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The equations of strong-collision hydrodynamics are used to develop, for a plasma located in a 
strong electromagnetic radiation field, a theory of plasma instability to buildup of low-frequency 
nonpotential waves and high-frequency longitudinal and transverse waves. A novel parametric 
process is observed-stimulated magnetic scattering (SMS), due to effective scattering of the 
pump wave by growing magnetic-field fluctuations. The SMS threshold and growth rate are 
investigated, as well as the spectral, angular, and polarization properties of the scattered 
radiation. 

1. INTRODUCTION 

From among the physical phenomena due to paramet- 
ric instabilities, much attention is attracted by processes 
such as generation of quasistatic magnetic fields and stimu- 
lated scattering of electromagnetic waves. Their study is of 
practical interest in connection with plasma diagnostics and 
with absorption of radiation and transport in a plasma acted 
upon by strong electromagnetic fields. 

Parametric interaction of electromagnetic radiation 
with a plasma is substantially governed by the character of 
the ponderomotive action, which in turn depends on the fre- 
quency of the electron collisions. Thus, in the case of negligi- 
bly small collisions, the ponderomotive interaction between 
an electromagnetic field and a plasma is characterized by the 
Miller force.' At sufficiently high collision frequency, the 
high-frequency pressure force turns out to be different and is 
given by the expression derived by Perel' and Pinskii2 (see 
also the later Refs. 3 and 5 ) .  The theory developed below for 
parametric instabilities that lead to stimulated scattering 
and to excitation of quasistatic magnetic fields6 is based just 
on the premises concerning the force of the high-frequency 
action of electromagnetic radiation on a plasma under con- 
ditions when the electron mean free path and the collision 
time are short compared with the characteristic spatial and 
temporal scales of the processes. 

We start with a strong-collision theory based on the use 
of Grad's ten-moment method of taking into account the 
nonlinear (quadratic in the velocity) electron viscosity.' 
This theory yields, in particular, a correct expression for the 
high-frequency pressure force,2 refuting the ~ p i n i o n ~ . ~  that 
ponderomotive effects in a strong-collision plasma cannot be 
described by using transport equations and that a kinetic 
approach must be used. An averaging we use below an aver- 
aging method to construct a linear theory in which it is post- 
ed that a strong-collision plasma located in the field of strong 
electromagnetic pump radiation is unstable to the buildup of 
low-frequency nonpotential and high frequency perturba- 
tions, both longitudinal and transverse, of the electromag- 
netic field in the plasma. 

Parametric instabilities in a plasma, such as stimulated 
Brillouin scattering (SBS), stimulated Raman scattering 
(SRS), and stimulated thermal scattering (STS) have now 
been well in~estigated.~.~ Knowledge of the laws governing 

these processes is the basis of remote diagnostics of a plasma 
acted upon by powerful electromagnetic radiation. We re- 
port here a new parametric process, viz., stimulated scatter- 
ing by magnetic fluctuations (SMS). Noting that this pro- 
cess is possible only in a dissipative medium, we point out 
that this premise is at variance with the conclusion of Ref. 10 
(see the Appendix). 

The new parametric instability observed by us corre- 
sponds to excitation of quasistatic magnetic-field perturba- 
tions and of a high-frequency transverse wave in the plasma. 
The physical meaning is that the electromagnetic radiation 
acting on the plasma excites a dissipative quasistationary 
current as a result of which the pump wave is effectively 
scattered, leading to further increase of the current. We in- 
vestigate below the SMS threshold and growth rate, and also 
the spectral, angular, and polarization characteristics of the 
scattered radiation. The SMS properties differ qualitatively 
from the previously known properties of SBS, SRS, and 
STR. Study of SMS offers promise of more detailed and 
hence more reliable plasma diagnostics. 

We study also, in the plasma-resonance region, the non- 
potential aperiodic instability corresponding to excitation of 
a quasistatic magnetic field and high-frequency longitudinal 
plasma oscillations. In contrast to SMS, which evolves in a 
wide range of plasma densities (both at w,~w,, and at 
w,zw,,, where w, is the pump-field frequency and a,, is 
the Langmuir electron frequency), the aperiodic instability 
(an analog of which is present also in a nondissipative medi- 
um) is excited by a narrow region Iw, - o,, I <w, near the 
plasma resonance. 

