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The stationary Josephson effect on a spin current is considered. The stability region of the 
homogeneous superfluid state in the channel is found, and the dependence of the superfluid on the 
phase difference on the channel boundary is derived. 

The order parameter of the B phase of 3He is the rota- 
tion matrix R ( a ,  8 ,  y) ( a ,  8 ,  y, are the Euler angles). The 
system Hamiltonian does not depend on the angle a of rota- 
tion around the external magnetic field H which we direct 
along the z axis. Therefore the quantity P = S, - Sc, which 
is canonically conjugate to the angle a and corresponds to 
the spin current I, is conserved if dissipation is disregarded.' 
We have designated by S, the spin projection on the 2 axis 
and by Sc the projection on the axis 6 = R ( a ,  8 ,  y) i .  The 
properties of the spin current for a channel length L of the 
current I much longer than the correlation length < (to be 
defined below) were investigated by Fomin in Ref. 2. The 
critical current I , ,  corresponding to the critical Ginzburg- 
Landau current in the case of ordinary superconductors, was 
calculated and found to be in satisfactory agreement with 
e~per iment .~  

It is also of interest to consider the flow of spin current 
through the so-called weak links in the case L 5 6, when the 
boundary conditions must be taken into account. Weak links 
can be various constrictions in the current channel, or places 
in which the order parameter is suppressed (e.g., by local 
increase of the external magnetic field). Weak links in the 
case of a mass current were well investigated in Refs. 4 and 5. 

1. We consider the stationary Josephson effect. If the 
order of magnitude of the condensate inhomogeneity energy 
is less than the dipole and Zeeman energies, the problem 
reduces to finding the exterma of a functional F with speci- 
fied boundary conditions. If the gradients are perpendicu- 
lar to the external field H, the functional F is given by 

Here u = cosp, cf and c: are the squares of the spin-wave 
velocities, and F, is the condensate inhomogeneity energy. 
The second term in the integrand ( 1 ) is the sum of the Zee- 
man energy and the quantity a, P that ensures precession 
with a frequency w, that differs from the Larmor frequency 
w, , and conservation of P in a closed volume. Later on we 
shall need an expression for the spin current I obtained by 
varying F, with respect to a: 

Let the spin-current flow channel be directed perpen- 
dicular to H along the x axis and have a length 2L and a 
width a, with a 4 L. The last condition allows us to make the 
problem one-dimensional, so that the functional ( 1 ) is much 
simpler. We integrate ( 3 )  with respect to x and take into 
account the symmetry of the problem, u ( L )  = u( - L ) .  
The second term in (3)  is a total derivative and is cancelled 
out on integration. We obtain an isoperimetric variational 
problem with a specified phase difference h a  on the ends of 
the channels. We introduce the dimensionless variables 

16 IIJ c ~ -  
x = x l =  Lx,  j = 7, - 2  - -  

i; =Op((L)p-(L,L)  3 CL 

where the length plays a role similar to that of the correla- 
tion length in superconductors. We substitute (3)  in (2)  and 
discard the total derivatives &/ax. We obtain ultimately the 
functional 

5 clL 1 
F ( u ) =  - i ( ~ { ~ m ( c o s  o )  + - - cos o  

8 L' - 
1 

j dx 
~ a = 4  j = const, ( 5 )  

, (1 - cos V )  [5cZ (cos  U )  +f j ]  

We have introduced here a new variable such that 
u = ( 5  cos v + 3)/8. The variable v has a range 0 < v < n-, 
and its value on the ends x = f 1 of the channel is v = T. 
The validity of the last statement follows from simple esti- 
mates. Indeed, the real deviation of the variable v from T, 
designated Sv = T - v, is determined at the end of the chan- 
nel by the competition between the kinetic energy 12a2L / 
c2 (Sv) - c2a2/L (Sv) of the current inside the channel [the 
third term in (4)  1 and the energy ( S ~ ) ~ c ~ a ~ / a ~  - (Sv) 2c2a 
due to the deviation of the order parameter from equilibrium 
in the shores themselves [first term of (4 ) ]  (we have used 
here the fact that v is restored over a length of order a from 
the channel boundary). Thus, the deviation of v from n- is 
indeed small (Sv- (a/L) 'I4 4 1) in the considered geome- 
try. 
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FIG. 1 .  Dependence of the dimensionless spin current j on 
the phase difference A a  at the ends of the channel. The case 
L /<-O,c:/ci = 3/4  (the hydrodynamic limit T-  T, ) is 
shown. 

