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We obtain the contribution made by the inhomogeneous part of a long-wave fluctuating 
electromagnetic field to the static dielectric constant ( D C )  of a liquid bounded by solids. The D C  
component in question is inhomogeneous, anisotropic, and depends on the size and shape of the 
inhomogeneity. I t  is shown for plane films that the difference between their average D C  depends 
on their thicknesses, and that birefringence is possible in sufficiently thick films. Numerical 
estimates point to the feasibility of observing these effects. 

$1. INTRODUCTION 

A liquid bounded by a solid (liquid film on the surface 
of a solid, a liquid in a gap between solids, a liquid with 
suspended large particles, and others) is inhomogeneous 
and anisotropic near the surfaces. For macroscopically 
small inhomogeneity dimensions (e.g., film thickness, gap 
width, suspended-particle radius, etc.) the thermodynamic 
properties of the liquid can depend on the shape and dimen- 
sions of the inhomogeneity. Among the known sources of 
such a dependence are Van der Waals forces. We calculate in 
the present paper, on the basis of the Dzyaloshinskii-Pi- 
taevskii theory,' the contribution AsVof these forces to the 
static dielectric constant ( D C )  of a bounded liquid and dis- 
cuss its various manifestations. 

The cause of Asvcan be easily determined by consider- 
ing its relation to the inhomogeneous part of the long-wave 
electromagnetic field present in the system. For a liquid in- 
variant to the inversion transformation, AsVis proportional 
to the mean square of the indicated field, which depends on 
the shape and dimensions of the inhomogeneity. The coeffi- 
cient in this relation is the cubic susceptibility X'" of the 
homogeneous liquid. The value of Asvis thus determined by 
the mean square of the fluctuating field of the inhomogen- 
eous part of the photon temperature Green's function in the 
medium and by the nonlinear properties of the homogeneous 
liquid.' 

To take into account the nonlinear properties of a liquid 
in the general theory of Van der Waals forces, it is necessary 
to retain, besides the diagrams that contain shaded loops, 
also diagrams with irreducible polygons. The latter describe 
scattering of light by light and by other long-wave, primarily 
hydrydynamic, modes. The interaction of long-wave pho- 
tons with such modes is a fluctuational analog of polarized 
and depolarized molecular scattering of light. It will be 
shown below to result in a much larger contribution to AcV 
than that of the self-action of long-wave photons. In nonlin- 
ear problems it suffices to consider processes of this type 
only for rigid systems, in which the square of the applied 
field does not alter their density or optical properties. Real 
liquids are "softer," and this leads to a noticeably value of 
A&" and to a possibility of observing effects associated with 

er than atomic from the boundaries of the inhomogeneities. 
In $3 we calcate effects determined by the dielectric proper- 
ties of the film for simple and anisotropic liquids that fill a 
gap between solids, and for plane films of these liquids on 
surfaces of solids. 

$2. CALCULATION OFTHE CONTRIBUTION OF THE VAN DER 
WAALS FORCES TO THE DC OF AN INHOMOGENEOUS 
LIQUID 

We place an inhomogeneous liquid (with Hamiltonian 
H) in a wea+kly inhomogeneous constant electric field of 
strengh g ( r ) .  We calculate the polarization 
P, ( r , g )  = (d,  ( r ) )H(z  ) of the system, where d, ( r )  is the 
dipole-moment density operator, and the averaging is over a 
Gibbs distributiolf with the Hamiltonian of the system in the 
external field H ( g  ) .  I t  is convenient to represent the polar- 
ization in the form 

pi (r, 8 )  = T lr dT <di (r, T ) > ~ ~ )  , 
0 ( 1 )  

where T is the temperature and 

di (r, z)  =exp { z ~ ( % ) ) d ~ ( r ) e x ~  {-TH (z) ). 

We change in (1 )  to the interaction representation in an 
external field, and expand in powers of the field. Assuming 
the inhomogeneous liquid to be symmetric enough, we retain 
in the expansion only the odd powers of the field: 

T + 1 d~ d ~ ,  d s  dr, dr, dr3 
0 S 

where ai ( r , ~ )  = eTHdi ( r ) e  'Hand({...}) is the irreduci- 
ble part of the mean value of the four operators above. 

