
Nonradiative recombination in noncrystalline semiconductors 
S. D. Baranovskii, V. G. Karpov, and B. I. Shklovskii 

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad 
(Submitted 13 July 1987) 
Zh. Eksp. Teor. Fiz. 94,278-288 (March 1988) 

A theory of nonradiative recombination of carriers is developed for the case of a quasicontinuous 
spectrum of localized states in the mobility gap of a noncrystalline semiconductor. The 
recombination rate is calculated as a function of the density of free carriers and of the temperature 
of the system. A study is made of the influence of the polaron effects on the recombination 
process. The results obtained account for the lux-ampere characteristics of amorphous 
semiconductors. 

1. INTRODUCTION variant of the theory is readily applied to the case of surface 

It has been established experimentally1-' that the re- 
combination of carriers in noncrystalline semiconductors is 
governed mainly by nonradiative processes. However, the 
mechanisms of these processes are still unclear. Standard 
concepts of the physics of crystalline semiconductors4 relate 
the processes of nonradiative recombination to the emission 
of phonons the total energy of which is equal to the width of 
the band gap. The probability of this process decreases on 
increase in the number of the emitted phonons. Therefore, 
recombination is facilitated by the presence of deep impurity 
states (recombination centers), because this makes it possi- 
ble to reduce the number of phonons emitted in one event. 
Consequently, the rate of recombination is governed by the 
nature and concentration of recombination centers in a crys- 
tal. 

In the case of noncrystalline materials the role of the 
band gap is played by the mobility gap inside of which there 
is a quasicontinuous spectrum of levels associated with lo- 
calized states. In this situation it is meaningless to speak of 
recombination centers having definite energy levels in the 
band gap. 

We shall consider nonradiative recombination pro- 
cesses in the case of a quasicontinuous spectrum of localized 
states on the assumption that these states are due to a ran- 
dom spatial distribution of short-range centers, each of 
which can carry one electron. The main idea used in the 
present treatment was put forward in Ref. 5 and it postulates 
that the effective recombination channels are loose clusters 
of centers forming energy ladders with fairly small steps 
(Fig. 1) .  Such ladders facilitate greatly the processes of 
emission of phonons with the total energy equal to the mobil- 
ity gap. Since the transitions between the levels are of the 
multiphonon nature, their probabilities increase on reduc- 
tion in the height of the steps, i.e., on increase in the number 
of levels forming the ladder in question. On the other hand, 
the probability of formation of clusters of spatially close 
centers decreases rapidly on increase in their number. There- 
fore, there is an optimum in respect of the number of centers 
and the characteristic intercenter distance. Such optimal 
compact configurations are responsible for the recombina- 
tion in noncrystalline materials. This idea was applied in 
Ref. 5 to surface recombination. We shall consider the more 
likely case of volume recombination in noncrystalline semi- 
conductors. Moreover, in contrast to Ref. 5, we shall investi- 
gate the temperature dependence of the recombination rate 
and allow for the role played by the polaron effects. This 

recombination. 
We shall be interested in the dependence of the number 

of electron-hole pairs R recombining per unit time and per 
unit volume on their concentration n and on the temperature 
of the system T. With its aid we can find, for example, the 
steady-state nonequilibrium density as a function of the illu- 
mination intensity I. It is found that at low temperatures and 
in good agreement with the experimental results, this den- 
sity is 

where E,, is of the order of the characteristic phonon energy. 
The present paper is organized as follows. In Sec. 2 we 

shall give the essential results from the theory of multi- 
phonon transitions. In Sec. 3 we shall discuss recombination 
at zero temperature in a material characterized by a small 
polaron shift. In Sec. 4 we shall consider the case of finite 
temperatures. Recombination in the case of large polaron 
shifts will be considered in Sec. 5. Finally, a discussion of the 
results and a comparison with the available experimental 
data will be given in Sec. 6. 

