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The asymptotic properties of the three-point dynamical vertex of isotropic ferromagnets in the 
critical exchange region above Tc are determined theoretically. It is shown that these properties 
are directly related to the sum rule for the transverse (with respect to the magnetic field H )  pair 
Green function G+ - and to the law of conservation of the component of the total spin of the 
magnet along the direction of H. The asymptotic forms of G+ - are investigated. It is shown that 
the results of experiments to investigate three-point correlations in iron by means of polarized- 
neutron scattering agree with the theory proposed. 

INTRODUCTION 

The critical dynamics of cubic ferromagnets with 
allowance for exchange and dipole forces at temperatures 
above the Curie point in a magnetic field H was considered in 
Ref. 1. In this paper it was shown that in the presence of a 
magnetic field, as in the case H = 0 as the critical be- 
havior of ferromagnets has a different character in the ex- 
change region of T and H ( 4 ~ x ( r , H )  < 1) and in the dipole 
region of r and H ( 4 q ( r , H )  $1 ), where x is the uniform 
magnetic susceptibility and r = ( T  - Tc ) T; '. In each of 
these regions expressions were obtained for dynamical cor- 
relation functions in limiting cases-the hydrodynamic 
[qgR; ' ( r ,H) ]  and critical [q$R ; ' ( r ,H) ]  asymptotic 
forms in weak and strong fields (q is the momentum of the 
fluctuation and R, is the correlation length). Although a 
considerable part of Ref. 1 was phenomenological, a number 
of it results had a clear physical interpretation and, in es- 
sence, did not require further justification. Amongst these 
results are the expressions for the transverse and longitudi- 
nal (with respect to H) pair Green functions in the hydrody- 
namic exchange region, which are essentially a consequence 
of the conservation of the component of the total spin of the 
magnet along the direction of the field. In the same region 
perturbation theory was used to calculate the dependences 
on T and Hof  the dipolar damping in the uniform limit, and 
this made it possible for the authors of Ref. 3 to determine 
the spin-diffusion coefficients for the ferromagnets 
CdCr,Se, and CdCr2S4 from magnetic-resonance data. 

In other limiting cases, however, the analysis of the dy- 
namics was based on a number of additional hypotheses. 
First amongst these was an assumption about the asymptotic 
behavior, in the critical region, of the three-spin correlator, 
which is the coefficient in the linear term of the expansion of 
the pair Green function in H. 

It should be said that considerable attention has been 
paid r e ~ e n t l y ~ - ~  to the investigation of higher spin correla- 
tion functions of ferromagnets in the fluctuation paramag- 
netic region. But, whereas their static properties have been 
well studied, at least the~retically,~ the investigation of their 
dynamical behavior is only just beginning. We recall that for 
H = 0, above T,, there are static spin correlators of even 
order only. The odd correlators are purely dynamical and 
vanish in the static limit by virtue of the symmetry of the 
system under time reversal.' 

The three-spin dynamical correlator is the simplest 
higher correlator. Some of its general properties in zero field 
were considered in Ref. 8. In Ref. 1 the behavior of the three- 
spin Green function G, and of the corresponding vertex .7, 
arising in linear order of the expansion in H of the pair Green 
function was analyzed in Ref. 1. The basic hypothesis that 
was adopted concerned the dependence of 7, on q in the 
critical region q$ x = R ; I .  The point is that in static scal- 
ing theory7 a so-called correlation-coalescence rule has been 
formulated9 that makes it possible to establish the depen- 
dence of static vertices on the momenta in conditions when 
these momenta differ strongly in magnitude. Analogous re- 
sults were obtained in Ref. 10 in the language of the algebra 
of fluctuating quantities. In Ref. 9, in which the Ising model 
was considered, the asymptotic forms of the simplest vertex 
r,, generated by the correlator K(r,r,,r,) = (E,U,~ ur, ) 
( E ,  = E, Jrr,urur,  is the energy density, J,,, is the interaction 
potential, and ur = + 1 ) were established for the first time. 
The asymptotic and 7(, were found by comparing the be- 
havior of K in limiting cases with the behavior of critical 
correlators with known properties. For example, 
Kc(E,E,,) if I r - r , , , I%\r , - r , / -a ,  and K a ( o r u r , )  if 
( (r, - r)*rl ( $  ( r  - r l  / -a, where a is a quantity of the order 
of the lattice constant. The asymptotic forms of other ver- 
tices, e.g., the four-point vertices, were found to be related in 
a simple manner to the asymptotic forms of Yo. In particu- 
lar, if in a vertex other than 7, one of the entering momenta 
q is large in comparison with the other momenta and with x, 
the dependence on this momentum can be separated in the 
form of a universal factor qR1, wherep,, = v-I - 1 - 7 (v  is 
the correlation-length index and 7 is the Fisher parameter). 
In Ref. 1, following Ref. 11, it was assumed that this result 
can also be carried over to the dynamical vertex 7, (absent 
in the static theory), i.e., it was assumed that 7, aq" for 
q)  x ,  where p = p, = 11'2, since for a ferromagnet v = 2/3 
(here and below, we shall disregard the small index 7 ) .  
However, since the vertex T,  is not related to 7, there are 
no theoretical grounds for such a hypothesis, and, as we shall 
see, it turns out to be unsound. 

