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Numerical experiments on a nonlinear amplifying dispersive medium (in the case when the gain 
exhibits saturation and there are linear losses in the medium) revealed a new effect which is the 
formation of a solitary wave (soliton) with all its parameters independent of the amplified initial 
pulse and governed only by the parameters of the amplifying medium such as the gain and its 
saturation parameter. These numerical experiments were carried out for initial pulses with a 
regular amplitude and phase modulation as well as for stochastic pulses with different rms 
deviations of random parameters. The envelope of the resultant solitary wave was described by a 
smooth bell-shaped curve. The dependences of the main parameters of this wave (maximum 
amplitude, pulse duration, propagation velocity, etc. ) and the parameters of the medium were 
found. An increase in the gain increased the amplitude of the wave and reduced its duration. 

1. INTRODUCTION 

The nonlinear Schrodinger equation (NSE), which has 
been thoroughly studied, is the basic equation in investiga- 
tions of weakly nonlinear waves in weakly dispersive media. ' 
Various examples of the use of this equation can be found in 
nonlinear optics, plasma physics, theory of superconductivi- 
ty, physics of low temperatures, and gravity waves on water. 
However, the number of nonlinear dispersive media and of 
the effects observed in them is considerably greater. More 
complex systems with important practical applications in- 
clude nonlinear amplifying dispersive media, in which in ad- 
dition to dispersion and nonlinearity of the refractive index 
saturable gain and losses are also important. However, it 
should be pointed out that the problem of evolution of pulses 
in such media has been largely ignored. Since in such cases, 
as in the majority of nonlinear dispersive media, the evolu- 
tion equations are nonintegrable, the most effective methods 
for their investigation are numerical. 

A model for the amplification of a short light pulse in a 
dispersive Kerr medium, where the gain may reach satura- 
tion in the field of the pulse itself but there are linear losses, 
was proposed r e ~ e n t l y . ~  It was shown that in this situation 
we can expect the formation of a light pulse with parameters 
governed by those of the medium and independent of the 
parameters of the initial pulse being amplified. The conclu- 
sion of the formation of a steady-state solitary wave is valid 
in the case of a low gain (much less than the reciprocal of the 
dispersion), which makes it possible to utilize a theory of 
perturbations of solitons based on the NSE. In real amplify- 
ing media the gain may be greater than or of the order of the 
reciprocal of the dispersion length and the method employed 
in Ref. 2 is inappropriate. Although a solitary wave found in 
Ref. 2 represents the exact solution of the evolution equation 
(for arbitrary values of the gain), the problem of its stability 
when the gain in the sense mentioned above is not small has 
yet to be considered. Moreover, the general evolution of 
pulses in such media subjected to given initial pulses is not 
yet clear. 

We therefore carried out numerical experiments on the 
propagation of pulses in a nonlinear dispersive inverted me- 
dium exhibiting both gain saturation and nonlinear losses. 

2. BASIC EQUATION 

It was shown in Ref. 2 that evolution of a light pulse in a 
weakly dispersive inverted medium with a Kerr nonlinearity 
and linear losses is described by the following equation un- 
der conditions of weak saturation of the gain: 

1 

where q = tp (n2k /2ni I k " 1 ) '/'E, tp is the characteristic du- 
ration of a pulse; E is the slowly varying envelope of the 
optical field pulse; N2 represents a nonlinear correction to 
the refractive index n = no + n21E 12; k is the wave vector; 
k " = d 2k /do2; thevariableszand tarenormalized and relat- 
ed to the longitudinal coordinate and time r by 

z = J k "  lt/t,Z, t = ( t - k f t ) / t p t  

the coefficients 0 and a ( a  is proportional to the density of 
amplifying centers) represent respectively the linear gain 
(normalized to the reciprocal dispersion length t ;/I k " 1 ) 
and the gain saturation "rate." Equation ( 1 ) readily yields 
the following expression for the pulse energy 
u = s" lq/2dt : 

from which it follows that 

where U, = U(z = 0). It is clear from Eq. (2 )  that the ener- 
gy of a pulse reaches the value 20 /a irrespective of the initial 
energy provided pz is sufficiently large. One of the possible 
ways in which the field can then behave is the formation of a 
solitary wave (soliton) of energy 2fl/a. For example, if the 
right-hand part of Eq. ( 1 ) is small and can be regarded as a 
perturbation of the NSE, it is then found from analytic cal- 
culations2 that establishment of the energy of a pulse (irre- 
spective of the initial energy) results in the creation of a 
solitary wave in the form of a pulse of secant shape irrespec- 
tive of the initial shape of the pulse envelope. If the right- 
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hand part ofEq. ( 1 ) is not small, the method of perturbation 
of solitons based on the NSE is inapplicable and the most 
effective method for the solution of Eq. ( 1 ) is clearly by 
numerical calculations. 