2. DISPERSION EQUATION FOR PERTURBATIONS IN A 
PLASMA WITH FREQUENT COLLISIONS AND LOCATED IN A 
MONOCHROMATIC ELECTROMAGNETIC FIELD OF FINITE 
WAVELENGTH 

We derive in this section the principal dispersion equa- 
tion of the strong-collision hydrodynamic theory of a plasma 
located in a high-frequency field, neglecting the ion motion. 
We make the simplifying assumption that all the quantities 
that describe the state of the plasma and of the electromag- 
netic field vary little in space over distances of the order of 
the average displacement of an electron oscillating in the 
high-frequency pump field. This condition limits, on the one 
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hand, the characteristic scales of the investigated perturba- 
tions, and on the other hand the amplitude and frequency of 
the pump field. 

To bring to light the principal effects of parametric in- 
teraction between high-frequency radiation and a plasma, 
we confine ourselves to the following transport equations for 
the average electron velocity u and the viscous-stresses ten- 
sor rSj ,  which appear in the ten-moment approximation of 
Grad's method7: 

auj  au, 2 
- n J e  ( 6.7j div u) 

d r ,  d r j  3 

Here e, m,, n,, and T, are the charge, mass, density, and 
temperature of the electrons, c the speed of light, vei the 
electron-ion collison frequency, E and B the electric and 
magnetic field-strength vectors in the plasma, e,,, a unit 
antisymmetric tensor, and a = 6/5 [ 1 + (2Il22) - 1,  where 
Z is the ion ionization multiplicity. 

In view of the presence of a monochromatic pump 
wave, whose electric field E,(r,,t) we specify in the form 

we assume that the electric field in the plasma has, besides a 
slow time dependence, also a fast one: 

where the angle brackets denote averaging over a time inter- 
val that is long compared with the oscillation period of the 
pump wave (2.4), and is a rapidly alternating magnetic 
field: 

with E l  slowly varying over the time l/w,. 
By analogy with (2.5) and (2.6), we can distinguish 

between slow and fast dependences of the magnetic field, of 
the electron density, of the electron velocity, and of the vis- 
cous-stress tensor. We obtain then, with the aid of (2.1)- 
(2.3) and the Maxwell equations, a set of equations for the 
fast and slow quantities. After deriving the equation for the 
slow current j = e(n,u), we solve it by assuming that the 
electron collision time ve; is short compared with the char- 
acteristic time ofvariation of the slow quantities and that the 
electron mean free path u,/v,, (u, is the thermal velocity 
of the electrons) is short compared with the characteristic 
distance over which the slow quantities change in space. We 

assume furthermore that the electron gyrofrequency 
le( (B )/me c is low compared with v,, and neglect the contri- 
bution made to the slow current j = e(neu) by the usual 
drag currents obtained, for example, in Grad's five-moment 
approximation, which lead to small dissipative corrections 
of order ye,/w,. Taking all the foregoing into account we 
obtain the following expression for the density of the quasi- 
static current: 

e d ---- 
5am,,oa2 d r ,  ( E ~ ~ E ~ . '  

- ez a 
-(E1k[Elo (B) I s  

5a2m,200z~v,i d r ,  

where cr = e2(n, ) / m e  vei is the static electric conductivity of 
the plasma. The last two terms in the curly brackets of (2.7) 
are proportional to C3 (r,, )/&, , i.e., are due to the viscous- 
stress tensor connected with the motion of the electrons in 
the high-frequency field. 

Relation (2.7), which the analog ofohm's law in a plas- 
ma acted upon by high-frequency radiation, corresponds at 
(B) = 0 to the following expression for the ponderomotive 
force: 

According to (2.8), a nonpotential component of the pon- 
deromotive force is produced in the considered case of fre- 
quent collisions in addition to the potential high-frequency- 
pressure force proportional to V (El l 2  and produced in the 
collisionless limit. Expression (2.8) agrees, apart from a nu- 
merical coefficient of the order of unity, with the result of the 
kinetic approach of Refs. 2-5. This points to the feasibility of 
a simple description of the ponderomotive effects with the 
aid of transport equations. The opinion advanced in Refs. 4 
and 5, that it is impossible in principle to obtain the result 
(2.8) from the transport equation, is seen to the based on 
using for the viscous-stress tensor an equation in which 
terms quadratic in u are neglected.I2 It is just the allowance 
for these terms, first made in Ref. 13, which accounts for the 
nonpotential ponderomotive-force component in Eq. (2.8 ) . 