2. PROBABILITIES OF MULTIPHONON TRANSITIONS 

We shall show below that the difference between adja- 
cent energy levels forming a recombination ladder is many 
times greater than the characteristic phonon energy h. In 
this case each electron transition emits several phonons. A 
theoretical analysis of multiphonon transitions can be found 
in Refs. 6-8. We shall be interested mainly in the exponential 
dependence of the probabilities of transitions on the total 
energy E of the emitted phonons, i.e., on the difference 

FIG. 1. Recombination channel consisting of a ladder of levels of height E 
with a number of steps M = 4 and with input and output of heights A. 
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between those energy levels between which an electron tran- 
sition takes place. We shall give these dependences without 
derivation. 

The time for an electron transition from one localized 
state to another, located E$& lower on the energy scale, is 
given by the following expression valid at low tempera- 
t u r e ~ " ~  

T = V ~ - ~  exp (2w/ f iw-y~/ f io+2r/a) ,  

y=l-ln(e/2W), ( 2 )  

where r is the distance between the centers; a is the localiza- 
tion radius of an electron at a center; v, is the preexponential 
factor; Wis the polaron shift, i.e., the gain in the total energy 
of the system due to relaxation of the atomic subsystem as a 
result of the appearance of an electron in the spectrum. It 
follows from Eq. ( 2 )  that if E > 2 W the time for an electron 
jump between the centers rises exponentially on increase in 
E :  

z=v-l exp(~/e,+2r/a),  
( 3 )  

In the subsequent calculations we shall ignore the depen- 
dences of E~ on E and assume that E, is constant. In numeri- 
cal estimates of the energies we shall use the value E, = 0.02 
eV, which is slightly less than the energy of the Debye pho- 
nons in amorphous semiconductors.' If E < 2 W, the transi- 
tion time decreases exponentially on increase in E. We can 
easily show that if I E  - 2  W I < 2  W, the transition time r de- 
pends on E in accordance with the law 

%=yo-' exp [ ( ~ - 2 W ) ~ / 2 W f i o + 2 r / a ]  (4) 

and at a point E = 2 Wit has a minimum. 
This applies to electron transitions between localized 

states. If one of the two states between which a transition 
takes is place is delocalized, the transition time is given by 
the expression 

a=v-' e x p ( ~ / e ~ )  ( 5 )  

irrespective of the relationship between E and 2 W. 
We are interested only in the exponential dependences 

of r on E and we shall not give explicit expressions for the 
preexponential factors v, and v. Both are of the same order 
of magnitude as the Debye frequency w and the relationship 
between v and v, is readily established from Eqs. ( 2 )  and 
( 3 ) .  

The present paper deals only with the case of low tem- 
peratures when T < + h .  In this case the probability of a 
downward transition on the energy scale is independent of 
temperature. The temperature dependences of the various 
quantities obtained later are not related to the temperature 
dependence of r ,  but are due to other factors. 

Finally, we note that the time r' for an electron transi- 
tion increasing the energy by E is related to the energy transi- 
tion time T downward on the energy scale to the usual 
expression 

T'=T exp (&IT) .  , ( 6 )  

3. RECOMBlNATlON IN MATERIALS WITH A SMALL 
POLARON SHIFT ATZERO TEMPERATURE 

We shall develop a theory of recombination when T = 0 
on condition that the polaron shift Wis small compared with 

the energy transferred by a phonon in one electron transition 
between the centers. 

We shall discuss a set of parallel recombination chan- 
nels, each of which represents a ladder of levels created by 
spatially close states. Such a channel is shown schematically 
in Fig. 1. It has M + 2 steps, the scatter of the step heights is 
SE, and the typical jump length is r. It will be convenient to 
consider separately the first and last steps of the channel and 
to discuss at the same time a ladder of height E = G - 2A, 
where G is the width of the mobility gap and A is the height of 
each of the outer steps in the channel. We shall call the first 
step of the channel the input and the last one the output. 

Clearly, the maximum contribution to R ( n )  is made by 
those channels for which the input and output frequencies 
T- I are equal to the reciprocal of the descent time r ,  ' along 
a ladder of levels of height E = G - 2A. This is because the 
time in which an electron-hole pair recombines in a channel 
is governed by the longest of these times. However, a reduc- 
tion in the shortest of these times reduces the probability of a 
given configuration of the centers. The recombination flux is 
dominated by the channels with T,-'zT-', because the 
shorter time can always be increased readily and this in- 
creases the probability of a given configuration. 

