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A study is made of relaxation of the longitudinal spin magnetization of electrons in an ensemble of 
independent metal particles inside an insulating matrix. The particles are assumed to be so small 
that the electron spectrum becomes discrete and the distribution of levels is described by 
correlation functions introduced by Gor'kov and Eliashberg [Sov. Phys. JETP 21,940 ( 1965 ) 1 .  
Spin-orbit scattering of electrons by thermal lattice vibrations and by inhomogeneities of the 
potential near a boundary is considered. In the limit when the vibrations of metal and matrix 
atoms are not coupled, the two relaxation mechanisms are suppressed because of the discrete 
nature of the electron and phonon spectra. Spin reorientation by lattice vibrations is the result of 
renormalization of the phonon spectrum because of the coupling with the matrix, whereas 
relaxation due to static defects is the effect ofbroadening of electron levels because of the electron- 
phonon and Coulomb interactions. I t  is found that the decay of excitations is weak and a 
quasistatic description is valid. At low temperatures the rate of relaxation fluctuates strongly 
from particle to particle so that the time dependence of the total magnetization is nonexponential 
and is governed by the nature of the level statistics. 

I. INTRODUCTION 

The discrete and random nature of the spectrum of ele- 
mentary excitations in small particles gives rise to significant 
differences of their physical properties from those of bulk 
samples. '-"he response of an ensemble of small metal par- 
ticles to an external field is described statistically by intro- 
ducing the average energy interval A and the distribution 
function R ( w )  that governs the probability that two levels 
are separated by a spacing w. According to Refs. 1 and 4, 
three types of level statistics may be encountered, depending 
on the strength of the spin-orbit interaction and on the mag- 
netic field: orthogonal, symplectic, and unitary. All three 
types of distribution are characterized by level repulsion 
which is manifested by periodic oscillations of the function 
R ( w )  if w > A and by decay in accordance with the power 
law R ( w )  a w" if w < A .  On the other hand, the available 
experimental data (Refs. 2 and 3)  do not answer to the fun- 
damental question whether such a correlation between levels 
exists or whether they are distributed at random 
[R(w)  = const], as assumed, for example, by Kubo.' 

Clearly, the repulsion effect should be manifested above 
all when the response of electrons at frequencies w 5 A is 
important, because the oscillation amplitude R ( w )  is very 
small if w > A. We shall analyze one of these problems, the 
relaxation of the spin magnetization of conduction elec- 
trons. It is assumed that, as in the case of a bulk metal,'.' the 
main decay mechanism is the spin-orbit scattering by phon- 
ons and static defects. Since this results in transitions with an 
energy of the order of T, at temperatures T <  A the rate of 
relaxation is very sensitive to the degree of correlation of the 
levels. Moreover, changes in the spin relaxation can give in- 
formation on the nature of coupling of the metal atoms to the 
insulating medium, since it is the interaction with the medi- 
um (matrix) that results in some broadening of a discrete 
phonon spectrum of a small particle and is responsible for 
the nonzero spectral density of phonons at the frequency of 
electron transitions. 

2. SPIN-ORBIT SCATTERING BY PHONONS 

We shall consider first the process of relaxation of the 
longitudinal magnetization M, in a single particle. In accor- 
dance with the theory of slightly nonequilibrium processe~,~ 
the decay M, ( t )  is exponential and the rate of relaxation can 
be described in terms of the imaginary part of the Fourier 
transform of a retarded Green function: 

z,,-' = lim {Im(( [S,, He,] I [S,, HePl )),/XU). 
0 - + o  

( 1 )  

Here, S is the total electron spin and x is the static spin 
susceptibility. The Hamiltonian of the electron-phonon in- 
teraction H ,  can be written in the form 

Hep = ( h a  1 U q  ( h1~)a~, 'a~~prpq .  
h,A' ,q,a,8 

where 

a,', and a,,, are the operators representing creation and 
annihilation of electrons in a state /1 with a spin index a; p, is 
the operator of the field of phonons with a wave vector q and 
a frequency o, in a small particle. Moreover, A,, is the spin- 
orbit interaction parameter; zF  is the Fermi energy; w is the 
amplitude of the Coulomb potential of the lattice ions; N, M, 
and u are, respectively, the number of atoms, their mass, and 
the velocity of sound in a metallic particle; finally, n and n' 
are the directions of the electron momentum before and after 
the scattering, respectively. 

