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Analytic expressions are obtained for radiative corrections to the hyperfine splitting related to the 
muon line. The corresponding contribution amounts to ( Z  'a) ( Z a )  ( m / M )  [ 9 l ( 3 )  
- 372 In 2 + 39/81 in units of the Fermi hyperfine splitting energy. A complete analytic result 

for all radiative-recoil corrections is also presented 

1. INTRODUCTION 

Muonium provides an ideal testing ground for compari- 
son of predictions of quantum electrodynamics with experi- 
ment. It is in this respect superior even to the hydrogen atom 
since the muon, in contrast to the proton, has no strong in- 
teractions and this makes possible exact calculations. At the 
same time muonium measurements are carried out at the 
highest level of accuracy and experimental technique, with 
the results being continuously improved. 

Currently the best measurements are those of the hy- 
perfine splitting of the muonium ground state,2 requiring an 
improvement in the accuracy of its theoretical value. In the 
first place one needs to calculate radiative-recoil corrections 
(RRC), which are the biggest among the various currently 
unknown contributions. The simplest RRC are connected 
with the contributions of vacuum polarization to the ex- 
change photons, and their analytic calculation, which has its 
own history, was completed quite some time ago.3 The RRC, 
due to radiative corrections to the electron line, were found 
in Ref. 4 with the help of numerical integration, and the 
corresponding analytic formulas appeared in our ~ o r k . ~ . ~  
Below we give analytic results for the RRC connected with 
the muon line, thus completing the program of analytic eva- 
luation of all RRC in the ground state of muonium. 

In Sec. 2 we describe the set of diagrams with radiative 
insertions in the muon line, which contribute to RRC, and 
obtain the basic formula for their evaluation. In Sec. 3 a 
convenient representation is derived for the muon factor and 
its main properties are investigated. The evaluation of the 
RRC, connected with the muon line, is given in Sec. 4. In the 
Conclusion a complete analytic formula is obtained for all 
RRC. The Appendices contain some of the unwieldy formu- 
las and calculations. 

2. ANALYSISOFTHE RRC CONNECTED WITH THE MUON 
LINE 

We study the RRC in the framework of the two-particle 
formalism proposed by Gross,' and developed by Dul'yan 
and FaustovR and L e ~ a g e . ~  It  can be shown that all the RRC 
connected with the muon line are described by the gauge- 
invariant set of diagrams shown in Fig. 1. They differ from 
the corresponding diagrams of Ref. 6 only in the fact that 
now the radiative insertions are in the muon, and not elec- 
tron, line. The diagram selection was carried out in the 
Fried-Yenni (FY) gaugelo*" for the radiative (attached at 
both ends to the muon line) photons. In this gauge the indi- 

vidual graphs are softest in the infrared region,'' which sim- 
plifies substantially the analysis of possible contributions to 
the hyperfine splitting. The ultraviolet divergences mani- 
festly cancel, and therefore the mass and vertex operators in 
Fig. 1 are renormalized, and moreover the vertex had the 
anomalous magnetic moment subtracted out. The subtrac- 
tion has to do with the fact that in the FY gauge the behavior 
of the anomalous magnetic moment at low momenta is less 
soft than the remaining form factors and requires separate 
treatment. Moreover it is not hard to convince oneself that it 
does not contribute at all to the RRC. 

The matrix elements for the diagrams shown in Fig. 1 
should be evaluated under standard conditions (SC) be- 
tween large components of free electron and muon spinors. 
By SC is meant that all external momenta are on the mass 
shell and their spatial components vanish. The correspond- 
ing RRC is given by the matrix elements, calculated under 
SC, times the square of the Coulomb wave function of the 
Schroedinger equation with reduced mass evaluated at the 
origin. The set of diagrams thus obtained is gauge-invariant 
under SC, and in what follows we use for all photons (radia- 
tive and exchange) the Feynman gauge, in which the photon 
propagator has its simplest form. 