We shall consider the capture of electrons by the upper 
level of a ladder. We shall write down the t imer in which any 
particular carrier is captured by a given channel in the form 

1 1 a, T C  no - = = -  Tc.  
 no,^ nov a, no" n 

( 7 )  

Here, a, is the capture cross section; u is the electron veloc- 
ity; ~ = n ; ' ~  is the cross section of the region where an elec- 
tron may be captured emitting phonons (n, z 10" cm-'); 
r,. is the transit time across this region; r, is the time for the 
capture of an electron in this region. I t  follows from Sec. 2 
that 

We then have 

In  turn the reciprocal time r; ' for the descent of an 
electron along a ladder of levels of height E and with the 
number of steps M is, according to Eq. ( 3 ) ,  

We shall assume that this time is governed by the slowest 
jump in the ladder. For this jump the initial center is usually 
filled and the final one is empty. Therefore, we shall ignore 
the factors associated with the occupancy numbers of the 
levels. 

Equating r ' and r ,  ', we find that if M$1 then 

We can determine E = G - 2A with the aid of Eq. ( 1 1  ) by 
substituting E in Eq. ( 10) and bearing in mind that M$ I, 
which gives the following expression for the reciprocal of the 
time for a carrier to pass along the channel: 
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We shall write R in the form 

where 

is the number of channels of type i per unit volume and g is 
the density of states in the mobility gap, which we shall, for 
the time being, assume to be independent of energy. The 
quantity N,T~- has a sharp maximum when considered as a 
function of M, r, or SE and this maximum occurs at 

This maximum appears because if Lo  % 1 (we shall assume 
that this inequality is satisfied) an increase in M reduces 
strongly the number N, ,  but increases the frequency T ;  I .  

The optimal are the fairly rare but sufficiently "fast" chan- 
nels with ri = T,, where 

T ~ - ' = v  exp(--G/hI,,,eo)=v exp [-(CL0/eo)'"]. ( 17) 

The argument of the exponential function in Eq. ( 17) is sim- 
plified by dropping the terms which are small in L C  ' and 
which appear because of the last two terms in the argument 
of the exponential function in Eq. ( lo) .  

We can see from Eq. ( 16) that these channels are char- 
acterized by SE, <E/M,  i.e., the levels in the optimal lad- 
ders are approximately equidistant on the energy scale. The 
reason is that the ladders in which some of the jumps have 
steps with a small height are much less probable than the 
ladders which are almost equidistant on the energy scale. 

According to Eq. ( 16), the heights of M ,  steps are dis- 
tributed in a range M , E ~ ,  SO that the highest step differs by 
E~ from the one which is second on the height scale, i.e., the 
frequencies of the corresponding jumps differ approximately 
by the factor e.  Therefore, in spite of the approximately equi- 
distant distribution of the level, the hypothesis of the domi- 
nant role of the slowest jump is justified. 

The substitution of Eq. ( 16) into Eqs. ( 14), ( l o ) ,  and 
( 15 ) gives 

where-as in Ref. 17-the minor terms are dropped from 
the argument of the exponential function. 

Equation ( 18) demonstrates the main advantage of the 
ladders: if n = no, instead of the factor exp( - G /E,,), corre- 
sponding to the interband recombination process, the lad- 
ders give rise to the factor exp[ - ~(GL,/E,,) ' 1 2 ] .  If G = 1.5 
eV, E~ = 0.02, and Lo = 2, the arguments of the first and 
second exponential functions are - 75 and - 24, respec- 
tively. 

In the derivation of Eq. ( 18) it is assumed that g and a 
are independent of the energy E(E = 0 applies in the middle 
of the mobility gap). We can readily show that even in the 
case of an exponential dependence g ( ~ )  the levels in a chan- 

FIG. 2. Structure of the optimal recombination channels shown for differ- 
ent values of n and T: a )  T = 0, n = no;  b)  T = 0, n > no; c )  T = 0, n < no; 
d )  T = O , n S n , ; e ) O < T g f i w , n S n , .  

nel remain practically equidistant and the logarithm in Eq. 
( 18) should be replaced by its average value 

We shall now interpret the results. I t  is clear from Eqs. 
( 18) and ( 16) that if n = no, the whole channel (including 
the conduction and valence bands) forms an equidistant se- 
quence of levels (Fig. 2a). If n #no,  then the energies re- 
leased at the input and output of the channel differ from the 
height of the ladder steps. The solution of Eq. ( 18) for this 
case can be represented in the following clear manner. The 
quantity Z' defined in Eq. ( 13) will be called the renormal- 
ized width of the mobility gap. We can see that Z' < G if 
n > no (Fig. Zb), whereas 8, G in the more important case 
n < no (Fig. 2c). The optimal channel divides the gap Z'into 
a system of equidistant steps. 