Substituting Eq. ( 2 )  into Eq. ( 1 ) and then adopting the 
standard technique of the Green functions,' we find the spin- 
phonon relaxation rate 7 ;  ': 
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where D,  (w) is the retarded Green function of phonons in a 
small particle and& is the energy measured from the chemi- 
cal potential. Moreover, allowance is made in Eq. ( 3 )  for the 
fact that 

The square of the matrix element in Eq. ( 3 )  can be written as 
follows: 

Here, a is the lattice constant and d is the diameter of a small 
particle. An additional factor in the square brackets is asso- 
ciated with the following circumstance. Since the states Iila) 
are already affected by the periodic spin-orbit potential of 
the lattice, spin flip is also due to the first term in the opera- 
tor U, of Eq. (2) .  Yafet7 demonstrated that this contribu- 
tion compensates for the matrix element of the second part 
of U, of Eq. (2 )  to within terms linear in (qa) .  This compen- 
sation occurs only for crystals with a center of inversion, 
because otherwise (qa) changes to the relative role of the 
crystal potential, which is odd with respect of the coordi- 
nates under inversion conditions. In our case the potential of 
the atoms within the volume of a small particle has central 
symmetry, whereas the potential of the surface layer with a 
relative weight (a/d) does not have such symmetry. 

An estimate of the square of the matrix element in Eq. 
(5) ,  by a semiclassical m e t h ~ d , ' ~ , '  gives 

In further calculation of the rate of relaxation in accor- 
dance with Eq. ( 3 )  it is necessary to know the phonon Green 
function D, (w).  If the vibrations of atoms in a small parti- 
cle and the surrounding medium are independent, the scat- 
tering of electrons by phonons is blocked because oscilla- 
tions in a particle have a strictly discrete set of frequencies 
beginning from the minimum value w, = .iru/d. In reality, 
relaxation finally occurs because of the coupling at the met- 
al-insulator interface. We shall consider two cases which 
represent limits of the strength of this coupling. 

3. QUASICONTINUOUS PHONON SPECTRUM 

If the interaction between the metal and matrix atoms is 
sufficiently strong, the effective spectrum of long-wave- 
length vibrations of such a coupled system becomes contin- 
uous and is characterized by a Debye frequency w, and the 
average density of the phonon states N(w ) is common to the 
whole heterogeneous system. Substituting now Eqs. ( 5 )  and 
( 6 )  together with the quantity 

into Eq. ( 3 )  and then integrating with respect to the phonon 
frequency w, = uq, we obtain 

(8  

The values of the relaxation parameter A and of the exponent 
a in Eq. (8 )  depend on the ratio of the frequency of the 
electron transition and the characteristic frequency 
w, = .iru/d: 

2 1 8  A=- - - -  , a=5 
15n Tap om 

if w, > g A .  - {A > am. Here, A  = 4 ~ , / 3 N  and the rate of 
longitudinal relaxation in a bulk metal is 

Both the relaxation rate T,~; ' of Eq. (8 )  and the magneti- 
zation amplitude M, ( 0 )  ax are governed by details of the 
electron spectrum and fluctuate from particle to particle. 
The time dependence of the magnetization of the ensemble 
of the particles can be obtained by averaging the expression 

M,(t)=M, (0) e x p ( - t l ~ , ~ )  (12) 

over all the realizations of the random spectrum. 
a )  Low temperatures, T <  A. In this case the main con- 

tribution to Eqs. ( 4 )  and (8 )  comes from two states il and il ' 
closest to the Fermi level. If the chemical potential is defined 
on the basis of conservation of the number of quasiparticles 
in the odd occupancy case 

we find instead of Eq. (8 )  that 

where w = - l A .  If the number of electrons in a particle 
is even, we have to substitute in Eq. (13) the quantity 
f, (x)  = X" /2sinhx. We shall consider the specific case of an 
ensemble of small particles with an odd number of electrons, 
since in the case when T < A  it is the "odd" particles that 
govern the magnetization of the system (particularly in the 
case of light metals with a weak spin-orbit interaction"). 
We can easily show that the dependence of M, (0) on w is 
weak and, for the sake of simplicity, we shall ignore it. Sub- 
stituting Eq. ( 13) into Eq. ( 12) and averaging thelatter over 
the probability P (w)  of a given spacing w between the neigh- 
boring levels, we obtain 
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rn 

rn ( t )  =(M, (f)/M.(O) )= jdw P ( a )  exp[-f/r.. (w) I .  ( 14) 
0 

It is shown in Refs. 1 and 4 that the electron spectra of 
metals with a weak, A :,, and strong spin-orbit cou- 
pling should be described respectively by the orthogonal and 
symplectic statistics with the following correlation functions 
for the neighboring levels (see Ref. 1 1 ) : 

The repulsion between the levels is manifested more clearly 
in the case of a symplectic ensemble, since the spin-orbit 
interaction lifts additionally the level degeneracy. In the case 
of a random distribution of levels the probability is 
P (w)  = AP'exp( - w/A) (Ref. 5 ) .  