We now calculate in fact the I ( A a )  dependence. The 
equation of motion is obtained by varying the functional ( 4 )  
with respect to the variable v. In the region where Aa is small 
[see ( 8 ) ] there exists a single solution that yields the mini- 
mum of the functional ( 4 )  and satisfies the boundary condi- 
tion v(  - 1 ) = v( 1 ) = P. The solution is represented by the 
line OA in Fig. la: 

For this solution p = 8, = const. From now on, when nec- 
essary, we shall expand the result for simplicity in powers of 
the small quantities (L /g)' and (SC)' = (c; - C: ) / c : .  To 
investigate the stability of the solution (6), we linearize the 
functional F ( v )  near v  = n, retaining only the terms qua- 
dratic in 6v = n - v: 

We have introduced here a variable w  = cos v  with limits 
[ - 1 ;  1 I .  Expansion in terms of the small ( S C ) ~  and L 2/ (  
yields c 2 ( w )  = 2 + ( 1  - w ) ( S ~ ) ~ , m ( w )  = 1 + 4 
( 1  - w ) ( S C ) ~ .  We obtain next from (9)  

( 1 - w , )  [16+3(1-wO) ] (6')' 
d w  j 2 ( l + w )  ( w 0 - w )  

From ( 1 0 )  and ( 1 2 )  we obtain 

This expression is equivalent to the Lagrangian of a harmon- where O[ ( S C ) ~ ,  L 2 / g  2 ]  denotes termsoforder ( S C ) ~ ,  L 2 / (  

ic oscillator. small ha the stiffness of the oscillator is and higher. They are immaterial in (131,  since they lead, 

small, so that only fluctuations with large wavelengths are when ( 13) is substituted in ( 1 1  ), to terms of even higher 

possible. Instability sets in when the wavelenght of the fluc- order in (Sc12 and L '/< '. For the phase difference Aa we 

tuations becomes smaller than the channel dimension 2L. obtain the integral 

From ( 7 )  we find that the range of stable Aa is wo 

Aa=2.2 j 55 j dw 
= n  

O<Aa<x-7/1en ( 6 c )  '4- 2LZ/nEz. (8 )  dw ( 1 - w )  116+3(1-w) (I%)'] 

With further decrease of A a  a solution of ( 6 )  exists, but 
becomes unstable. Another solution with v ( x )  #T, shown 
by segment AB in Fig. la, turns out to be stable. To calculate 
the latter solution we need the first integral of the equation of 
motion, which is obtained from the functional ( 4 ) .  Note that 
the first term in (4)  is the "kinetic" energy and the last two 
are the "potential" one. Then, since u ( x )  is an even function, 
we get av (O) /dx  = 0  and u ( 0 )  = v0 is the minimum of v ( x ) .  
This yields 

1 du ' LZ 
- m ( c o s u ) ( - )  2 dx - - C O S V +  E~ i" 

( 1  - cos u)  [5c2 (cos v )  + 6 ]  
L2 

=-A i" 
E z  COs u" + ( 1- cos v,)  [5c2 (cos u0) 4-61 

. ( 9 )  

We are interested not in the actual form of the v ( x )  
dependence, but only in the function I (  A a ) .  We express dv /  
dx  of ( 9 )  as a function ofjand vo and substitute in the follow- 
ing identities: 

wo 'JJ" 