If n > no, the length of the ladder decreases on increase 
in n because of an increase in the heights A of the input and 
output. This occurs because in the expression ( 9 )  for the 
probability of input or output the smallness of 7,' 

= v exp( - is compensated by a large factor n/n,. 
Then, in a wide range of n, when ~, ,( ln(n, , /n)  ( & G, it follows 
from Eqs. (18) and (16) that R ( n )  oc (n/no) """"'. In the 
limit of high n, when the factor n/no is so large that the 
frequency of direct interband recombination is no longer 
small, such recombination becomes more effective. It is of 
bimolecular nature and the recombination flux is then pro- 
portional to n2. (We must bear in mind that in the case of 
high densities the recombination mechanism described here 
may compete with the Auger recombination, which occurs 
either because of interband transitions or due to localized 
centers and ladders of such centers.) 

In the much more likely case when n &n,,, a reduction in 
n reduces the height A of the input and output. Then, the 
highest (lowest) level of the ladder in the optimal channel 
approaches the bottom of the conduction band (top of the 
valence band) as shown in Fig. 2d. If A 5 E,, the capture by 
the outer levels of the ladder ceases to be of multiphonon 
nature and its probability is practically independent of A. 
We then have r, z v - I  and .r-n,,v-'/n [see Eqs. ( 8 )  and 
( 9 )  1. This occurs at n =: n,, where n, is given by the relation- 
ship 

n,=no exp [-(GL0leo)'"]. (19) 
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If n < n,, Eq. ( 18) is no longer valid. We shall now consider 
this case in greater detail. The sum in Eq. ( 14) is still domi- 
nated by the channels with r; 'ZT-I. If n < n,, these chan- 
nels are characterized by T; 'zvn/nO, i.e., according to Eq. 
( 10) these are the channels characterized by 

The channels with M > Mo are faster, but not very effective 
because most of the time they remain empty. On the other 
hand, the channels with M < M o  are usually occupied by 
carriers and are also ineffective in the recombination pro- 
cess. A calculation of the number of working channels gives 

Therefore, if n <n, the recombination flux R (n )  rises sublin- 
early on increase in n. A reduction in n increases the width of 
the renormalized mobility gap 5. As 8 approaches 3G from 
below, the recombination channel becomes a pair of levels 
one of which is close to the conduction band and the other 
near the valence band. We can easily show that under steady- 
state conditions the probability of occupancy of the lower 
level of the pair by a hole (or of the upper level by an elec- 
tron) is not low: it amounts to 2/3. The recombination via 
such pairs, the rate of which is proportional to the product of 
the concentration of pairs of levels N and the density n of 
carriers of one kind, will be more effective in the case when 
n < N than the direct interband recombination of electrons 
and holes which are in delocalized states, the rate of which is 
proportional to n2. Therefore, in the limit of low values of n 
the recombination flux R (n ) is a linear function of n. 

We shall now consider the dependence of the logarith- 
mic derivative a = d(ln)r/d(ln)n on n. As pointed out al- 
ready, in the range n n,, it follows from Eqs. ( 18) and ( 16) 
that a = 2/M, .I' If n gn,, ignoring the dependences of Lo 
on n in Eq. (16), we find from Eqs. (21) and (20) that 

Using Eq. (22) we can readily show that the value of n corre- 
sponding to a = 1/2 is no(nc /n0)O, where n, is given by Eq. 
( 19) and the width of the range of values of ln(n/no) near 
ln(nc/no ) where Mo becomes smaller than M, by 2 is of the 
order of Lo. The general nature of the dependence of a on 
ln(n/no ) is demonstrated in Fig. 3. 