To transform ( 2 )  into a series in the field in the system, 
we represent the field in the form 

it. 
In $2 we obtain in general form the contribution of the 8M (r) = <gi (r) f ~i 

long-range forces to the D C  of an arbitrary inhomogeneous 1 1 ~  
liquid. The expressions derived describe the inhomogeneity = 8t (r) + T \ d r  (Ei (r, ')),dl, 
and the anisotropy of the D C  at distances considerably larg- o ( 3  
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where E, ( r )  is the electric-field-strength operator. The ex- 
pansion in terms of the external field takes then the form 

T + - 1 dr d ~ ,  dr, dr3 1 dr, dr, d s  ( {T.Ei (I. . )ak (rt. I ~ )  
0 

xdl (r,, rz)dm (r3, zs)) )H EPh(rt)gt (rz)gm (r3) + . . . 
(4) 

We separate in H the interaction of the atoms with the long- 
wave photons: 

H = H O - j  dr di (r) Ei(r), ( 5  

and transform in (2 )  and (4)  to the interaction representa- 
tion in terms of this part of the Hamiltonian. We introduce 
the notation 

D ~ ~ ' = ( T I E ~ ( Z , ~ ) E ~ ( T ~ .  rt) ) H ~ .  ( 6 )  

Here 

We represent the functions P"' and P"' by a shaded loop and 
rectangle, respectively, and the function D ""by a thin dashed 
line. If only the shaded loops and rectangles are used, the 
polarization and the field in the system are expressed in 
terms of the three indicated topological elements and the 
external fields. Eliminating the external field, we find for the 
polarization an expansion in terms of the field in the system; 
this expansion can be represented by the series shown sche- 
matically in Fig. 1. A solid line with a forked end denotes the 
field in the system. The operation T J d r  is carried out in the 
free point of the polygon and the integration .f d r  J d r  is 
carried out over the internal points. Partial summation per- 
mits a transition to complete Green's functions, represented 
by the thick dashed lines. The result is shown in Fig. 2. 

A similar procedure can be used with account taken of 
all the powers of the external field and of all the irreducible 
polygons. It is unnecessary, however, since the nonlinearity 
is weak and only the contribution of the inhomogeneity to 
the linear susceptibility is calculated. We therefore confine 
ourselves hereafter to a linear approximation in the tempera- 
ture Green's function and to a cubic approximation in the 

FIG. 2 

external field, retaining in the expansion only one rectangle. 
In  this approximation, 

(8  

We assume that the thick dashed line in the second term 
represents the inhomogeneous part of the Green's function. 
The diagram with the homogeneous part has been trans- 
ferred to the first term and renormalizes the shaded loop. 

The following can be concluded from (8 ) .  If the quanti- 
ties defined in (6)  contain no contribution of the inhomoge- 
neity and of the external field, the loop and the rectangle are 
the true linear and cubic susceptibilities of a homogeneous 
liquid in the absence of an external field, while the second 
term of ( 8 )  is the sought-for contribution of the inhomoge- 
neity to the DC of the liquid. This, is not so, however, since 
only the interaction of the atoms with the long-wave photons 
was separated in ( 5 ) .  The averages over H,, in (6 )  contain 
both the interaction of the latter with other modes that are 
not of electromagnetic origin and the external field, so that 
the second term in ( 8 )  does not constitute the total A&". This 
circumstance, naturally, is important only if the nonlinear 
properties of the medium are taken into account. 

To calculate the total contribution of the inhomogene- 
ity to the DC of the liquid, it is necessary to carry out in ( 6 )  
additional separation of the inhomogeneity and of the exter- 
nal field. This can be done by various methods. For a con- 
fined geometry and an inhomogeneous electric field it can be 
assumed that the system is in local equilibrium and its state 
at each point is described by a set of thermodynamic vari- 
ables, viz., scalars (density, temperature, etc.) and tensors 
(strain, anisotropy, etc.), which depend on the fluctuating 
and the external fields, and the averaging is over a distribu- 
tion function that depends on the indicated set of variables. 
The choice of this set is determined by the phenomenological 
model of the system. We confine ourselves for the sake of 
argument to the density and the anisotropy. 

