

F=F++F-=F+ exp (-iot) +F- exp ( io t ) ,  (F+) *=F-. 

If the length of the interferometer now changes as 
1 = 1, + x ( t )  ( lx(t)  1 & l ) ,  then so will the mode frequency 
wi ( t )  ( 1  - 2x(t)/ l) .  We then obtain (keeping the 
leading term in x/l)  

E + ~ ~ , E + W , ~  (1-2x11) E=Ft,,+liL (A61 

It should be noted that there is an additional phase shift of 
the driving force and the response in connection with the 
choice of a transmission coefficient in the form t = it,, 
[namely the imaginary unit i in (A5 ) 1. One can derive an 
equation analogous to (A6)  using Slater's method. 14-16 

Equation (A6) must next be supplemented by the equa- 
tion for the mechanical degree of freedom (for an oscillator 
of mass m and resonant frequency w, : 

x+o;z=FP ( t )  -I- f g ( t ) ,  (A71 
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where x is the displacement of the movable mirror from its 
equilibrium position, and Fp ( t )  and f, ( t )  are the mass-nor- 
malized light-pressure force on the mirror and the external 
(gravitational) force (we neglect damping in the mechani- 
cal system). We find the light-pressure force from the Max- 
well stress tensor ( S  is the area of the mirror; for simplicity, 
we assume that the pump beam has cross section S) :  

S 
F, ( t )  = - [ (E2 (5-0,  t )  +HZ (1-0, t )  ) - (E2 (x+O, t )  

8nm 

where the first and second terms describe the pressure force 
on the mirror due to fields coming from the left (inside), and 
the third and fourth describe those coming from the right 
(outside). In calculating the pressure force, we can assume 
the mirror to be stationary (taking the displacement into 
account gives terms of the next higher order). The fields 
E ( x  - O,t), H ( x  - O,t), E ( x  + O,t), and H ( x  + 0,t) can be 
found in the same way as (A1)-(A5); substituting these 
into (A8) and linearizing, we have the equation for the me- 
chanical system (with the assumption that E,, does not con- 
tain the pump) : 

where Eou, (7~/2) and E, (?r/2) are the output noise and the 
forced oscillations, both shifted by 7/2. To sum up, then, 
after linearization of (A6),  we obtain from (A5),  (A6),  and 
(A9) a closed set of equations: 

with p = p0 + 6 ( p  is an arbitrary phase determined by 6,, 
and 0 is the delay of the response relative to the driving 
force ) . 

Representing the output field Ebu, and the back-reac- 
tion field E,,, in terms of their quadrature components [see 
Eqs. (2.2) and (2.3) 1,  we obtain from (A1 1) the abbreviat- 
ed basic equations of the measurement system in the form 
(2.1). 
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