FIG. 3. Dependence a=d[lnR(n)]/d[ln(n/n,)] on ln(n/n, ) :  the 
continuous curve represents the results in the absence of a polaron effect 
and the dashed curve corresponds to n, < n,. 

The analysis presented in this section is valid as long as 
the energy interval between the levels forming a recombina- 
tion ladder is considerably greater than 2W, i.e., if 
8 > 2 WM, . On the other hand, if 8 5 2 WM, , the above 
expression (3)  for the multiphonon intercenter transition 
time is no longer valid. Moreover, the validity of the discus- 
sion in the present section is limited from above on the tem- 
perature scale by the temperature independence of the pro- 
babilities of multiphonon transitions and by the condition of 
ineffectiveness of thermally activated rise of carriers 
between the steps in a recombination ladder. If n (n,, the 
latter condition may be more stringent. It will be discussed in 
the next section. 

4. RECOMBINATION IN MATERIALS WITH A SMALL 
POLARON SHIFT AT FINITE TEMPERATURES 

In this section we shall consider only the case when 
n <n,. Then, as shown in Sec. 3, the input and output heights 
are smaller than the heights of the intermediate steps of the 
ladder (Fig. 2c). Therefore, at sufficiently low temperatures 
we can ignore the possibility of a rise of an electron up the 
ladder and allow only for the probability of its thermal acti- 
vation from the first step of the ladder (entry into the chan- 
nel). The only channels effective in the recombination pro- 
cess are those for which the transit time up the ladder of 
levels r i ,  equal to the input time r into the channel, does not 
exceed the thermal activation time of an electron from the 
first step T,, where 

The condition rT = r represents the demarcation energy 

such that a carrier captured from a band at a depth A  > A, 
recombines after dropping down the energy ladder, whereas 
at a depth A < A ,  it is released thermally back to the band. 
Among the channels satisfying the condition r, ri (T,, those 
most likely to appear are characterized by 7 ~ 7 , .  z r T ,  i.e., 
they are channels for which the times of the input, passage 
along the ladder, and thermal activation were from the first 
step identical. For these channels the upper level coincides 
with the demarcation energy and the step height is 
(.co + T)ln(no/n) (Fig. 2e). The reciprocal of the transit 
time of a carrier along the optimal channel is 

T~-'=v exp [- (T/eo+l)  ln (no /n)  ] =v(n/n,) i+T/eo. (25) 

The recombination flux is proportional to the carrier transit 
frequency and to the concentration of the optimal channels. 
We shall show that the temperature dependence of the con- 
centration of the active channels is much weaker than the 
dependence of 7;' on T described by Eq. ( 2 5 ) ,  so that 

where I, denotes the factors in R which are characterized by 
relatively weak temperature dependences. 

Using Eq. ( lo),  we find from Eq. (28) that 

which relates M to 6&, r, and parameters of the problem. 
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Having determined M from Eq. (27), we can substitute it in 
Eq. ( 15) and find the optimal values of 6~ and r, i.e., those 
values of SE and r that ensure the maximum concentration of 
the channels satisfying the condition (27), which leads to 
the following expression for the recombination flux: 

If n <n,, then the argument of the exponential function in 
the first expression of the system (28) is dominated by the 
first term, i.e., the temperature dependence of the concentra- 
tion of the active channels is unimportant, whereas the tem- 
perature dependence of the recombination flux is indeed de- 
scribed by Eq. (26). 

5. RECOMBINATION IN MATERIALS WITH A LARGE 
POLARON SHIFT 

The theory presented in Secs. 3 and 4 applies to the case 
when the height E of the steps in the ladder of the optimal 
channel exceeds 2 W, which is twice the polaron shift. Only 
then can we use Eq. (3) for the time of a jump of a carrier 
between two centers. If the height of the steps in the ladder is 
less than 2 W, it then follows from Eq. (2)  that the probabili- 
ty T- ' of a jump increases on increase in a. It means that the 
channels with smaller numbers of steps are "faster." There- 
fore, in the case of substances with a large polaron shift the 
process of recombination is governed by the energy ladders 
for which the height of the steps is of the order of 2 W. In the 
case of the input to a channel and output from it, in the 
corresponding electron transitions one of the participating 
states is delocalized, whereas the time constant of such tran- 
sitions is still described by Eq. (5).  