We calculate the distribution of these variables in the 
considered inhomogeneous dielectric in an external field, ac- 
curate to terms linear in the inhomogeneous part of the 
Green's function and quadratic in the field in the system. 
The operators of the density and of the anisotropy tensor at 
the point r will be designatedp(r) and l,, ( r ) .  We introduce 
the functions 

FIG. 1 
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We represent them by triangles with indices s and r .  In the 
calculation of the mean values ( p ( r )  and 
(f,, ( r ) )  ,,7, we carry out the same operations as in the pre- 
vious calculation of the polarization. As a result we get 

T 
= p, + dr dr, dr, \ dr, dr,~!:" ( r ,  r,, rz; r ,  r,. r,) 

X { D i k  ( T I ,  ' t z ;  r1, rz) -t giM ( P I )  g h M  (r2)}, 

(11) 

{Elm WH($) 
T 

=- S dr dr, dr, dr, dr,~$.\L ( r ,  r,, r2; r ,  r,, rz)  2 s 
X {Di t  (11 ,  ~ 2 ;  r l )  rz) 4- gin' (rl) 8 k  (r:)}. 

The terms containing the Green's function of the homoge- 
neous liquid are referred to the equilibrium values. In ( 11) 
we have 

A P  ( r ,  r )  =p (7,  r )  -PO 

and p,, is the density of the homogeneous liquid. 
The principal topological elements are now the two tri- 

angle types introduced in (9 )  and (10). In the considered 
cubic approximation for AE' these triangles do not contain 
the inhomogeneity and the field, and constitute the suscepti- 
bilities of a homogeneous dielectric in the absence of a field. 
It can be shown' that the triangles are the vertices of the 
temperature Green's function of the photons. For the con- 
served quantities (density and energy and momentum densi- 
ties) they reduce to derivatives of the dielectric constant. To  
calculate them for nonconserved quantities (anisotropy and 
strain tensors, etc.) we must invoke the phenomenological 
model of the medium. 

The next problem is how to transform from the linear 
susceptibility of an inhomogeneous medium, defined by ( 6 ) ,  
to the susceptibility of a homogeneous unbounded liquid. 
The need for such a procedure is encountered frequently, 
inasmuch as in nonlinear problems dynamic perturbations 
always generate inhomogeneities or  thermal perturbations.4 
Various methods were developed for operating with local- 
equilibrium states. We shall use of them,','in which the non- 
equilibrium distribution function is replaced by an equli- 
brium one by changing over to an effective Hamiltonian. The 
latter contains auxiliary weakly inhomogeneous fields 
whose potentials meet the condition that the density anisot- 
ropy deviations from the equilibrium values, generated by 
these fields, coincide in the linear approximation with those 
given in Eqs. (11) and (12).  

We express the effective Hamiltonian H A in the form 

where S p ( r )  and Su,, ( r  ) are the potentials of the auxiliary 
field that satisfy the condition indicated above. In an equilib- 
rium state with Hamiltonian H:, the density and the anisot- 
ropy can be represented in the form 

where& and P,,, are the static density-density and anisot- 
ropy-anisotropy response functions with spatial dispersion 
neglected. Equating the corresponding expressions in ( 1 1 ), 
(12),  and (14) we obtain the potentials of the auxiliary 
fields: 

Eqs. ( 13) together with ( 15) and ( 16) define uniquely the 
effective Hamiltonian. 

A shaded loop is an equilibrium average over a system 
with Hamiltonian HA. We transform in it to the interaction 
representation with respect to the auxiliary fields. In the first 
approximation we obtain 

Substituting (15) and (16) in (17) we obtain the result 
shown in Fig. 3. A straight line stands here for fl..-' and a 
wavy one for p,,,:. An unshaded loop corresponds to the 
linear susceptibility of a homogeneous liquid, and the re- 
maining terms to contributions linear in the Green's func- 
tion and quadratic in the mean field; these contributions are 
connected with the non-electromagnetic collective degrees 
of freedom of the system. 