In the present study we carried out numerical modeling 
of the propagation of a pulse employing a modification of an 
implicit Crank-Nicholson ~ c h e m e . ~  

3. CASE OF SMALL VALUES OF a AND p 

We shall assume that the initial pulse satisfies the condi- 
tions necessary for the formation of a one-soliton pulse based 
on the NSE.4 If p is sufficiently small, we can assume that 
the gain has little effect on the length of formation of a one 
soliton pulse. We can follow the evolution of a pulse by as- 
suming that the initial pulse is a single soliton based on the 
NSE. Consequently, we shall assume that this initial pulse is 
in the form of q(0,t) = 7 sech(7t). Numerical calculations 
demonstrate (Fig. 1) that, irrespective of the initial ampli- 
tude, a secant pulse is formed in the medium. The depend- 
ence of the field on z and t in such a pulse is described by 

(3)  
The maximum intensity Iql i,,P ' /a2  = 0.64 corresponds to 
a = 0.1 andp  = 0.08. Similar results are obtained for other 
values of a and p. In other words, numerical calculations 
confirm the results of perturbation theory based on the NSE. 
The formation of a solitary wave of Eq. (3) occurs if the 
initial pulse satisfies the condition of formation of a one- 
soliton pulse based on the NSE [when a = /3 = 0 in Eq. ( 1 ) ] 
characterized by arbitrary parameters. However, further 
calculations revealed that if a, BR 1, the solution in the form 
of a secant pulse of Eq. ( 3 )  is unstable in the medium under 
discussion. 

4. CASE WHEN a, P% 1 

The relationships describing the propagation of pulses 
in media characterized by a, fl Z 1 in the case when a and f l  
are fixed were identified by varying the range of types of 
initial pulses differing in respect of their profile as well as 
energy and duration; similar calculations were then carried 
out for other pairs of a and /3. The numerical experiments 
were carried out both for initial pulses with a regular ampli- 
tude and phase modulation and for stochastic pulses. 

t 
FIG. 1. Evolution ofa  secant pulse q(0,t) = 7 sech(7t)in a me- 
dium characterized by a = 0.1 and @ = 0.08 when 7 = 1 (a)  
and 71 = 0.3 ( b ) .  

a) Pulses with a regular amplitude-phase modulation 

We selected the initial pulses so that they differed signif- 
icantly from one another in respect of the law governing the 
time dependences of the amplitude at the leading and trail- 
ing edges. This enabled us to cover the widest possible range 
of initial pulses. A characteristic pattern of the evolution of a 
pulse with amplitude modulation is shown in Fig. 2. It is 
clear from Fig. 2 that even in a distance approximately equal 
to three dispersion lengths (z = 3.05) a pulse transforms 
into one with a symmetric bell-shaped profile and remains 
practically constant. In the course of its propagation the 
pulse shifts forward, in other words, it acquires a velocity 
higher than dw/dk. The velocity of propagation of a pulse 
becomes constant for z > 2.85 (the numbers under the maxi- 
ma in Fig. 2 represent the positions of the maximum of a 
pulse along the t axis). We can also see that fairly rapid 
smoothing and "cutoff' of the internal substructure of a 
pulse takes place. At the leading edge of a pulse it is possible 
to identify a smooth symmetric subpulse, and gradually 
damped oscillations remain at the trailing edge of a pulse. In 
addition to the case shown in Fig. 2, we investigated also the 
propagation of a number of initial pulses of different types 
with both symmetric and asymmetric profiles: Lorentzian, 
Gaussian, as well as pulses described by more complex 
curves. In all the investigated cases irrespective of the initial 
pulse we found that the same solitary wave is obtained for 
given values of a and p. On the whole, the propagation pat- 
tern is similar to that shown in Fig. 2 and there is only a 
change in the characteristic length of formation of a solitary 
wave. It should be mentioned that for pulses characterized 
by an internal substructure this length is greater than for 
smooth pulses. For example, in the case of an initial pulse of 
the shape n-t2exp( - t ) ,  where t > 0, this length is equal to 
two dispersion lengths. As a rule, it was found that the char- 
acteristic length of formation of a solitary wave does not 
exceed 4-6 dispersion lengths. 