After short times t < A  - I the reduced magnetization of 
Eq. ( 14) decays exponentially at an average rate 

The characteristic energy scale is now w - T <  A and, there- 
fore, we can use Eq. (9 )  for A and a. [We shall consider the 
specific case when (A/w, ) - (&,/w, ) (a/d)' 5 I . ]  Then, 
the relaxation rate (7,; I corresponding to the onset of decay 
of the magnetization behaves as follows: 

where n = 1, 4, and 0, respectively for the three correlation 
functions given above. 

If tA > 1, the magnetization decays nonexponentially: 

0. 

m ( f ) = l -  jdw ~ ( u ) ,  

If there is no correlation between the levels In m ( t )  - - w*/ 
A, i.e., if the decay occurs in accordance with the power law 
t ' ' ,  we find that y- T/A. The continuous curves in Fig. 1 
are the m( t )  dependences calculated for the case when 
T/A = 0.1. The weaker the repulsion between the levels, the 
longer the decay of the magnetization, since the scatter of the 
relaxation rates increases as a result of randomization of the 
distribution of the levels. It follows from Fig. 1 and Eq. (9 )  
that the characteristic time corresponding to lnm ( t )  = - 1 
is at least an order of magnitude longer than the relaxation 
time in a bulk metal T,. 

b)  High temperatures, T s  A. The number of electrons 
in a particle (odd or even) is now unimportant. The relaxa- 
tion rate of each particle is governed by the contribution of a 
large number of levels so that self-averaging of the sums in 
Eq. ( 8 )  occurs over different parts of the spectrum. The 
magnetization of an ensemble of particles then decays ex- 
ponentially and the relaxation time governed by Eqs. (8 )  
and ( 10) is found to be equal, irrespective of the nature of 
the statistics of the levels, to its value T,, for a bulk metal. 

FIG. 1. Decay of the magnetization in the case of continuous (solid 
curves) and quasidiscrete (dashed curves) phonon spectra of a small par- 
ticle with different degrees of correlation between the levels: 1 ) orthogo- 
nal ensemble; 2 )  symplectic ensemble; 3 )  no correlation. 

Therefore, in the case of a continuous phonon spectrum 
(strong coupling of the metal particles to the matrix) quali- 
tative changes in the relaxation process occur only if T <  A. 

4. QUASIDISCRETE PHONON SPECTRUM 

In the case of a weak coupling between the metal and 
matrix atoms the Hamiltonian of the long-wavelength vibra- 
tions of a heterogeneous structure is H,, = H ,  + Hz +- H,,, 
where H I  describes low-frequency phonons with a discrete 
set of frequencies w, and Hz  describes phonons of a matrix 
with a continuous spectrum of excitations w, . The contribu- 
tion of the interaction between the metal and the matrix to 
the vibrational energy can be written in the form 

where y,, is the parameter of the interaction between metal 
and insulator (matrix) atoms; SR , and SR, are the displace- 
ments of the atoms of two kinds near an interface between 
two media s, which we shall assume to be spherical. If the 
displacements are expressed in terms of the operators de- 
scribing the normal vibrations p, and p, of the correspond- 
ing subsystems, we find that 

where j,, (x)  is a spherical Bessel function of the nth order. 
We retained in Eq. ( 19) only the terms that cause broaden- 
ing of the vibrational levels of a metal. 

A calculation of the self-energy part of the phonon 
Green function D, ( a )  to within the second order with re- 
spect to the Hamiltonian of Eq. ( 19), gives 

Dq(o)  = 0 , 2 { 0 ~ - w ~ ~ [ l + i  Im Zq(o)] ) - ' ,  

We omitted the real part 2, (w) which results in weak 
renormalization of the phonon energies w,. It is important 
to note that as a result of the interaction between the two 
subsystems the phonon levels of a small particle cease to be 
sharply defined and acquire a width w, Im Z, (w) .  The spin- 
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phonon relaxation channel becomes stronger as the broad- 
ening increases. 