7 f i  ( 1 - w , )  '"dw Y ~ L '  ( l - w O ) ! ~ d w  
- - ( 6 c ) .  j 

32 , ( I f  10) ( w , - w )  + - - j  n E2 - ,  ( I + w )  ( w O - W )  

( 1 4 )  

For the AB curve we obtain ultimately, calculating the inte- 
gral (141,  

The solutions (6)  and ( 1 5 )  intersect, as they should, in a 
point A with coordinates 

The stability region of the solution ( 15 ) is then 
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The inequality ( 1 7 )  allows us to conclude that for a suffi- 
ciently long channelL ' > 7 2 ( 6 ~ ) ~ f  2/32 the function I ( A a )  
becomes multiply valued, and the solution ( 15)  becomes 
unstable. 

2. We consider now a channel of arbitrary shape. As 
already noted, in this case the complete solution of the prob- 
lem becomes too complicated. We consider therefore only a 
situation in which u, becomes close to unity far from the 
aperture. Then 

V u < V a  ( 1 8 )  

and we can expand the functional ( 1  ), ( 2 )  in terms of the 
small quantity 6u  = 1  - u. The situation ( 18 )  can be real- 
ized in experiment in a domain wall, when the channel axis 
along which the Josephson current flows goes outside the 
limits of the processing domain. The equilibrium value of the 
order parameter is restored at a distance of order a  from the 
neck ( a  is the characteristic dimension of the neck) and the 
domain wall size is of the order off. Therefore, if the strong 
inequality a  gf is satisfied, it can be assumed that far from 
the aperture that joins the two vessels the order parameter 
assumes a constant value even if the channel axis passes 
through a domain wall. This allows us to vary the quantity u, 
and satisfy the inequality ( 18) .  

Taking the condition ( 18 )  into account, we substitute 
in the functional ( 2 )  u  = 5/8  cos v  + 3/8 and consider only 
terms quadratic in v. In addition, we assume the condition 
f ( a  to be exactly satisfied. We have then 

Introducing the complex variables $ = veia , we express 
the functional ( 19)  in the form 

It is easy to relate to the functional ( 2 0 )  an equation of mo- 
tion 

with a boundary condition a$/& = 0  on the boundaries of 
the vessels. Here n is the normal to the walls of the vessel. A 
solution of Eq. ( 2  1  ) with corresponding boundary condition 
is given in Ref. 4. It can be represented as a sum of two terms: 

$=uo[f (x)eicL~+(l-f  ( x ) )  eia21, ( 2 2 )  

where v,, a,, and a, are the values of the modulus and the 
phases of the order parameter far from the aperture in the 
right- and left-side vessels, f ( x )  is the real solution of Eq. 
( 2  1  ), which tends asymptotically to unity and zero with in- 
creasing distances from the channel towards the first and 
second vessels, respectively. We obtain a linearized equation 
for the current from ( 3 ) :  

and, substituting the solution ( 2 2 )  in ( 2 3 ) ,  we get 

I,=5/jBVf ( x ) c ~ ~ u , , ~  sin (a?--a,). ( 2 4 )  

The quantity V f ( x )  depends on the specific geometry of 

the channel and its scale is a- '. n the particular case of a flat 
screen with a round opening, of diameter a, the total critical 
current, i.e., the current integrated over the opening, is 
I? = 5 / 1 6 a c ~ v ~ .  

We make now a few remarks concerning the j ( A a )  de- 
pendence in the case when u  -. - on going from the chan- 
nel into the interior of the vessel. Clearly, when ha = 0  we 
also have j = 0.  Next, it follows from ( 3 )  that the current 
vanishes when the pase trajectory v ( x ) ,  a ( x )  in a space with 
coordinates v  and a passes through the point u  = 1 or, equiv- 
alently through v  = 0. For investigations near this point it 
suffices to have the functional ( 19 )  already expanded in 
terms of the small quantity v2. The functional ( 19 )  reaches a 
minimum and a curve which is a geodesic for a space with 
coordinates ( v ,  a ) .  This space is flat, and the variable v  para- 
metrizes the distance along the radius, while the cyclic vari- 
able a is the angle measured from a certain specified direc- 
tion. If terms nonlinear in v 2  are taken into account, the 
order-parameter space becomes curved, and has no singular 
points as before. It is therefore easy to assume that there 
exists a geodesic curve that will pass through the point v  = 0  
when the phase difference is ha = a. Thus, a plot of j ( A a )  
will pass through the points j = 0  and ha = n-k, where k is 
an integer. 