We also investigated the propagation of phase-modula- 
ted pulses. In this case we considered the most important, 
from the practical point of view, type of phase modulation, 
which is quadratic modulation. Numerical calculations 
were carried out for initial pulses with the profile 

q(0, t )  =exp(-t2*i6t2) 

characterized by 6 = 1, 5, 10, and 20. In the presence of 
phase modulation we found that at low values of z a pulse 
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acquires a velocity which increases on increase in the value 
of 6. However, the pulse slows down quite rapidly (already 
for ~ ~ 0 . 5 )  the pulse slows down and a smooth bell-shaped 
solitary wave is formed. We found no significant increase in 
the length of formation of a solitary wave on increase in 8. 
For all values of 6 it was approximately 4 dispersion lengths. 
It should be pointed out that in this case, as before, all the 
parameters of a solitary wave were found to be independent 
of the parameters of the initial pulse, but were determined 
solely by the coefficients a and /3. 

We may thus conclude that a solitary wave independent 
of the initial pulse forms in a nonlinear amplifying dispersive 
medium of the type discussed here. Naturally, one should 
then ask the question of the degree of such independence. 
One of the ways of investigating this aspect is to consider the 
worst (from the point of formation of a coherent solitary 
wave) cases when noise pulses are applied to the input of the 
medium. This problem is important also from the practical 
point of view, because pulses generated by electromagnetic 
radiation sources have some noise component. 

b) Stochastic pulses 

Our stochastic initial pulses were of the type 

where g ( t )  = a ( t )  + ib(t) represents a complex random 
Gaussian process with average values 7i and 8, rms devia- 
tions a, and o, of its real and imaginary parts, respectively, 
and a correlation coefficient R between these parts. Figures 3 
and 4 demonstrate the evolution of pulses characterized by - 
5 = b = 1 and R = 0 in the case of different variances u, and 
a,. The graphs plotted in Figs. 3 and 4 provide an opportuni- 
ty for identifying the general relationships governing the 
propagation of stochastic pulses in the medium under dis- 
cussion. We found that, firstly, in all the cases when the 
variance u ranges from 0.1 to 0.8 (on the assumption that u, 
= a, = a ) ,  an identical (for given values of a and /3) soli- 

FIG. 2 .  Typical example of the evolution of a pulse 
with a regular amplitude modulation in a medium 
characterized by a = 5 and P = 2,  calculated for 
different values of z: 

tary wave is formed and it is the same as in the case of regular 
amplitude-phase modulation. Secondly, an increase in vari- 
ance of the random quantity increases the characteristic 
length of formation of a solitary wave. If u = 0.1, this char- 
acteristic length is approximately equal to 4 dispersion 
lengths, whereas for u = 0.5 it is equal to 8 dispersion 
lengths, and for o = 0.8 it increases to 12 dispersion lengths. 

FIG. 3. Evolution of stochastic pulses in a medium characterized by a = 5 
and B = 3 shown for different values of z when a = 0.1. 
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FIG. 4. Same as in Fig. 3,  but for a = 0.8. 

A further increase in o increases rapidly the errors of the 
numerical solution of Eq. ( I ) ,  so that we were unable to 
investigate the propagation of stochastic pulses character- 
ized by a> 0.8. The kinetics of formation of a solitary wave 
from a noise pulse is illustrated clearly in Figs. 3 and 4. We 
first observe an increase in the duration of characteristic 
peaks of a pulse, which is followed by separation of one sub- 
pulse at the leading edge, whereas chaotic pulsations remain 
at  the trailing edge of the pulse. In the course of subsequent 
propagation the chaotic pulsations at  the trailing edge of the 
pulse are damped out, whereas the separated subpulse trans- 
forms into a smooth bell-shaped solitary wave. 

5. CHARACTERISTICS OFTHE RESULTANT SOLITARY 
WAVE 

The results of the reported numerical experiments dem- 
onstrate that a solitary wave with a profile independent of 
that of the initial pulse forms in a nonlinear amplifying dis- 
persive medium described by Eq. ( 1  ). All the parameters of 
this solitary wave are governed solely by the characteristic of 
the medium, which are the coefficients a andp.  The depend- 
ence of the maximum square of the field amplitude / q I ;,, a 
and B is described, subject to an error of 2-396, by the fol- 
lowing formula valid in the range 0 <a and p < 5: 

Since the energy of a solitary wave is U = 2 p  /a,  it follows 
that its characteristic duration amounts to 

In contrast to a solitary wave in the form of a secant pulse of 
Eq. ( 3 ) ,  the wave discussed here exhibits modulation of the 
phase p. Like the variation of 1 q 1 2, the change in the frequen- 
cy correction q~ = dp /at with t is governed solely by the co- 
efficients a and p. Figures 5b-5d show typical time depen- 