Substituting Eqs. (20),  (5 ) ,  and ( 6 )  into Eq. ( 3 )  and 
estimating the sum over a discrete set of phonon energies a , ,  
beginning from the minimum value w, = m , / d  we find 
that the relaxation rate T; is still given by Eq. (8) .  How- 
ever, the relaxation parameters A and the power exponents a 
are now given by 

if gAr - &A < w, and by 

8 1 A ~ i z  2T 
A = - - -  ( - ) 1 -  a=2 

5n2 T., 2T 2T 0 1 2  

if wDi > lA. - gA > w, . Here, a,, and w,, are the Debye 
frequencies of a small particle and of the matrix, respective- 
ly, and 

is a characteristic frequency depending on the ratio of the 
constant of coupling y,, between theatoms of a metal and an 
insulator to analogous force constants y ,  and y, , respective- 
ly, inside the metal and the insulator matrix. 

Further calculations associated with determination of 
the law of decay of the magnetization of an ensemble of small 
particles are simply repetitions of the calculations described 
above in the case of a continuous phonon spectrum. At low 
temperatures such that T <  A, w,, , we can compare A and n 
from Eq. (21) with the corresponding quantities in Eq. ( 9 ) ,  
and we can see that the relaxation rate r,; ' (w)  of Eq. ( 13) 
for an average particle with w - A is reduced by a factor 
(W ,,/A)'. The time dependence ofthe magnetization shown 
in Fig. 1 by the dashed curves also differs from the case of a 
continuous phonon spectrum. The discrete nature of the 
phonon levels then slows down the relaxation process also at 
high temperatures T >  A. Substituting Eq. (22) into Eq. (8 ) ,  
we find that T,- - T; ' (w ,,/2T)'. The factor in front of 
T &  ' is essentially the ratio of the rate of decay of phonons 
wIm Z(w) - w:, w i  /w4 to the spacing of the phonon levels 
A,, ( w )  -wi/w2 at a frequency w-2T. It should also be 
noted that the results of this section are valid if w ,, <a, ,  
(which is the condition for a quasidiscrete distribution of the 
levels). 

5. SURFACE SPIN RELAXATION 

It is natural to assume that the scattering of electrons by 
spin-orbit surface defects plays a considerable role in small 
particles. The corresponding contribution of T,, ' to the rate 
of relaxation can be found by replacing H,, in Eq. ( 1)  with 
the Hamiltonian 

where S(r, ) is the operator representing the spin density of 
electrons at the position of a defect with the coordinate r i .  
Then, T,~; ' is given by 

rn 

where N, . is the number of defects and GA (w ) is the retarded 
Green function of electrons. Following Dyson,I2 it is usual 
to describe surface relaxation by the probability E of spin flip 
of an electron when it collides with the surface. In the case of 
a massive spherical particle with a quasicontinuous spec- 
trum of electron excitations, it follows from Eq. (24) that 

where u, is the Fermi velocity and ci = N, /N, is the surface 
concentration of defects [N, = ~ ( d  / a )2  is the number of 
surface atoms in this particle]. The quantity E naturally in- 
cludes a contribution not only of the point defects in accor- 
dance with Eq. (23), but also of various surface irregulari- 
ties, magnetic impurities, etc. If E is determined by a 
resonance method, information on the surface of a metal can 
be obtained. l 3  

If the size quantization is allowed for, T; ' tends to zero 
because we can no longer satisfy the law of conservation of 
energy in Eq. (24).  Relaxation to static defects is possible 
only if there is a mechanism that broadens the electron lev- 
els. This mechanism can be the electron-phonon interaction 
represented by the first term in Eq. (2) .  If we calculate the 
self-energy part 2, (w) of the function GA (w)  in the second 
order with respect to this interaction, we obtain 

where the prime of a sum denotes that A '#A. Rewriting Eq. 
(24) using Eqs. (26),  (4 ) ,  and (25) and following this with 
simple calculations, we can reduce the formula for T.~; ' to a 
form identical with the right-hand side of Eq. ( 3 )  if we as- 
sume in this equation that 

Since the last two factors in Eq. (27) represent the square of 
a matrix element of the electron-phonon interaction, the rate 
of surface spin relaxation in a small particle can be described 
using Eq. (25) by introducing the effective spin flip proba- 
bility E,, -E/AT,,, < E  (7'; I is the rate of electron energy 
relaxation via interaction with phonons). 