In the present paper we consider in detail the asympto- 
tic properties of 7, in the critical exchange region. Here we 
shall start from a sum rule formulated below for the pair 
Green function in a field, the dynamical-scaling hypothe- 
sis,'' and also physical reasoning similar to that which was 
used in Ref. 9 in the determination of the asymptotic forms 
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of 7,. As a result it is found thatp  = 3/2 for 7,. In deriving 
this result we shall use the commutation relations for the 
spin operators; therefore, the dynamical vertex possesses 
new asymptotic properties, independent of those of the static 
vertices. These new properties turn out to be closely connect- 
ed with the conservation of the component of the total spin 
of the magnet along the direction of H, as is natural for a 
dynamical vertex. On the basis of this analysis we investigate 
the behavior in the limiting cases of the transverse (with 
respect to H )  pair Green function. 

As was shown in Refs. 13 and 14, three-spin correla- 
tions can be studied by means of polarized-neutron scatter- 
ing in magnets situated in a magnetic field. In Ref. 15 reliable 
quantitative experimental results were obtained in the ex- 
change region. The first section is devoted to analyzing these 
results and comparing them with the conclusions of the pro- 
posed theory. 

1. SPIN CORRELATIONS IN THE EXCHANGE REGION IN THE 
PRESENCE OF A MAGNETIC FIELD 

Since, as has been noted, the vertex 7, arises as a result 
of the linear term of the expansion of the pair Green function 
in H ,  we shall discuss the general properties of this Green 
function 

m 

~ , , ( q ,  w ) = i  J dt  r l u t ( [ ~ , a ( t ) , ~ - ~ ( ~ )  1) .  ( 1 )  
0 

Here 

S:=N-~/>C exp ( iqr i )S; ,  
j 

where sy is a component of the atomic spin with coordinate r, 
and N is the number of magnetic atoms of the sample. The 
averaging is performed over the states of magnet describable 
by a Hamiltonian in which exchange forces and the interac- 
tion with an external field are taken into account. The dy- 
namics of the fluctuations in this case is determined by three 
independent functions, for which, in the coordinate system 
with thez axis along H and with S + = (SX isy)/fi, it is 
convenient to choose G+ -, G- +, and G,, . We shall repre- 
sent these functions in the form 

where Go, are the static Green functions, the properties of 
which are well and @, are the dynamical form 
factors, normalized by the condition @, = 1 at w = 0. 

From the invariance of the equations of motion under 
time reversal it follows that'" 

By substituting @+- in the form of a sum of the even 
(@(,?? ) and odd (@:I ) parts in H,  for each of them we 
have 

(*' (*) 
Re @+- ( a ,  H )  =* Re @+- ( - w ,  H ) ,  

(*) *) 
Im @+- ( a ,  H )  =T In1 @+- ( - a ,  H ) .  (4 )  

We note that i G ' - '  - G = - Gy, and + -  - XY 
G ( + )  + - - - Gx, = Gyy . Because they are even in H ,  the func- 

tions @$+1 and @, transform under a change of sign of w in 
the same way as @ for H = 0. In the static limit they are finite 
and equal to unity. For H = 0 both these functions go over 
into @ in zero field, and the first terms of their expansion in 
H a r e  proportional to H 2. 

In its turn, because it is odd in H ,  the imaginary part of 
@:! is an even function of w while the real part is odd. For 
H-0  the function a H .  In addition, it is purely dy- 
namical and, since the static susceptibilities are even in H, 
vanishes in the static limit. For the function G+ - with new 
symmetry properties that has appeared in the presence of a 
field we have a sum rule that follows for ( 1 ) and (4 )  : 

m m 

1 1 
- G+- ( q ,  w ) d m =  - I G , , ( q )  Irn 0;: (q,  w ) d w = i S , ) .  

-= n -m 

We shall analyze the expansion of G+ - in H .  Since the quan- 
tity ( [S,+ ( t ) , S  1, (0 )  ] ) contains a dependence on H both 
in the time evolution and in the statistical averaging, we 
stress that the integral in ( 5 )  is nonzero only if the depen- 
dence of the statistical weight on H i s  preserved. 