As in the preceding sections, we shall consider separate- 
ly the first and last steps of the channel and discuss also a 
ladder of levels of height E = G - 2A, where A is the height 
of the input (output). Each ladder is characterized by a typi- 
cal jump distance r of an electron and by a scatter of the 
heights of the steps SE near the value a = 2 W. In the optimal 
recombination ladders the value of E may be slightly larger 
than 2 W, because this reduces the number of steps and 
makes the channel more probable. We shall therefore write 
down the energy separation between the neighboring levels 
in a ladder in the form 

(if p k W, we are dealing with the case of small polaron 
shifts, which are discussed in Secs. 3 and 4) .  Then, the num- 
ber of steps in a ladder is 

The time for a jump between the levels of a ladder is now 
given by Eq. (4) ,  where E - 2 W = p + E'. Assuming, as be- 
fore, that the time for the carrier to travel along a ladder is 
determined by the time of the most difficult jump, we find 
from Eq. (4)  that the frequency of transit along the ladder 
T; is given by 

We shall find the maximum recombination flux which can 

be provided by a set of ladders of height E, i.e., we shall 
determine those values o fp  = ,urn, SE = SE, , r = r, , which 
ensure the maximum value of the quantity 

r-3 (gr36e)  Mf "Ci-', (31) 

where M and T; are given by Eqs. (29) and (30). Assum- 
ing, as in the preceding sections, that M s  1 and 
L=ln(gr;S~, ) - ' % 1, we can easily show that 

Gem=2W/L-Efto/$W, p,=EhoL/4W-2W/L,  
(32) 

These formulas give positive values of SE, and ,urn if 

By definition, the quantity SE cannot be negative. As far a sp  
is concerned, it can be formally negative, but if p <0, the 
time for the most difficult jump ri in a ladder is not given by 
Eq. (30), but by the formula 

In the range p GO the maximum of Eq. (3  1 ) subject to Eqs. 
(29) and (33) is observed for 

pm=O, ticm= (Eho/2) i '2 ,  rm=3/zaE/2W. (34) 

As already pointed out in Sec. 3, the most effective re- 
combination occurs in the channels for which the input 
(output) time T is equal to the time ri taken to pass along a 
channel. The time T is given by Eq. (5)  and the time ri is 
described by Eqs. (30) and (32) if L>L,  and by Eqs. (33) 
and (34) if L<L,. Equating T and ri, we find that in both 
cases when E ~ ,  h< W the expression for T; should be 
modified by replacing E with g = G + 2a, ln(nh/n), where 
n; = vonO/v. 

Substituting in Eqs. (29 )-( 3 1 ) the values of the param- 
eters given by the expressions in Eq. (34) when L<L , and by 
those in Eq. (32) if L>L,, and also replacing these expres- 
sions the quantity E with Z, we find that the recombination 
flux is now described by 

G 7 
exp [- 2W (Z + L )  1 .  L < L ~  

i: Giio (35) 
.,, [- -- (L+4 - - L Z ) ] ,  L a 6 1  

2W 16 W 2  

As L approaches from below the value L, = 8 W~/&~I I ,  
we find that ,u approaches 2 W. Then, the formulas in the 
present section cease to be valid and we have to use the re- 
sults of Sec. 3. It must be stressed that Eq. (35) is meaningful 
only if ( g h )  ' I 2  < W. In the case of the opposite inequality, 
we always have the case of small polaron shifts. 

We shall now establish the relationship between the re- 
sults obtained in the present section and those deduced in 
Sec. 3. In the range of small values of n <n,, where n, is 
given by Eq. ( 19), the height of a step in the ladder is a = a, 
Xln(n,/n), as shown already. Ifa > 2 W, the results ofSec. 3 
apply, whereas if E < 2 W, we have to use the results of the 
present section. We must bear in mind that a,,ln(n,/ 
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n) = 2 Wmay be satisfied if n = n, < n, . Then, if n > n, , we 
find from Eq. (35) that the logarithmic derivative 
a = d In R /d ln(n/n,) is 

Therefore, if ln(n/no) > ln(n, /no), the quantity a ceases to 
depend on ln(n/n, ) and is given by Eq. (36) (see Fig. 3).  
Like the rest of the theory given in the present section, Eq. 
(36) is valid if L < L,. We can see that in this case we have 
a( 1.  