Substituting Eq. (27) into Eq. ( 3 )  and repeating the 
procedures in Sec. 2-4, we can show that the rate of surface 
relaxation T ,  ' is also described by Eq. (8 )  if the coefficients 
A and the exponents a are replaced with new values. When 
phonons in a small particle have a continuous spectrum of 
excitation, these values are 

if gA. - lA < w, and 

if w, >{A. - 6, > w,. If the phonon spectrum of a small 
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particle is quasidiscrete, then 

for gA. - lA < w, and 

for w, > g A .  - gA > w,. Comparing A and a in Eqs. (28) 
and (30) with the corresponding expressions for the spin- 
phonon relaxation given by Eqs. (9)  and (21 ), we find that 
the temperature dependences and the nature of decay with 
time are identical for both scattering mechanisms at T <  A. 
However, the size dependences are qualitatively different: in 
the spin-lattice relaxation case we have A a ( ~ / d ) ~ ,  whereas 
in the surface relaxation case we obtain A a ( d  /a)'. 

At temperatures T& A, substituting Eqs. (29) and ( 3  1 ) 
into Eq. (8 ) ,  we find that the rate of relaxation of an ensem- 
ble of particles is described by Eq. (25) with the effective 
probability of spin reversal amounting to 

in the case of a continuous phonon spectrum and 

when the coupling between the particle and medium is weak. 
It follows from these formulas that if T> A, the temperature 
dependence of the spin relaxation to static defects is some- 
what weaker than that due to lattice vibrations. This is due to 
the absence ofthe Yafet factor (qa) *, which we mentioned in 
Sec. 2, in the case of the matrix elements of the electron- 
phonon scattering without spin flip. 

6. LEVEL BROADENING DUE TO THE COULOMB 
INTERACTION 

At low temperatures, particularly in the case of a weak 
elastic coupling with the surrounding medium, the tempera- 
ture dependence of the surface relaxation rate may change 
because of the nonphonon mechanisms of broadening of 
electron levels. The rate of decay of a quasiparticle of energy 
w - T, associated with the electron-electron scattering when 
the transferred energy is of the order of w, is given byI4 

Here, L : = max{Li ,L,, ), Li  are the dimensions of the sam- 
ple, L, = (D / a )  'I2, D = u,l/3, and I is the mean free path. 
Equation (34) is derived for an effective dimensionality 
d = 1, 2, or 3 defined as the number of measurements for 
which L i  > L,,. If we use this formula for a small particle 
with d = 0, we find that 7: ' - A .  This would mean that the 
spin relaxation freezing discussed above and associated with 
the discrete nature of the levels should not occur and, more- 
over, at energies w 5 A the quasiparticle description is no  
longer valid. In reality, we must not substitute d = 0 in Eq. 
(34).  We shall demonstrate this by considering the example 
of the contact electron-electron interaction. The corre- 
sponding contribution to the imaginary part of the pole of 
the Green function (26) is 

A quasiclassical f ~ r m u l a ' ~  

reduces the decay of Eq. ( 35 ) to 

7 (m = ii) = A' y, y, \ mg2 (q ,  a). (37) 
h'>O pi-0 &: 

F o r d  = 1,2, and 3 we find that Eq. (37) yields Eq. (34) .  If 
d = 0, it is important to note that the contribution of the 
interaction with q = 0 should be excluded, because then the 
matrix elements in Eq. (35) vanish. In other words, a homo- 
geneous potential (even if it fluctuates in time) cannot give 
rise to transitions between states because then the energy 
levels are shifted simultaneously and the separation between 
them remains unchanged. I t  is this nonphysical contribution 
of the homogeneous potential that is responsible for the de- 
cay rate 7, ' -A if we substituted = 0 in Eq. (34).  A similar 
situation occurs also in the case of the Coulomb interaction. 

For a small particle with L, - L, 5 L, we find from Eq. 
(37) that 

In the case of an arbitrary dimension d the decay de- 
scribed by Eq. ( 37) is 

(2 L$Ly*L2* x-d/l 

y ( d )  ( 0 )  N - 1 dx- 
EF + A  L,' l + r 7  

where L is the maximum size of a sample. Hence, it is clear 
that in the limit d -0  the integral is determined by the upper 
limit and there is an additional dependence of the type 
( L  /La )4. The difference between Eqs. (39) and (34) re- 
duces simply to the corrections which are inversely propor- 
tional to the volume of a sample, but which become of funda- 
mental importance on transition to zero-dimensional 
systems. 