As in Ref. 1, we shall make use of the relationship of the 
expansion of G+ - in H to the vertex parts. In a weak field 
(gpH<T, (xa)'12) in the approximation linear in H we 
have 

-G:? ( q ,  o, H )  = g p H G 3 ( q ,  w )  

As has been established, ImG, is an even function of w and 
ReG, is an odd function of w, and in the static limit G, = 0. 
The same is true for F , ,  since G(w ) possesses the same sym- 
metry properties as G,, (w ) ( 3 ) and is finite at  w = 0. Both 
the scaling dimension and the ordinary dimensionality of 
7, are found (with allowance for the dimension of the field) 
from (6)  : 17, I - T, (xu)  ,I2. The order of magnitude of 7, 
for q-x and @ - a ( % )  = T , ( X ~ ) ' / ~ ,  where a ( x )  is the 
characteristic energy of the critical fluctuations, is thereby 
determined. As a result, in accordance with dynamical scal- 
ing,I2 we have 

with +,(x,o) = Oand 1+,(1,1)/ -1. 
We shall assume, in analogy with the static case,9 that in 

the critical region factorization of the momentum depen- 
dence occurs': 

wherey,(O) =Oand / y , ( x ) / - 1  forx-1.  
We shall show first how one can determine the value of 

p in the dynamical case, using the ideas of the physical rea- 
soning of Ref. 9. We shall consider the behavior of G, and 
F, in the region of large momenta q-a- ' and large fre- 
quencies w- T,. For these values of the arguments, 
IG(q,w) I - T; ', and from (6)  we find 

We shall consider G, in the (r,t)-representation, which can 
be obtained by expanding G+ - ( r ,  - r2,t) in H. Then terms 
from the expansion of the statistical weight and S ( t )  arise. 
First we shall estimate the former, which is the sum over r, of 
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the quantities 

< [ S , , + ( t ) ,  S,,- ( O ) ]  Sr,' ( 0 )  )=Rs (r i ,  r2, rs, t )  - 
In the Fourier transform of each of these quantities large 
momenta q - a -  ' correspond to configurations with closely 
spaced spins S ;t and S z, and large frequencies correspond 
to small times. We may expect that the dependence on the 
distance R, for jr, - r,,, I % Irl - r21 -a over short times 
will not differ from the dependence of the correlator 
( S : ,  S: ,  ), which is obtained from R, at t = 0 by means of the 
commutation relation [ S ; t  ,Sr; ] = S: ,  . As a result, in the 
momentum representation, I y 3 ( x )  lGo(x) a Go(%), and, 
consequently, the power p = 3/2. 

Similar reasoning can be adduced in the case when S ;t 
and S ,  are nearest neighbors ( r ,  # r,). We shall expand R, 
to second order in t .  In this expansion there is a term 

where Jrr, is the exchange interaction of nearest neighbors. 
In the case when /r,,, - r,l ) r ,  - r,/ -a, the product 
S:, S:,SX inside (...) can be replaced by one spin, e.g., S:, 
(exactly as in the static case" ). Then 

which, for t -  T ;  I ,  leads to the previous result for R,, and 
hence also for 7,. 

We see that by means of the commutation relations it is 
possible to "project" the dynamical critical correlator onto 
the static critical correlator. In other words, the use of the 
commutation relations makes it possible to extend the alge- 
bra of fluctuating operators and to obtain a dynamical rule of 
coalescence of correlations. Here, as in the static theory, it is 
not necessary to introduce any new critical indices. Finally, 
we note that is precisely the above term that makes a contri- 
bution to ( 5 ) ,  since it has arisen from the expansion of the 
statistical weight in H .  

We shall estimate the contribution to G, from the term 
associated with the dependence of S,+ ( t )  on H. We note 
that if in the statistical weight we omit H then 
(D + - ( w ) = (D ( a  - w0), where @ is the dynamical form fac- 
tor for H = 0 .  Then the contribution to G, from this term for 
w -R(q)  is proportional to (q2R(q) ) - '  and has order of 
smallness ~ ~ q - ~  in comparison with the contribution con- 
sidered above. It is not surprising that the given term does 
not give a contribution to the sum rule. Thus, 

where y3(0)  =Oand Iy,(x)/-1 forx-1. 
This result is not obvious in advance. For example, in 

the static theory the simplest vertex .%,,(q,p), determined 
above, has different asymptotic forms depending on the rela- 
tive magnitudes of q andp (the momentum q corresponds to 
r in the Fourier transform K = ( E , u , , u , , ) ) . ~  The vertex 
.7, cc q2 - I/" for q $ max(p,x), i.e., depends only on the 
large momentum. But ifp$ max(q,x),  then 7 ccp2 '/''Cp/ 
rnax(q,x))"/", where a = 2 - 3v is the specific-heat index 
and Y,, remains dependent on the small momentum of x. 

The difference in the asymptotic forms corresponds to the 
possibility of "projecting" K on to (ar a,, ) in the former case 
and on to ( E , E , ,  ) in the latter case. As ;e shall see, the simi- 
lar behavior of the simplest vertices 7, and 7, (the de- 
pendence on only the large momentum) obtains only in the 
case when the asymptotic form of 7, can be attributed to 
the behavior of the pair correlator of the spins. Furthermore, 
the static vertex F 4 ,  which appears in the expansion of the 
pair correlator in H in a weak field, depends on x for q$x: 
74 ( q , q , ~ )  q - I i I / V  x 2 - (Ref. 9 ) .  This result is a con- 
sequence of the correlation-coalescence rule, which makes it 
possible to relate the asymptotic form of F, to the behavior 
of F , (0 ,0 )  a x2-  "". 