Returning to ( 8 ) ,  we obtain in the adopted cubic ap- 
proximation the polarization in the form shown in Fig. 4. In 
a homogeneous liquid, the terms containing D,, vanish and 

FIG. 3 
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FIG. 4 

is the total true cubic susceptibility of a homogeneous liquid 
in the assumed phenomenological model. The contribution 
of the Van der Waals forces to the dielectric constant of an 
inhomogeneous liquid turns out to be 

Let us examine the symmetries of the various contribu- 
tions to ( 19). In the low-frequency region, the rectangle de- 
fined by ( 6 )  is symmetric in all the indices, and the cubic- 
susceptibility part y,,,, = P,(;L/6 connected with it can be 
represented in the form 

~iklm=~v~ikim=~Y(6ik61m+6i16kmf6im6kl)~ (20) 

For a field in a system directed along thex axis, the refractive 
indices n,, = E ,  "' = E:? and n, = I" = EL? of the ordi- 
nary and extraordinary rays from (20) are equal to 

n,, = n + 2.rryv ( g M ) ~ ,  ne = n + 6 7 7 y , ( 3 ~ ) ~ .  

This leads to the well-known7 result 

Such a relation holds for weak birefringence in simple li- 
quids and gases. It is not connected with collective processes 
in the fluid, and is caused by deformation of the electron 
shells of the atoms by the electric field. The Kerr constant 
for these cases is unusually small and reduces to y,, called 
the Voigt contribution.' 

The symmetry of the triangles follows from (9  ), ( 10) : 
p X ) ' , g  rh pC2)l r ~ / m  -Arh,/m r where 

and constitutes the isotropic part of the cubic susceptibility. 
In this case SE, = SES, and the refractive indices of the 
ordinary and extraordinary rays are equal, i.e., this part of 
the susceptibility describes striction. We obtain next 

For the refractive indices of the ordinary and extraordinary 
rays we get 

This relation is satisfied for anisotropic liquids with a Kerr 
constant yo, ) y,  (Ref. 7 ) .  Thus, the considered term de- 
scribes birefringence. 

Substituting (20),  (24), and (25) in ( 19) we obtain an 
analytic expression for the Van der Waals contribution to 
the DC: 

Thus, the liquid in inhomogeneous and optically anisotrop- 
ic, and A&" depends on the form and size of the inhomogene- 
ity. Expression (27) is valid at distances from the interface 
that are greater than the monocmolecular-layer thickness. 

The functions P'Z",P'Z",P"', that define AE' were 
identified with different parts of the cubic susceptibilities, 
and it is possible to use in the calculations the experimental 
data known for them. On the other hand, macroscopic con- 
siderations s yielded for them the analytic expressions 

which can be used to calculate the cubic susceptibility. Thus 
the striction part can be immediately calculated: 

Calculation of yo, from (28) calls for specification of a de- 
tailed microscopic model. 

$3. APPLICATION TO PLANAR LIQUID FILMS 

Let us apply the foregoing general results to particular 
cases of a liquid filling a planar gap of width 1 between two 
solids, and to a plane liquid film of thickness I on the surface 
of a solid. In this case, let x be perpendicular to the film, and 
let the DC E + AE, of the film depend on x and I. At dis- 
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tances from the boundaries much larger than a, the value of 
the asymptotic part of A&,, , viz., A&{ (x,l), is determined by 
(27) and can be completely calculated. At shorter distances, 
A&,/, is determined by the short-range forces. Let us discuss 
the possible manifestations of A&{ (x,l). 

It follows from (27) that for the orientational contribu- 
tion (x,I) #A&: (x,I) also in the Van der Waals part 
of a sufficiently sufficient film (191 ,  where 1 is the wave- 
length of the incident light). The refractive indices of the 
ordinary and extraordinary rays are different, i.e., the indi- 
cated part of the film has the properties of a uniaxial crystal 
with optical axis directed along x ,  and under suitable condi- 
tions one can observe birefringence induced by the inhomo- 
geneous long-wave fluctuation field. 