The ratio (L, /L, ) - (aw/A) ' I 2  governing the effec- 
tive dimensionality of a sample and the nature of decay of 
quasiparticles depends strongly on the geometry of a sample 
via the parameter a = L,a2/lL :. If a < 1 (when the length 
of a sample does not exceed greatly its thickness) there is a 
wide zero-dimensional region characterized by 0 < w < A/a 
and the decay rate is now described by y(w) gw,A. In the 
range w > A/a the situation is one-dimensional but we have 
y(w) <w. As the sample becomes longer, we find that a > 1 
when the zero-dimensional range of frequencies is very nar- 
row: w < A/a, and the decay rate is still less than w. In the 
one-dimensional range of energies the quasiparticle descrip- 
tion is valid only if w > a A  whereas for (A/a)  < w < a A  the 
decay is rapid: y(w)  > w. Therefore, the effects of the elec- 
tron-electron interaction are strong only in the case of aniso- 
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tropic small particles (pieces of wire, island films) in which 
diffusion occurs along some direction. In  the case of samples 
characterized by L, - L, - L, - 1 (and we shall consider 
only such particles) the decay rate y(w) is governed by its 
classical value u2/&, and it is less than the phonon contribu- 
tion to the broadening of levels. I t  should be mentioned in 
passing that for 1- L, there is again no need for the diffusion 
renormalization of the interaction with phonons. 

We shall now discuss the influence of level broadening 
because of the interaction with fluctuations of electric 
fields" on surface spin relaxation. The corresponding con- 
tribution to the decay of quasiparticles at  T> A is calculated 
in Ref. 17: 

At these temperatures we have T<w, and we find that 
7 i  I <A, which is also small compared with the following 
contribution if the elastic coupling of the metal to the matrix 
is not very weak, i.e., if (w,,/w,) Ra/L.  In the opposite 
case, the formula for the effective probability of spin flip 
given by Eq. ( 3 3 )  should be supplemented by a quantity of 
the order of 

, T L  
e e f f = e - - .  

e p  a 
(41 

Therefore, the quasiparticle description of small parti- 
cles is valid at all energies o < w, and the broadening of 
levels is governed primarily by the electron-phonon interac- 
tion. 

7. CONCLUSIONS 

I t  follows from the above discussion that at tempera- 
tures T <  A the decay of the magnetization of an ensemble of 
small particles with time deviates considerably from the ex- 
ponential law typical of bulk metals. The actual functional 
dependence m ( t )  is then governed directly by the nature of 
the correlation between electron levels. At high tempera- 
tures T >  A the decay of the total magnetization becomes 
exponential. 

Relaxation of the magnetization and its temperature 
dependence are governed largely by the nature of the forces 
of interaction at the metal-insulator interfaces. We can de- 
termine whether the phonon spectrum of a small particle is 
continuous or quasidiscrete from the time dependence rn ( t )  
(Fig. 1 ) and from the temperature dependences of the relax- 
ation parameters A .  In the case of a weak coupling between 
the metal and matrix atoms the relaxation process is strongly 
suppressed at low and high temperatures. 

Separation of the contribution of the spin scattering of 
electrons by boundary defects can give information on the 
state of the surface of small metallic particles. Since this re- 
laxation mechanism is possible only in the case of broaden- 
ing of electron levels because of the interaction with phon- 
ons, the effective spin-flip probability E,, depends on the size 
of particles and temperature. 

The first experimental observation of spin relaxation in 
small particles of alkali and noble metals with dimensions 
d - 50-100 A, carried out using a pulse method, was report- 
ed recently.'' The main experimental results demonstrating 
strong suppression of spin relaxation and the nonexponen- 
tial decay of the total magnetization are in qualitative agree- 
ment with the results of our investigation. 

We shall conclude by noting that the time dependence 
of the magnetization m ( t )  at temperatures T < A  may 
change considerably for systems in which the distances 
between the metal particles R, are so small that the dipole- 
dipole interaction between the particles described by ,ui/R : 
becomes of the order of or greater than the reciprocal of the 
decay time 7 -  ' (w ) and find from Eq. ( 13 ) that in the case of 
moderately large particles we have w -A. In this situation 
the diffusion of nonequilibrium magnetization from weakly 
relaxing particles to "fast" particles (particles with a suit- 
able spectrum w - T <  A or random particles of large size). 
The effect of this diffusion is that, depending on the actual 
situation, we can have different dependences m ( t )  which 
will be less extended in time, as shown in Fig. 1. 

The authors are grateful to I.A. Garifullin for valuable 
discussions in the course of investigation, to A.G. Aronov 
for discussing the problems associated with the broadening 
of levels in small particles, and to K.F. Trutnev for the help 
in numerical calculations. 
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