We now determine the asymptotic form of y,(x) for 
x $1. Its first term is found from the requirement that G 
be independent of q, which is a consequence of the existence 
of uniform precession in the field. In fact, from the hydrody- 
namic expressions1 for G+- in a weak field it follows that 
G 5-' = - (S,)w-' for w%max(gpH,Dq2), where D is 
the spin-diffusion coefficient. Since this result does not de- 
pend on q, it remains valid in the critical region too. From 
this, substituting into ( 6 )  the known asymptotic form 
G(q,w) ~ ~ q ~ ( i T , / w ) ~ ' ~  [ w $ R ( q ) ]  (Ref. 17), we find 

This expression corresponds to the asymptotic form of 
ReG,. The behavior of ImG, is determined by the next term 
yy '  of the expansion of y,. Inasmuch as the contribution 
corresponding to the uniform precession has already been 
separated out, we must expect that G y1 a q2, as is the case 
for the asymptotic form of G for H = 0. As a result, 
I y y ' ( ~ ) / y ! ~ ] ( x )  -xP4I5(x% 1 ), and 

oBQ ( q )  . 

Here c is a real number. The phase in ( 1 1 ) has been chosen to 
correspond to the fact that iG :-1 is real on the imaginary 
upper semiaxis of w, as is not difficult to establish, starting 
from the analytic properties of the Green function and the 
symmetry (3 ) .  It is clear that the physical considerations 
outlined above are in need of rigorous justification. Since at 
the present time there is no critical-dynamics theory starting 
from a microscopic Hamiltonian, we shall suggest what are, 
in our view, direct arguments [based on an analysis of the 
sum rules (5 )  ] in support of the results obtained [above all, 
for the powerp in ( 8 ) ] .  

Comparing ( 5 )  and ( 6 ) ,  ( 8 )  and taking into account 
that in the approximation linear in H we have 
(S,) =g,uHG,,(?t), we immediately find p = 3/2, if the 
principal contribution to the integral is given by values 
w - R (q)  . Before convincing ourselves of the latter, we shall 
see how the sum rule works in the hydrodynamic region. It is 
easily verified that the expression for G+ in a weak field1: 

satisfies ( 5 ) , and for Dq2 $gpH (when the dynamical form 
factor can be expanded in H) the characteristic values ofw in 
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the integral (5 )  are -DqZ. We shall show that for q$ x the 
principal contribution to (5 )  is determined by values 
w - fl (q).  If this is not so, there remains in the problem just 
one frequency scale (Tc ) that can make the necessary con- 
tribution to the sum rule. However, the expression for 
ImG yields in this region the following estimate: 

Im G:I) ( q ,  o )  - - 

where Ig'-'(x) 1 - 1 for x -  1, and the factor q2, which arises 
from the conservation law, ensures that the contribution 
from w - T, in ( 5 )  is small. The complete derivation of the 
expression ( 12) requires the use of the equations of motion 
and an analysis of the graphs for the Green function of the 
operators S :  ( t ) ,  which lies outside the scope of the present 
paper. Therefore, we shall elucidate only the origin of the 
factor q2. Using the fact that the interaction with H com- 
mutes with the exchange Hamiltonian A?,,, and also the 
properties of the operator Sjt , integrating ( 1 ) by parts we 
find 

Here 

oo=gpH, Sq+(t )  =exp (-i%,,t) S,+ exp (iZe,t). 

It is clear that ImG 2-? (q,w) for Iwl 2 Tc )a, is deter- 
mined by ImL 2-1 ( q , ~ )  in (13). Since re., conserves the 
components of the total spin of the magnet, S ( t )  vanishes 
as q-0, and it is this which leads to the appearance of the 
factor q2 in ( 12). 

An important check on the estimate ( 12) is provided by 
its compatibility with the known inequality 
wImG+ - (q,w) >O (Ref. 18), which ensures that the energy 
of a circularly polarized oscillating magnetic field being ab- 
sorbed by the magnet is positive. In fact, neglecting the 
small, field-induced corrections (proportional to Hz in a 
weak field) to G,, = Gyy = G, we obtain 

o Im G+-(q,  o )  =a ( I m  G ( q ,  o )  + I m  G!? ( q ,  0 ) )  2 0 .  (14) 

Since wImG(q,w)>O, and ImG(o)  is an odd function 
of o while ImG '-'(w ) is an even function of w, from ( 14) we 
find 

I I m  G ( q ,  o )  I 2 I Im G:? ( q ,  o )  1 .  (15) 

It follows from an analysisi7 of the asymptotic forms of 
G(q,w) that 

( s a ) "  Im G ( q ,  o )  - - 
Tc 

where the factor q2 arises from the conservation of the total 
spin of the magnet, and g(w/T, ) - 1 for w - T,. It can be 
seen from a comparison of ( 16) and ( 12) that the inequality 
( 15) is satisfied for w - Tc in the entire fluctuation region, 
since (S, ) 4 1. If, however, the factor ( q ~ ) ~  in (12) is omit- 
ted, then even in a weak field for o - Tc in the critical region 
(q  2 x )  we can find ranges of parameter values 

( x u )  '< ( q a ) ' ~  [gkH/Q ( x ) ]  (xu)"'-(S,) 

for which (15) is violated. This shows once again that for 
small q in (5)  a contribution of the order of (S, ) from values 
w - Tc cannot arise. 