Another possibility is afforded by capacitive measure- 
ments of the film-thickness differences, when the substrates 
are used as capacitor electrodes. The D C  of the film differs 
from the D C  of the liquid in the bulk by an amount 

1 

In this case, for a liquid in a planar gap, the difference 
between the reciprocal capacitances of gaps of widths I, and 
I, takes the form 

where 

1(11, 12) = L A &  (11) -l2Ac(l2), 

where S is the electrode area. For a liquid film, similarly, the 
capacitance difference between capacitors ( d  is the distance 
between the electrodes) with films of respective thicknesses 
I, and 1, is equal to 

(33) 
where C ( d )  is the capacitance of the empty capacitor. In the 
cases considered, the contribution of the inhomogeneity is 
determined by the function (32) .  The short-range finite-ra- 
dius forces, obviously, do not contribute to the function 
f(l , , l , ) .  On the other hand, the Green's function of the film 
and accordingly AE: (x,I) can be represented for all I as a 
sum of terms that diverge at x = 0 and x = I and are not 
singular at the liquid boundaries. What is left of the first 
terms in f(l,,l ,) is an integral with respect t o x  in the interval 
from 1, to I, (I, < I ,  ). It is obviously independent of the cutoff 
parameter. The contribution of the nonsingular terms to the 
considered function is independent of the cutoff parameter, 
accurate to contributions of first order in the ratio of the 
short-range-force radius to the film thickness. 

Thus, f(l, ,l ,) and the capacitance contributions indi- 
cated in (31) and (33) are determined only by the long- 
range forces, and have a universal dependence on the film 
thickness. 

The presently achieved high accuracy in the measure- 
ments of the capacitance and of the phase shift in birefrin- 
gence makes it possible to observe the indicated effects and 
their use for precision measurements of the parameters that 
enter in the Van der Waals part of the DC. 

3.1. Inhomogeneous part of the film's Green's function 

In the cases considered, D, (r,r1;ln ) is a sum of func- 
tions D :,- ' (x  - x';c, ) and D I,+ ' (x  + x l ; ln  ) that depend 
on x - x' and x + x'. The first function is known,' and we 
obtain the second from the equations of that reference. As a 
result, the diagonal components of the function D,, 
(x,x,q;l, ) (q  is the Fourier-transform of the vector 
p(0,y - y',z - z ' )  ) which are needed for the calculation of 
AE: (x,1), take, at equal values of the arguments, the form 

2n 
Dzz (x, 1 1  q; En) = - (2-9) 

P A  

where 

E is the D C  of the liquid in the gap between identical solids, 
= E~ is the D C  of the solid, while for the liquid film E ,  is 

the D C  of the solid and E,  = 1. We assume that the absorp- 
tion by the liquid is at frequencies higher than that by the 
substrate. For the two length parameters l/w0 (w, is the 
characteristic frequency in the spectrum of the liquid) and 
1 /T  ( Tis  the temperature), three limiting film thicknesses I 
are of importance: I <  l/w,,,l/w,,<I< 1/T and 1% 1/T. 

We consider a liquid in the gap at  I<  l/wO. At frequen- 
c i e s lgw, ,  we h a v e ~ , ( i l ) s ~ ( i l ) .  In this c a s e ~ p , < & , p f o r  
all q and W , z l .  For q < ~ ; ' 2 g  we have p , -~~ '21 and 
W , z 1 .  For q 9 ~ ; " l  we havep ,  = p , = p  and W , z 4 q 2 /  

This allows us to use for all q the estimate 

~ ~ x 1 + 4 p ~ / e , ~ ~ .  ( 36 )  

For the D C  E ,  of the substrate we assume the following 
expression: 

For a film we have W, # W2 and W, # &. The esti- 
mates obtained above are valid for W ,  and W, . For q2 <l ' we 
have W 2 z  - (E'" + 1 )/ (E '"  - 1)  andforq2$&{ ' we have 
W, z - 4q2/(& - 1 )12.  We use therefore for any q the esti- 
mate 

From (35) we get 

3.2. Films of simple liquids 

In this case yo, -0, y ,  < y,,, , and we need retain in (27) 
only the first term 
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For a liquid in a gap between identical solids we have 
f ( l , , l , )  = 0 .  The discussed effect exists also if the solids are 
different. 