FIG. 5. Phase characteristics of soliton wave which is being formed, show- 
ing the dependence of the deviation of the frequency during a pulse 
A,+=,+ ,,, - p,,, . on a and fl ( a )  and the dependence of the frequency 
correction@ont f o r a =  5 , f l = 3 ( b ) , a = 3 , f l = 5 ( c ) , a n d a = 3 , 8 = 4  
( d ) .  
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FIG. 6. Dependence of the velocity Vof a solitary wave on the gain @of 
the medium. The ordinate gives the displacement for a wave with t per 
unit length z. 

dences of q, calculated for different pairs of values of a ando. 
It is clear from Figs. 5b-5d that the dependence of 4, on t 
(like the dependence of (qI2 on t )  is symmetric relative to the 
position of the maximum of the pulse, but in contrast to the 
latter it is in the form of an inverted bell-shaped curve with a 
minimum of 4,,, at the center of the pulse and a maximum 
at the edges of the pulse. Figure 5a shows the dependence of 
the maximum deviation of the frequency during a pulse 
A@ = - kmin on the values of a and 0. This depend- 
ence is qualitatively similar to the dependence of (q(k,, on a 
ando: an increase i n 0  for a given value of a (and, converse- 
ly, a reduction in a for a given value o f o )  enhances A+. 

It is interesting to consider also the behavior of the ve- 
locity of propagation, which is another important parameter 
of a solitary wave, as a function of a and P. It is found that 
the velocity of such a solitary wave increases linearly on in- 
crease in the gain p ,  but is independent of a (Fig. 6) .  We 
recall that the reverse is true of a solitary secant wave of Eq. 
(3):  the velocity rises linearly with a and is independent of 
p. Therefore, in spite of the apparent similarity, a solitary 
secant wave of Eq. (3)  and a solitary wave discussed in the 
present section, found by numerical calculations of the case 
when 0 ,  a k 1, represent different types of solution of Eq. 
( 1 ) which are distinguished by the nature of the dependence 
of the maximum amplitude and velocity on a and 0 ,  and by 
the time dependence of 4,. 

6. CONCLUSIONS 

1. Our numerical experiments demonstrate that in an 
amplifying dispersive medium with a Kerr nonlinearity and 
exhibiting both gain saturation and linear losses a solitary 
wave is formed and all its parameters (energy, profile, pulse 
duration, etc.) are governed solely by the parameters of the 
amplifying medium a and o ,  but are independent of the pa- 
rameters of the pulse being amplified. The gain 0 moreover 
determines the actual nature of the resultant solitary wave. 

gain (Fig. 6).  Moreover, the values of a and P determine 
uniquely also the phase parameters (dependence of 4, on t )  
of the resultant solitary wave. 

2. These numerical experiments confirm the earlier2 
analytic results on the formation of a solitary wave in the 
form of a secant pulse of Eq. (3)  in media with values of the 
gain that are small compared with the reciprocal of the dis- 
persion length ( P <  1 ); these analytic results were obtained 
using a perturbation theory of solitons based on the nonlin- 
ear Schriidinger equation. It is sufficient that the initial pulse 
satisfies the condition of formation of a one-soliton pulse in 
accordance with the nonlinear Schrodinger equation [when 
a = /? = 0 in Eq. ( 1 ) 1. Numerical calculations show that a 
solitary secant wave of Eq. (3)  is unstable in media with 
gN> 1. 

3. This effect may be observed, for example, in a single- 
mode fiber waveguide activated with neodymium ions. A 
negative dispersion at a wavelength of 1.06 p m  can be at- 
tained because of the contribution of the resonant part of the 
dispersion associated with the ions where the amplification 
occurs. Selection of the detuning within the limits of the 
luminescence line width can make the resonant part of the 
dispersion negative.' When the population inversion density 
oftheionsis 1019 cm-', it is found that k " = - 1.1 X 
s2/cm for typical values of the cross section of the relevant 
transition and for n, representing a glass activated with neo- 
dymium. The dispersion length for a typical pulse duration 
of 10 ps amounts to approximately 100 m and a =P=: 5 for a 
loss factor ~ 0 . 2 7  cm-'. We learn from Eqs. (4) and (5)  
that the duration of a pulse of the resultant solitary wave is 
rb ~ 1 2  ps and the power density in this wave is =:42 
MW/cm2. We note in conclusion that this effect provides 
another example of a synergetic process in which stochastic 
radiation is transformed into a coherent wave. 

Possible directions of further studies of the evolution of 
light pulses in an amplifying nonlinear dispersive medium, 
on the basis of the proposed model, can be suggested. In 
particular, it is necessary to establish more accurately the 
limits of a andB in the range where a secant pulse of Eq. (3)  
retains its stability. It would also be interesting to find 
whether there are analytic methods for solving Eq. ( 1 ), par- 
ticularly, ways of obtaining an analytic expression for the 
envelope of a solitary wave of a new type found in our nu- 
merical experiments. 
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