Thus, the necessary contribution to ( 5 )  is given only by 
values w - R (q)  . Inasmuch as the hydrodynamic expres- 
sions for G+ - (Ref. 1 ) satisfy (5 ) ,  the given sum rule in the 
whole fluctuation region has the same force as the well- 
known relation in zero field: 

m 

1 Im G ( q ,  0 )  o-I do=Go ( 9 ) .  
- m 

We shall now determine the asymptotic form of G 
(q,w) for w) (q).  Since in (5 )  the characteristic values of w 
are - R (q)  , the function ImG (: ' (q,w ) a w ({>0) 
for w$R(q) .  As can be seen from (13) 

Im G,!:' ( 4 ,  o )  =a-' ~m L:--' ( q ,  o )  for o B Q  ( q )  Boo 

and, consequently ImL :I (q,w) a w -<. (In the critical re- 
gion we can set w, = 0 throughout, since here the main H- 
odd part of G+ - and L +  - is determined by the dependence 
of the statistical weight on H ) .  Using the spectral represen- 
tation for L + - ,  it is not difficult to convince oneself that 
ReL $1 (w) falls off no more slowly than ImL (w) 
with increase of w. As a result, from ( 13) we find G ( o )  
= (S,)w-'. The next term of the asymptotic form of 

G ( + - f  - ' which determines the power 6 in ImL (;I , can be 
found by considering the joining with the asymptotic form of 
G ( - )  + - ( w )  in the hydrodynamic region. By a method analo- 

gous to that used in Ref. 17, it can be shown that in the 
hydrodynamic region the second asymptotic term of the ex- 
pansion of G :: (w) for q 4% and w ) R ( x )  is proportional 
to [ H G , ( X ) / W ] ~ ~ W - ~ / ~ ,  where the factor q2 is a conse- 
quence of the conservation law. From the matching of the 
asymptotic forms at q = x we arrive at 6 = 4/5, i.e., at ( 11 ). 

We note that ImG ( ~ 1  (q,w) falls off more rapidly than 
ImG(q,w) aq2~-8 ' s  with increase of w. This ensures that 
the inequality (15) is fulfilled for the asymptotic forms. 

Furthermore, as we shall see, the dependence of the ex- 
pressions ( 6 )  and ( 11 ) on T and H in a weak field has turned 
out to be due entirely to the factor gpHG,(x). It is under- 
standable that in the general case it is simply replaced by 
(S, ), i.e., the formulas (6 ) ,  (9 ) ,  and ( 11) determine the 
behavior of G in the leading order in (S, ). We shall 
estimate the next terms. From ( 6 )  and ( 9 )  it can be seen that 
for w-R(q)  the ratio I ~ ~ l / ~ j - ( ~ , ) / ( q a ) ' / ~  [in a 
strong field, (x,/q) Ii2]. The quantity G (;I is expanded in 
(S,) and the second term of the expansion is of order of 
smallness (S, )'/qa (x,/q, in a strong field) in comparison 
with the first term. 

We now consider the relationship of the results ob- 
tained for G, to the dynamical form factor @+ of the pair 
Green function. We shall need some of the properties of the 
dynamical form factor, in particular, in the discussion of the 
experimental results. Following Ref. 19, we write G +  in 
the form 

-(S,)G,,-'(q, H )  +iI'+- ( q .  to, H )  
G+-(q' o' H)=Gol(ql o-(S,>G,,-'(q, H )  +ir+- ( q ,  o ,  X) ' 
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Here Go, is the transverse (with respect to H)  static Green 
function. In the dynamical form factor ( 18) two quantities, 
describing different physical processes, have been separated 
out. The term (S, ) G 6 ' that does not depend on w corre- 
sponds in the general case to nonuniform precession. The 
quantity l?, -, which may be called the relaxation coeffi- 
cient, has a nonzero value at w = 0, the real and imaginary 
parts of which correspond to the damping and frequency 
shift of the mode with momentum q. The quantity r+ - falls 
off at large frequencies. Its symmetry properties follow from 
(3)  and (4) .  The character of the dependence of I?+ - on its 
arguments is determined by the character of the interaction 
of the dynamical modes in this system. 

As is well known, in Ref. 19 there is a general expression 
for the relaxation coefficients. However, it is not very suit- 
able for analysis, since the projection operator appears in a 
nonlinear manner in the time evolution of l?. It can be shown 
that, even in the case H = 0, this feature of the time evolu- 
tion of l? cannot be fully taken into account in the only mi- 
croscopic approach to the dynamics (see, e.g., Ref. 6 ) ,  based 
on analysis of the expressions for the kinetic coefficients, and 
the well-known difficulties of this approach remain unsur- 
mounted.20 In zero field, problems arise in the self-consis- 
tent determination of the dependence of r on q for q k x and 
w = 0. It can be shown that in a magnetic field these prob- 
lems are mainly associated with the analysis of the critical 
region. Therefore, we have considered the expansion of G+ - 
in H, without using the representation ( 18). It now remains 
to convince ourselves that the expression (18) agrees with 
the results obtained above, and to determine the behavior of 
the H-dependent part of r+ - in the critical region. 