3.3 Nonpolar liquids consisting of anisotropic molecules 

In such liquids, the greater part of the intensity of the 
molecular scattering of light goes into deopolarized scatter- 
ing (85% for liquid CS,). It can therefore be assumed that 
the orientational contribution to f ( l , , l , )  exceeds the stric- 
tion contribution and from ( 2 7 )  and (25) we get 

877 " 
( ~ ~ 1 )  = - T C yo, (o,il, ,Y, ) 

3 .=o 

At I<< l / w ,  we change from summation over n to integration 
with respect to g and take it into account that the main con- 
tribution to the integral with respect to q is made by 
q- l/l$o, 2 6  and that W , , ,  -+ a. As a result we obtain 
from ( 3 4 ) ,  ( 3 5 ) ,  and ( 4 0 )  

m w 

In simple liquids & ( i f )  and y,,, (O,iC,ig) differ little 
from their static values up to electron frequencies 
0-2.10'" At higher frequencies they vanish rapidly and 
the following estimate can be used: 

Changing to thin films and substituting the functions ( 3 4 ) ,  
we get 

m - 
Substituting in (41 ) the functions and h from ( 3 5 ) ,  we get 

m 

( 5 0 )  

The molecules of the considered liquids have anisotrop- 
ic polarizability the their dipole moments are equal to zero. 
Therefore, just as in the preceding case, the functions 
~ ( i g )  and yo, (O,ig,i{) differ insignificantly from the static 
values all the way to electron frequencies and 

where 
C = [ ( E - ~ ) / ( E + ~ )  ] E ( O ,  1 ) .  

We separate in ( 4 3 )  the terms that diverge at x = 0  and 
x = I .  Substitution in ( 3 2 )  leads to 

Consider a liquid in a planar gap. Using the estimates 
obtained above for W ,  and r,, we get 

For n = 2  and x = - C, accurate to 10-20%, we have Li, 
( -C)=:  - C a n d  

We introduce the function 

From ( 2 9 )  we have in this case and rewrite ( 5 2 )  in the form 

( 5 4 )  

The function p ( a )  in ( 5 3 )  is bounded in the interval 
a€ (0 ,1 ) ,  and it is possible to separate in ( 5 4 )  the singular 
and regular parts: 

(0, is the isothermal compressibility of the liquid) and for a 
plane wave we get ultimately 

For typical simple liquids a,,-2.10': c -2 ,  
( p d ~ / d p ) . ,  - 1,8,- lo-' (in CGS) and for / , , I ,  and f ( l , ,12)  
in A we have 

f ( Z I T  Z 2 )  -30 ( 1 1 - 2 - 1 2 - 9 .  (48) 

Substitution in ( 3 2 )  leads to 

/ ( L 1 ,  1 2 )  = 2 / 3 ~ o ~ o p 5  ( 3 )  (11-~-12-~).  ( 5 6 )  

The dependence on I ,  and I ,  does not differ from that in ( 4 7 ) .  
The effect is completely determined by the function D'-'. 

At I , ,  1,-50 - 100, as follows from ( 3 4 ) ,  the contribution 
to the capacitance or to the measured DC turns out to be - - lop4%, which can be readily observed in experi- 
ment. The entire effect is governed here by the function D +. 
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For carbon disulfide we have E = 2 . 6 , ~ ~ -  1.5.  1016, 
yo, -0.8. lo-" ,  and for a gap filled with liquid carbon disul- 
fide we obtain 

f (l,, 1 2 )  -110 ( 1 i - 2 - 1 2 - 2 ) .  (57 

The effect is several times larger than the one described 
above for simple liquids. 

We now carry out the calculation for films of the con- 
sidered liquids. We obtain in lieu of (53)  

( 5 8 )  

Separating, just as for a liquid in a gap, the singular contribu- 
tions in the integral (29 ) ,  we get 

Using again the estimate Li, ( - C )  z - C, we get as a result 

For carbon disulfide we have 

3.4. Polar liquids 

In such liquids, yo, (O,i{,i{) can be divided into two 
terms, dr and %,. The first is generated by the dipole mo- 
ments of the molecules, is large at low frequencies, and van- 
ishes rapidly at frequencies exceeding those of the dipole 
relaxation. The term %, is determined by the anisotropic 
polarizability of the molecules and remains practically con- 
stant at all frequencies all the way to electronic9 Its contri- 
bution to f(l,,l,) was investigated above and can be added to 
the now-considered contribution dr. 