3. We consider now a case when the channel through 
which the spin current flows is parallel to the external mag- 
netic field. The calculations must be carried out separately, 
since the functional F, differs somewhat in form from ( 2 )  
when the gradients are parallel to the external field, namely 

We proceed next just as in Sec. 1. Without going into details 
(see Sec. 1  ), we obtain the following expressions. The spin 
current is 

We introduce the dimensionless variables 

in the functional ( 2 5 ) .  They differ from the case with the 
channel parallel to the field only by the substitution c, +el l  . 
The functional ( 2 5 )  takes [after substitution 
u  = ( 5  cos v  + 3 / 8 ) ]  the form 

1  -- i" 
2 (1 - cos v )  [5c(cos u )  +3]  

} ( 2 7 )  
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j dx 
~ a = 2  1 

- 1 (1 - cos v) [5c(cos v)+ 3 1 '  

In the region where Aa is small (see (3  1 ) below) there exists 
a single solution that minimizes the functional (27). The 
solution is represented by the line OA in Fig. 1 (b): 

We expand the function in terms of the small quantities (L / 
1)2 and ( S C ) ~  = ( C: - c i  )/ci. When testing the solution 
(29) for stability we need retain only in (27) the terms qua- 
dratic in Sv = v - IT. Then 

( Aa) V2 -[ (2+5(6c)') 
8 E" 

] (6~ ) ' ) .  (30) 

It is easy to find the stability region. To this end it is 
necessary that Aa lies in the interval 

In this form, this region differs only by the coefficient 2 in the 
term with from the region given by (8). We have used 
here, however, a different expression for (Sc12, which is neg- 
ative in the hydrodynamic region as T -  Tc . The solution 
(29) is thus stable even for Aa > n. We shall show below that 
in this region Aa > IT there exists also another solution that 
turns out, however, to be unstable in the hydrodynamic lim- 
it. To find it we turn to the functional (27) and obtain the 
first integral of the equation of motion 

We have put here w = cos v, with wo = w(0) the maximum 
of the function w ( x ) .  To find the I( Aa) dependence we use 
identities similar to ( 10) and ( 1 1 ) : 

i dx Aa=4 j - dw. 
- 1 (1-w) [5c(w) +3] dw 

Expanding the velocity and mass in terms of small ( S C ) ~  and 
( L  /() 2, we find that 

and we get from ( 3 1 ) 

From (32) and (34) we obtain a relation identical to (13) 
between the currentjand w,, and for the phase difference Aa 
we have from (33) 

Substituting here expression ( 13), we obtain ultimately 

The solution (35) is represented in Fig. lb  by the line AB. 
This solution is unstable in the hydrodynamic region as 

T -  Tc (see Fig. lb ) .  The solutions (29) and (36) intersect 
at the point A whose coordinates are 

The results lead to the following conclusion. Provided 
that the thickness of channel a is much less than its length, in 
the hydrodynamic approximation T -  Tc the channel paral- 
lel to the external field has no region with a unique I ( A a )  
dependence, i.e., with a pure Josephson effect. It appears, 
however, that this result depends strongly on the shape of 
the channel. In a region in which the conditions of Sec. 2 are 
met, the functional (25) reduces to (19) with the substitu- 
tion c, -ell, and the usual Josephson relation (24) holds 
with a single-valued I (Aa )  dependence. For a channel 
whose axis is perpendicular to the external magnetic field we 
always obtain in the case L / l g  1 a single-valued I ( A a )  de- 
pendence [see Eqs. (6) ,  ( IS), and (24)l .  
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