Expanding G+ - in quantities odd in H, we have, in the 
critical region, 

G::' (q, o, H) = - o  
(Sz)Go-' ( Y )  +iI'iI' ( Y ,  a7 H )  

( q )  +, , . , 
( o + i r ( q ,  a )  ) 2  

where I? is the zero-field relaxation coefficient, with known 
properties," and r:-l is the H-odd part of r + -. In ( 19) 
for G :-? we have given only the term proportional to H for 
H-0. 

If in (19) we retain only the term with (S,)G, ' (q) ,  
then, by comparing ( 19) with (6)  and (9 ) ,  we can easily 
convince ourselves that the expressions (19) and (6)  for 
G ( - )  + are consistent for w 5 R (q) . Since l? (q,w ) decreases 
with frequency, we also have coincidence of the leading 
asymptotic terms of the expressions ( 19) and (1  1) for 
w$ R(q) .  The function l?:! can be analyzed conveniently 
by representing it, in first order in (S, ), in the form 

Herel$(O)I = Re$(O)/-land/$l-lforw-R(q).Com- 
paring (19) and (20) with the second asymptotic term in 
( 11 ), for the asymptotic form of $ we find 

iT 'Is ( )  - a )  w  , ~ B Q  ( q ) .  

We stress that only when the term is taken into ac- 
count in ( 19) will the dynamical form factor G t?  ( 19) be 
consistent with the asymptotic form of ImG,(q,o) in ( 11). 

Thus, the second asymptotic term in ( 11 ) is determined by 
the asymptotic form of ry l  (q,w). 

2. ANALYSIS OF EXPERIMENTAL RESULTS 

The temperature dependence of the cross section for 
small-angle scattering of polarized neutrons in the paramag- 
netic phase of Fe in a magnetic field was studied in Ref. 15. 
The problem consisted in investigating the asymptotic prop- 
erties of the three-spin correlations in the critical region. 
Polarized neutrons were used for this purpose, since the de- 
pendence of the neutron-scattering cross section on the ini- 
tial neutron polarization is determined by the function 
G (Ref. 13). As a result, in ferromagnets in a weak field 
the cross section for magnetic scattering through angle 9 is 
found to be proportional toL3 

where w = E'  - E is the energy transfer, q = k' - k  is the 
momentum transfer, k ,  k' and E, E'  are the momenta and 
energies of the neutrons before and after scattering, Po is 
their initial polarization, and e = qq-I. 

It follows from the formula (22) that in the scattering 
scheme depicted in Fig. 1 there is asymmetry in the scatter- 
ing plane: 

Aa(0 ,  z )  =ap0(0 ,  T) - 0 ~ , ( - 0 ,  z )  
k' d o  

aP.H I- r,r, Im G, (q, o) J. 
k 

(23) 

We recall that here the oddness of ImG,(q,w)w-' is com- 
pensated by the odd part of the factor ( k  '/k)e, e, -above 
all, by the odd part of e,, which is proportional to w in the 
quasielastic approximation. Thus, by studying the depen- 
dence of Aaon 8 and 7 one can elucidate the properties of G,. 

The authors of Ref. 15 investigated not only Aa but also 
a, (the part of the cross section that does not depend on Po), 
determined in a weak field by the first term in (22). We shall 
consider first the results obtained for the cross section in Ref. 
15, in which a o ( r )  was studied for fixed 8. As is well known, 
the paramagnetic critical cross section of elastic scattering of 
neutrons in ferromagnets is well described by the Ornstein- 
Zernike formula (for data pertaining to Fe, see Refs. 21-23 
and 6) :  

FIG. 1. Kinematic scheme of the polarized-neutron scattering. 
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a 

0 

FIG. 2. Reciprocal of the polarization-independent part of the neutron- 
scattering cross section as a function of x2 o: T' 's :0-the experimental 
data of Ref. 15, A-the same data after allowance for the inelasticity of 
the scattering; a)  the region k 8 > x  (the critical region, max(x/ 
k 0 )  -0.4); b) the entire region ofthe measurements (max(x/k8) - 1.4). 

In thecaseofFe, xo = 1.1 .&-I andv = 0.69. Wenote that in 
the actual experiments a small spread of values of x,, and v is 
observed (Axo/%, = f 0.1, Av/v = + 0.03). Here we give 
the parameter values that were used in the experimental 
work that gave the results used below. 