Finally, we note that the temperature dependence of the 
recombination flux is still given by Eq. (26) in the case of 
large polaron shifts. This can be demonstrated rigorously, 
but it is easy to understand it on the basis of the following 
qualitative considerations. The temperature dependence of 
Eq. (26) is obtained from Eqs. (23)-(25), which are of the 
same form as in the case of large polaron shifts, because the 
times for transitions from delocalized to localized states are 
given by Eq. (5) irrespective of the value of W. It follows 
that the recombination times are affected by the temperature 
of the semiconductor in the same way for all values of W. 
The number of the active channels depends, as in the case of 
small values of W, much less on temperature than does the 
recombination time. Therefore, the temperature cj~pendence 
remains as before and it is still given by Eq. (26). 

6. DISCUSSION OF RESULTS 

The results of the above analysis demonstrate that effec- 
tive recombination channels in noncrystalline semiconduc- 
tors are clusters of spatially close centers the energies of 
which form almost equidistant ladders in the mobility gap. 
The high efficiency of these channels becomes obvious when 
a comparison is made of the recombination flux provided by 
them [given for various cases by Eqs. ( 18), (2 1 ), (28), and 
(35) 1 with the flux resulting from direct recombination 
across the mobility gap proportional to exp( - G/.co). We 
can see that the recombination channels ensure an exponen- 
tially large recombination flux. We considered above sepa- 
rately the cases of recombination in substances with small 
and large polaron shifts. We must bear in mind that the con- 
dition deciding whether the polaron shift is large or small is 
influenced not only by the properties of the material, but also 
by the carrier density n .  When n is varied within a sufficient- 
ly wide range, there may be a change in the polaron shift. For 
example, in the case of sufficiently low densities n <no, the 
value of (representing the renormalized width of the mo- 
bility gap) is so large that the condition for a small polaron 
shift is obeyed, i.e., the height of a step in a channel is consid- 
erably greater than W. An increase in n reduces and if 

5 2 W2/&, there is a change to the case of large polaron 
shifts. Typical values of the parameters obtained for differ- 
ent substances are such that both cases may be expected. For 
example, in the case of a-Si and a-Ge, we have W-0.2 eV 
and & z 300 K, whereas in the case of chalcogenide glasses 

the value of W may reach 0.5 eV and we have fiwz 150 K 
(Ref. 1 ). 

We shall compare the results obtained with the experi- 
mental temperature dependence of the photoconductivity 
(recorded at low temperatures T <  &/2). We shall do this 
by writing down the condition for equality of the rates of 
optical generation I and recombination R [Eq. (26) ] : 

This relationship gives rise to the experimentally observed 
dependence ( 1 ) . The dependence 8( T) has been explained 
so far by assuming a purely exponential fall in the tails of the 
density of states inside the mobility gap: g ( ~ )  cc exp( - E/ 

E,)  (Ref. 9 ) ,  where the parameter .co is related to the charac- 
teristic energy scale of this distribution. Our interpretation 
makes it possible to avoid this assumption, because the rela- 
tionship ( 1 ) applies to almost any continuous distribution 
g ( ~ ) .  In our approach the phonon energy plays the role ofe0. 

We have ignored completely the problem of how a car- 
rier which is above the mobility edge reaches the input to a 
recombination channel. We shall assume that a carrier al- 
ways finds rapidly the optimal channel. However, this as- 
sumption may be invalid in the case of noncrystalline materi- 
als with a low carrier mobility. The recombination process is 
then diffusion-limited. 

We have also ignored the nature of the states in the 
mobility gap. If they are due to the polaron effect, if they 
appear because of the small elastic constants, lo then general- 
ly it is incorrect to regard & (and E,  ) are independent of the 
energy of the centers. However, our theory can easily be 
generalized to this case. We shall return to these problems in 
greater detail in future. 

The authors are grateful to V.I. Perel' for a valuable 
discussion. 

"In Ref. 5 the range of such low values of a is called incorrectly the region 
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