The RRC connected with the muon line are described 
by the relation 

where rn and M are the masses of the electron and muon 
respectively, a is the fine structure constant, E,. is the Fermi 
hyperfine splitting energy, L,,, is the muon factor, and the 

+2a+z3+z 
FIG. 1. 
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angular brackets denote taking matrix elements between 
large components of free electron spinors. The mass (T of the 
exchanged photon, as well as its momentum k over which we 
are integrating, are made dimensionless using the muon 
mass. The constant Z,  expressing the muon charge in terms 
of that of the electron, is equal to unity, but we keep it in the 
equations to indicate the origin of the various contributions. 

3. THE MUON FACTOR 

Substitution of the skeleton muon factor into Eq. ( 1) 
yields the leading logarithmic recoil correction, which con- 
tributes in the range of dimensionless momenta k between 
m/M and 1. The integrand in ( 1 ), with the muon factor 
ignored, diverges linearly at the lower limit, while the lead- 
ing term in the skeleton muon factor is homogeneous in the 
momentum. Only its specific algebraic structure in this case 
decreases the degree of divergence to logarithmic. 

Radiative corrections to the muon line enter expression 
(1 )  in the infrared regime, where they possess in the FY 
gauge additional softness compared to the skeleton.12 This 
softness, combined with the fact that the characteristic mo- 
menta in the integral ( 1 ) are determined by the muon mass, 
ensures the absence of nonrecoil contributions. Such contri- 
butions are present in the case of radiative corrections to the 
electron line, where the momentum scale in the integral 
analogous to ( 1 ) is set by the mass of the electron.' 

The algebraic structure of the muon factor, correspond- 
ing to the individual diagrams shown in Fig. 1, differs from 
the skeleton and its softness is just sufficient to make the 
integral in ( 1 ) logarithmically divergent, but it is not suffi- 
cient to achieve convergence. The divergence is cut off from 
below by the mass ratio m/M in the electron denominators 
of formula ( 1 ) . The calculations are made substantially 
more complicated by the fact that the mass ratio cannot be 
ignored. 

To overcome this difficulty we have obtained in the 
Feynman gauge an integral representation for the muon fac- 
tors with insertions of the mass and vertex operators and the 
spanning photon in terms of the same Feynman variables 
(see Appendix 1 ) . After summing the integrand expressions 
the full muon factor is brought to the form 

where 

x and y are Feynman parameters, il is the dimensionless 
mass of the radiative photon, and the explicit expressions for 
the functions A, and Bi are given in Table I. 

The muon factor L,, describes the one-loop correction 
(with the contribution of the anomalous magnetic moment 
subtracted out) to the forward Compton scattering ampli- 
tude and is infrared-finite even for zero mass of the radiative 

photon. With the help of the representation ( 2 )  it is not hard 
to check directly the validity of the generalized low-energy 
theorem, which yields L,, ( k )  -O(k 2 ,  at low momenta. In 
contrast to the usual low-energy theorem for Compton scat- 
tering the photon momentum in our case is off the mass shell, 
but on the other hand we consider only those spinor struc- 
tures which contribute to hyperfine splitting. The integrals 
over the individual terms in expression (2 ) ,  containing the 
funtions A ,  and B,,  are just as soft as the full factor L,, . The 
behavior of the terms involving A,  and A ,  is less soft, and it is 
only their sum that decreases like the square of the momen- 
tum. 

The low-energy theorem indicates that the radiative 
corrections to the muon line, in contrast to the corrections to 
the electron line,'.' produce no contributions logarithmic in 
the mass ratio. Moreover, we may now omit in the expres- 
sion for the energy shift ( 1 ) the mass ratio in the electron 
denominators. These have to do with corrections of the or- 
der of (m/M)2a2EF, in which we are net interested anyway, 
and the calculations with the electron mass left off are sub- 
stantially simplified. 