Figure 2 shows the dependence of a; ' on x2  from Ref. 
15. It can be seen that in the region x < ke  the temperature 
dependence of u; ' does not agree with (24). The main rea- 
son for the discrepancy is known.24 It is due to the partial 
inelasticity of the scattering, i.e., to the fact that in scattering 
through a given angle the dependence of q on o turns out to 
be important ( q e k e  for w = 0) .  Since 
G(q,w) = Go(q)@(q,w) the cross section acquires an addi- 
tional temperature dependence due to the T-dependence of 
@, and, as a result, differs from the elastic limit (24), which 
is proportional to GC1(q) .  To see this, one introduces an 
inelastic correction to a,, in the following manner.24.25 Using 
the explicit form of G, with q = q(w) determined by the kin- 
ematics of the scattering, one calculates the cross section 
from (22). One then divides the experimental cross section 
by the calculated cross section and multiplies by the elastic 
limit. If inelasticity is the problem, the data corrected in this 
manner should be described by the expression (24). To al- 
low for inelasticity, (ImG)/w was written in the form 

Here r is the half-width of the distribution, and, as usual, 
was represented in the form 

The value I?, = 130 M~v.A''* and the function f (x )  for Fe, 
both of which are known from the experimental work of Ref. 

26, in which xo = 1.1 A-' and v = 0.69 [see (24) 1, were 
used. The data, corrected in the manner described above, are 
depicted in Fig. 2. It is clear from this figure that inelasticity 
is indeed the cause of the nonmonotonic behavior of a; ' (7). 
We note that the minimum in the experimental dependence 
a,,- ' (T) arises because of the comparatively steep decrease of 
f (x )  with increase of x on the interval 0 < x 5 1. 

Above, we selected for @(q,w) the very simple approxi- 
mation (25). From experiments on inelastic scattering in Fe 
(Ref. 27) it is known that for w > r a slight deviation of @ 
from the Lorentz formula is observed. However, in the pres- 
ent case the use of this formula is justified, since, first, in the 
conditions of the given experiment ( k e  = 0.1 A- ', E = 3.55 
MeV), with allowance for q = q(w) we always have 
w< r (q,x), and, secondly, the form (25) was in fact precise- 
ly the form used to specify Gin Ref. 26 in the determination 
of the I? (26) that we have used. 

We turn to the analysis of the data for the asymmetry 
Aa. In Ref. 15 the asymptotic properties of G, in the critical 
region were established by studying the dependence of Aaon 
T for k e >  x in a weak field. We note that in the formula (23) 
the integrand differs only by the factor ( k  '/k)ex e, /w from 
the corresponding expression in (5 ) .  If the scattering is 
quasielastic, then k ' =: k, ex =: 1, and e, =:w/2Ee, and, by vir- 
tue of (5),  ha a Go(%) a T-  2 v .  Thus, in the quasielastic lim- 
it the dependence of Aa on r (and, if the field is not weak, its 
dependence on H as well) is dictated by the sum rule: 
A a a  (S,). In the general case, however, the situation with 
the asymmetry is similar to that analyzed above for the cross 
section, and the proportionality to Ghx' is not the only rea- 
son for the dependence of A a  on r. From Aa it is necessary to 
separate out the factor G,,(x) and to consider the depen- 
dence on r of the remaining integral over w in (23).  For this, 
by making use of (6) ,  ( 19), and (20), we write ImG,/G,,(x) 
in the form 

The question of the applicability of this expression for 
ImG,(q,w) was in fact elucidated experimentally in Ref. 28, 
in which the dependence on w of the entire part of a propor- 
tional to P,, (ap<, (w ) ) was investigated for k e  = 0.1 A '  and 
AT = 30". The dependence a , ,  (w) was described on the ba- 
sis of the expressions (22) and (27) in the simplest, quasi- 
elastic approximation (q = ke) ,  and the quasielastic value 
of T was found from the experimental spectrum. In Fig. 3 we 
give a comparison of the dependence up(, ( a )  from Ref. 28 
with that calculated using the formulas (22) (without the 
integration over w) and (26), (27) with allowance for the 
dependence q(w).  In Fig. 3 the errors in the fitting curve 
correspond to the experimental uncertainty AT/ r  = _+ 0.1 
in Ref. 28. As can be seen from Fig. 3, the two functions are 
in comparatively good agreement, and thus we have an ex- 
perimental indication of the applicability of the expression 
(27) for ImG,(q,w). We do not give the experimental spec- 
trum from Ref. 28 directly, since to describe this spectrum it 
is necessary also to introduce the resolving function of the 
spectrometer. 

Since the factor (27) depends on r it is necessary to take 
this dependence into account in the analysis of A ~ ( T ) .  We 
have done this by analogy with analysis of u,,(T). The inte- 
gral in (23 ) was calculated with F(q,w ) from (27),  r (q,x) 
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Gp_(mj, rel. units 

FIG. 3. Polarization-dependent part of the neutron-scattering cross sec- 
tjon as a function of the energy transfer for q = 22", 0 = 4.5", kB = 0.1 
A-' ,  and AT = T- T, = 30": I )  fitting curve from Ref. 28; 2 )  function 
calculated using the expressions (22) and (26),  (27).  

from (26), and q = q ( o ) .  The experimental data for Au 
were divided by the calculated integral and the temperature 
dependence of the corrected data was found. It is clear that 
only the dependence determined in this way can be com- 
pared meaningfully with 7- 2v.  Finally, it is also important 
to take into account the demagnetization in the scattering 
system. In the formulas (22) and (23) H i s  the internal field 
in the sample, which is related to the external field Hex, by 
the well-known relation 

H=H,,, [1+N04nx(~)  I-', 

A6/Hezt, rel. units 

FIG. 4. Dependence of the scattering asymmetry Ao, divided by 
He,, = 22 Oe, on T in the region kO> x (the critical region) :0-experi- 
mental data of Ref. 15, A-the same data with allowance for the demag- 
netization in the scattering system;A-data with allowance for the de- 
magnetization and the inelasticity of the scattering. 

where No is the demagnetizing factor. Calculations show 
that No = 0.1 +. 0.02 in the conditions of the experiment of 
Ref. 15. The corrections for the demagnetization were intro- 
duced by multiplying the data by [ 1 + N O 4 q ( 7 )  I .  