Since w, 4 T, we need retain in (49)  only the term with 
n = 0, and we get for arbitrary I 

m 

For a liquid in a gap this leads to 

(63 

Substitution in (32 )  leads to 

f ( l i ,  12)=(2nle)E(3)T%r ( 1 ; 2 - I ~ 2 ) .  (64)  

For nitrobenzene (E-  3 8 ) ,  dr - and T - 4  10-14, and 
for f(l , , l ,)  in A we have 

f ( Z , ,  L 2 )  -8(Li-2-12-2). (65 

For a film, similarly, 

and 

For nitrobenzene (in view of its high DC) the result does not 
differ from that of the liquid in a gap: 

f ( 1 4 ,  1,) -6 (1 i -2 -12-2) .  (68 

The dipole contribution is thus small compared with deter- 
mined by the anisotropic polarizability. 

3.5. Birefringence in liquid films 

Consider a thick liquid film (1% l / T ) .  In this case we 
can rewrite (27 )  in the form 

From (25 )  we obtain then AE: = 0 and since AE; = E:, it 
follows that AE; = - + A  EL.  

Let a beam of plane-parallel waves propagate along the 
film and let the angle between the polarization plane and the 
x axis be ~ / 4 .  Assume that the wavelength is 141. A dia- 
phragm placed ahead of the film prevents the beam from 
propagating near the film boundaries, where the geometric- 
optics conditions are violated. On emerging from a film of 
length L, the phase shift between the extraordinary and ordi- 
nary rays is given by the relation7 

o L  
A T = -  [ ( & +  h&,Vx)"- (&+A&;) l i 2 ] ,  

C 
(70 )  

where w = ~ T C / ~ E " ~  and c is the speed of light. Using the 
foregoing relation between AE: and A EL we can transform 
the latter into 

Acp= (3nL/2iie) A&:, ( 71 )  

where Ac: is the mean value of the function AE: (x , l )  over 
the beam width. The result of the averaging depends sub- 
stantially on the location and dimensions of the film region 
over which the average is taken. 

The diaphragm cuts out a region of film from an inter- 
val (6,I - 6 ) .  Assume that I> 6% 1/T. We consider a wide 
beam ( S / l g  1 )  and a narrow one (S close to 1 /2 ) .  In the 
considered region we have x % 1/T and it suffices to retain in 
(69)  only the term with n = 0. Expressions (34 )  and (35 )  
lead to 

(x,I) = (n-Ty0,/&) [ X - ~ + ( ~ - X ) - ~ ] .  

Averaging over the beam width leads to the following phase 
shifts: for a wide beam 

Arp~3n2LT(yo,/2h~2) (1/162), 

and for a narrow one 

A~p=6n~LT(y , , /h~~)  (1/13). 

In the former case the phase shift decreases like 1/1 with 
increase of the film thickness. The high accuracy of phase- 
shift measurement methods makes it possible to observe the 
proposed effects for wide beams. 

$4. CONCLUSION 

The arguments advanced above indicate that the DC of 
an inhomogeneous liquid with weak nonlinearity is in- 
creased by long-range forces. The contribution of these 
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forces, at distances from the inhomogeneity boundaries 
much larger than the atomic dimensions, is inhomogeneous, 
anisotropic, and depends on the size and shape of the in- 
homogeneity. In the assumed phenomenological model this 
contribution is determined by the interaction of the long- 
wave photons with the long-wave scalar and tensor modes of 
the liquid. The possible manifestations of the results ob- 
tained for the DC can be indicated, notwithstanding their 
asymptotic character. Thus, in planar films the function de- 
scribing to the difference between the average DC of the 
films differs from zero, and birefringence induced by an in- 
homogeneous long-wave fluctuation field can be observed in 
sufficiently thick films. The magnitudes of the effects de- 
pend on the film thicknesses. Numerical estimates point to 
the feasibility of observing these effects. 
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