4. ANALYTIC CALCULATION OFTHE RRC CONNECTED 
WITH THE MUON LINE 

The actual calculation starts most conveniently with 
integration over the momentum in expression ( 1 ) , rather 
than with the evaluation of the muon factor (2 ) .  The finite 
mass a of the exchange photon in ( 1 ) is necessary to ensure 
convergence of that integral. The neglect of the electron 
mass, whose validity was demonstrated in the preceding sec- 
tion, means that we are considering radiative corrections to 
the scattering of a massless electron on a massive muon, reg- 
ularized by the mass of the exchange photon. For technical 
reasons the role of the main infrared regularizer will be 
played below by the mass of the radiative photon, whose 
square is viewed as much larger than the mass of the ex- 
change photon. We have explicitly verified that the results of 
the calculations are indeed independent of the relation be- 
tween these masses. 

To save on calculational labor it is convenient to com- 
bine the covariant (form = 0 )  denominators in formula ( 1 ) 
by means of the well-known trick 

1 

1 2t 

(k'-02) 2k2 = j d t  ( k 2 - ~ 2 ~ ) 3  ' 

All further calculations are carried out with the denomina- 
tor ( k  * - d ~ ) ~ ,  the integration over the parameter T being 
left for last. That integration is trivial, since the integrand 
expression turns out to be independent of the small mass of 
the exchanged photon as 2 =$T tends to zero. 

We combine the denominators in expression ( 1 ) with 
the help of a new Feynman parameter z: 

where D = k - 2k,bz - a2z - 2 ( 1 - z )  , and in the second 
relation 6 was set equal to zero since the corresponding mo- 
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mentum integral is well-convergent. After integration over 
the momentum we obtain 

where 

In view of the remark following formula (3 )  we omitted here 
the final integration over T and the corresponding weight 
function. 

The integration over z is carried out directly with the 
help of the formulas given in Appendix 2. We note that J, 
and J,  contain only logarithmic infrared divergence, which 
is cut off by the mass of the exchanged photon, and the re- 
maining integrals over z are infrared-finite. 

It is still necessary to perform the parametric integral 
over x and y, which is so unwieldy that the full expression for 
it has been left to Appendix 3. The dependence on the mass 
of the exchanged photon disappears upon integration due to 
the remarkable identities 

A careful inspection of the formulas of Appendix 3 shows 
that one of the expressions ( 6 )  always stands in front of the 
logarithm of the mass of the exchanged photon. Taking into 

TABLE 11, 

75 
- 1 5 ( 9 ) +  ; n Z , n . ' -  ELxr+ "4 2% 8 

account the difference from unity of the coefficient of 2 in 
the denominators of the right-hand side of expression (5)  
gives rise to corrections of order u/A relative to the integrals 
of the individual terms in (3.1 ) .  These integrals themselves 
contain up to linear infrared divergences, which are cut off 
by the mass il of the radiative photon. By choosing values of 
the parameters such that u/A < 1, we avoid encountering 
any u-dependent terms in the following. In evaluating the 
integrals of Appendix 3 it is important in the intermediate 
stages to retain the finite mass A of the radiative photon, as is 
explained in Appendix 1. This finiteness is also needed for 
the validity of the identities (6) .  

The contributions to the hyperfine splitting, due to the 
various functions A,  and B,, are collected in Table 11. They 
were obtained as a result of extremely cumbersome and wea- 
risome calculations, involving in particular the evaluation of 
many integrals over the standard functions 2,. The weight 
functions in these integrals are often so singular that there 
are no simple algebraic relations between integrals with 2, 
and Y ,  + , . Summing the results given in Table I1 we obtain 
the complete contribution to the hyperfine splitting energy, 
due to muon line radiative corrections: 

-42 f As 

B1 

Bz 

Ba 

where c ( 3 )  is the Riemann zeta function. 
The expression in parentheses equals - 1.0374, which 

is in beautiful agreement with the result of numerical inte- 
gration,4s'3 - 1.0372 + 0.0091. The correction (7 )  equals 
1.19 kHz, which is 7.5 times bigger than the error of the 
experimental data.* 

1 1  5 
- M n 2 + 7  

63 15 109 95 
2 5 ( 3 ) - n 2 1 n 2 -  --x2+- 24 4 

15 3 23 --, 5 (3) - -, n2 In 2 f a "2 - 2 

45 9 5 15 
- g c ( 3 ) - ~ n ~ I n 2 + - p r " -  4 

5. CONCLUSION 

Combining the above obtained result ( 7 )  with the con- 
tribution to RRC from vacuum polarization' and the inser- 
tions into the electron line5,' we obtain the complete analytic 
expression for all RRC: 
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where we have taken into account the fact that for the muon 
Z = 1, and where the last term in the round brackets arises 
from hadronic vacuum polarization." 