Figure 4 shows the dependence of the asymmetry Au, 
divided by Hex,, on T. It can be seen that after allowance for 
the demagnetization and the inelastic correction the tem- 
perature dependence of Au agrees with the expected depen- 
dence T- The fact that the error in the index is compara- 
tively large despite the high statistical accuracy of the data is 
explained by the appreciable uncertainty in the value of the 
demagnetizing factor. 

Next, the authors of Ref. 15 studied the Aa ( r )  depen- 
dence in a wider range of temperatures and at large values of 
the external field (Hex, = 2650 Oe, A D  13.5 K) .  In this re- 
gion, to judge from the data of Ref. 29, the field still re- 
mained weak in the static sense, and (S ,  ) = gpHG,(x). 
However, the quantity (S ,  ) G ; ' (q)  in ( 18) is comparable 
with r (q ,x ) .  In these conditions it is natural to try to deter- 
mine the term proportional to H in the expansion of 
T+ - = r + r$-l in ( 18). The asymmetry will now be de- 
termined by the expression (23) with - ImG,Hreplaced by 
ImG . For the latter, from ( 18) we find 

= g p H  I:' --; ( l+co)+ l ) .  

Here, according to (20), r$-1 in a weak field can be repre- 
sented in the form ir(;l = c,gPHq2/x2, which is valid for 
q > x. Analysis of the experimental data for Ao in accor- 
dance with (23) and (29) with kB= 0.1 k' and 
1 .356AT~50 K made it possible to determine the value 

AGIH,,, , rel. units 

FIG. 5. Temp~rature dependence of the normalized scattering asymmetry 
for kB = 0.1 A - '  and q = 22". The solid line corresponds to the calcula- 
tion based on the expression (29).  
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c, = 0.17 +_ 0.08 (see Fig. 5).  This result is extremely inter- 
esting, since 1 + co= 1, and, consequently, for G+ -, at least 
in a weak field, in a wide temperature range 0 . 7 ~  k8  /x(9 the 
simple expression ( 18) with T +  - = is applicable. 

We now compare the experimentally known values of 
the ratios Au/2u0 with the calculated values. These ratios 
are equal to (3.25 + 0.15).10W2 for g, = 22" and 
(4.8 0.3). lop2  for g, = 35", for A T =  28 K, 8 = 4.5", and 
He,, = 2650 Oe. The calculated values 3.3.10W2 and 
4.5- lop2  agree well with the experimental values. 

In conclusion it must be said that in Ref. 15 the reason 
for the deviation of the temperature dependence of the cross 
section from the Ornstein-Zernlike formula were not in fact 
elucidated. In the interpretation of the dependence of A u  on 
r the dependence of the factor (27) on the temperature was 
not taken into account. At the same time, in Ref. 28 these 
same authors demonstrated the existence of such a depen- 
dence. Thus, the interpretation of the results for ACT in these 
two papers, was, at least, inconsistent. 

In the present paper we have succeeded in explaining 
the temperature dependence of the cross section and asym- 
metry from a unified point of view. In our view, the theory 
presented is in good agreement with the results obtained in 
Ref. 15 from an investigation of the asymmetry of the scat- 
tering of polarized neutrons in Fe. 

In conclusion we note the following. The experimental 
data were analyzed above in the framework of the purely 
exchange approximation, and forces giving rise to relaxation 
of the total moment of the ferromagnet were not taken into 
account at all. It is not difficult to convince oneself that in 
the present case the influence of these forces is entirely unim- 
portant. As was discovered in Ref. 26, in Fe the interactions 
that do not conserve the total spin lead to a correction to r 
(26) describable by the empirical expression r, = Bx/ 
(1 + (q/q, )4), where B = 0.075 M ~ v . A  and q, = 0.03 
A-'.  The maximum relative correction to T that arises in 
the conditions of the experiment of Ref. 15 for q = k9 = 0.1 
A-' and maxxz0.14 k' is completely insignificant: max 
( T , / r )  =4. As a result, the effect of the interactions 
that do not conserve the total spin is within the error bars of 
the experiment of Ref. 15 and does not impinge at all on the 
quantitative analysis given above. 

The author is grateful to A. I. Okorokov for a discussion 
ofthe results of Refs. 15 and 28, and to S. G. Ogloblin and A. 
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Aronov for fruitful discussion and to E. F. Shender for criti- 
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