A typical answer for RRC consists usually of a linear 
combination of four characteristic terms: < (3 ) ,  a' In 2, v2 
and a simple fraction. As is seen from expression (7 )  in the 
muon line's RRC the term proportional to .rr2 is absent, and 
in the complete RRC (8 )  the coefficient in front of the loga- 
rithm of 2 cancels out. 

Formula (8 )  completes the program of analytic evalua- 
tion of order-a2(m/M)E, corrections to the hyperfine split- 
ting. Numerically RRC ( 8 )  amounts to - 3.6 kHz. From 
among the currently unknown contributions to the hyper- 
fine splitting only the pure radiative correction of the form 
a 2 ( Z a ) E F  can reach a magnitude of the order of one kilo- 
herz. Its evaluation is the next task of the theory. 
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APPENDIX 1 TABLE IV 
Integral representation for radiative insertions into muon line 

The muon factor, corresponding to the sum of radiative 
corrections, has a softer behavior at low momenta of the 
exchanged photon than the contribution of each of the cor- 
rections individually. For this reason it is convenient for the 
proof of the low-energy theorem to sum up the contributions 
of radiative insertions into the muon factor prior to integra- 
tion over the Feynman parameters. We obtain for them the 
representation (2 1, having expressed the contributions of 
individual diagrams in terms of the same Feynman param- 
eters. The coefficients A,  and Bi are given in Table I, where 
Z, A, Z and T denote the contributions from the mass opera- 
tor, the vertex operator, the diagram with the spinning pho- 
ton and their sum, respectively. 

This integral representation for the sum was used in the 
actual calculations. In this connection we call particular at- 
tention to the need for accurate treatment of the infrared 
mass2 of the radiative photon. It usually enters the denomi- 
nators of the expressions shown in Table I in the combina- 
tion x2 + A  2(1 - x). The term proportional to A may be 
omitted in evaluating infrared-finite integrals of Sec. 4 with 
the functions Bi . The integrals with the functions A ,  and A,  
are logarithmically divergent, and the term with A must be 
kept, but one may ignore the fact that its coefficient differs 
from unity. Finally, integrals with the function A, are the 
most singular, even diverging linearly, and in this case it is 
necessary to take into account the difference from unity in 
the coefficient of A ', resulting in a finite contribution to the 
hyperfine splitting. The expressions for the functions Ai and 
B, shown in Table I obtained in conjunction with the calcu- 
lations of Sec. 4 and therefore contain the approximations 
just described. 

APPENDIX 2 

Standard integrals overz 

The integration over z in expression (5)  is performed 
directly and reduces to the evaluation of the following six 
simple standard integrals: 

All results are expressible in terms of the four standard 
functions: 

9 - ,= ln  (a2/aZ) , Bo=ln (l+bz/a2), 

8 , = 1 -  (a"b"9,, 92=L/2 -  (aZ/b2)8,, 

and are given in Table 111. 

APPENDIX 3 

Two-dimensional integral for the energy shift 

The contribution to the energy from the functions Ai 
and B, takes the following form, after integration of expres- 
sion ( 5 ) over the variable z: 

TABLE 111, 

I I I I 

(A3.1) 

where i = 1, 2, 3; k = - 1,0, 1,2; and the explicit formulas 
for the weight functions d f ' 'BO are collected in Table IV. 

The results of evaluating the corresponding integrals 
are shown in Table 11, where a common dimensional factor 
[ ( Z 2 a )  (Za)/.rr2] ( m / M ) E F  was omitted. 
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