The presence of a vortical current-density component 
in (2.7) is evidence of the feasibility of generating a quasi- 
static magnetic field in a plasma. The corresponding nonlin- 
ear current 

where qe  is the Langmuir frequency of the electrons and 
V, is the amplitude of the electron oscillation velocity in the 
pump-wave field (2.4) : 
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exceeds by a factor o O / v d  the usual drag current obtained in 
the five-moment approximation of Grad's method. Using 
the Maxwell equations and neglecting the small displace- 
ment current 

4n 
rot (B) = - j, 

C 

I a <B> 
rot (E) = 

c at ' 

we obtain the aid of ( 2 . 7 )  and ( 2 . 9 )  the following equation 
for the magnetic field: 

do)+ rot (L rot <B> = ec  rot I, 
a t  4no ) 2Oam.r.. 

Equation ( 2 . 10 )  can serve as the basis for the study of gener- 
ation of quasistatic magnetic fields in a strong-collision plas- 
ma. 

Separating with the aid of (2.1 ) - ( 2 . 3 )  the rapidly alter- 
nating components of the electric-current density, we obtain 
from the Maxwell equations the following equatiori for the 
amplitude of the electromagnetic field E, ( r , t )  contained in 
( 2 . 10 )  

2i aE, -- cZ ewL.2 + E (oo)EI  ----;rot rot E,=i- 
a, at 00 m,oo3c 

[El (B) I 

iec 
--{[rot (B)  rot E l ]+  V,(E, rot, (B)  + Elkrot (B) ) ) ,  

memo3 
( 2 . 11 )  

where 

is the dielectric constant. We examine now the stability of a 
plasma located in the high-frequency field ( 2 . 4 ) .  We neglect 
the perturbations of the slowly varying density (n, ), confin- 
ing ourselves by the same token to nonpotential perturba- 
tions. 

Introducing the electromagnetic-field perturbation SE 
defined by the relation 

and representing, as usual, the spatiotemporal relations in 
the form 

(B(r, t )  >=6B exp(-iot+ikr), 
6E(r, t )  =6E+ exp{-iwt+i(k+ko)r). 

We arrive with the aid of ( 2 . 1 0 )  and (2.11 ) at the following 
system of linear equations ( Iw 1 gw, , )  : 

C 
-- - { (kVE) [k, 6E++6E-] +[kVk] (k, 6E++6EE)}, 

Sao,, 
( 2 . 1 3 )  

where we use the notation: k , = k f k , .  
T ,  = ( W  + w ~ ) ~ E ( w  & o0) - c 2 k :  . 

Recognizing that Eqs. ( 2 . 12 )  lead to the relations 

ic 
6E* = *-{(k*vE) [ k b ~ ] +  *[YE6B]* k o ( Y E [ k 6 ~ ] ) }  

T* C 

between the field-perturbation amplitudes, we obtain after 
substituting ( 2 . 14 )  in ( 2 . 13 )  the dispersion relation 

We have introduced here the notation 

P*= ( o f  ( ~ o ) ~ & ( o f  oo), 

The dispersion equations (2.15 ) describe perturbations 
whose wave number and frequency satisfy the conditions 

kvE/m0a 1, ( 2 . 17 )  

I o I <veir k ~ r e a ~ e n  ( 2 . 18 )  

which correspond to the case of a rather weak pump field 
and frequent electron collisions. We report in the next two 
sections the results of an analysis of this dispersion equation 
for various pump wavelengths (values of k , )  . 

3. NONPOTENTIAL APERIODIC INSTABILITY NEAR PLASMA 
RESONANCE (ko=O) 

We consider first the case of a uniform high-frequency 
pump field ( k ,  = 0 ) ,  which describes the evolution of the 
instability if the wavelength of the perturbations is small 
compared with the pump wavelength. This situation corre- 
sponds to resonance at the plasma frequency w ,  =: w,, . 

At k ,  = 0 ,  Eqs. ( 2 . 16 )  yield the relation 

509 Sov. Phys. JETP 67 (3), March 1988 Abdullaev etal. 509 



(*)- O L ~  [kVslc[kV~]j 
DI, -- 

cZ P* I 

the use of which in (2.16) leads to the dispersion equation 

The presence of terms proportional to 1/P+ and 1/T, dis- 
tinguishes the dispersion relation (3.1 ) from the one result- 
ing from the approach of Ref. 14. The reason for this differ- 
ence is that in Ref. 14 were neglected the perturbations of the 
high-frequency electromagnetic field. This neglect cannot be 
regarded as justified, since the contribution of these pertur- 
bations to the dispersion relation is in no way smaller than 
the corresponding contribution from the low-frequency per- 
turbations of the magnetic field. The dispersion equation 
corresponding to the approach in Ref. 14 is obtained directly 
from (2.13) by neglecting in the latter the right-hand side 
(the quantities SE, and SE-),  i.e., by taking into account 
the excited high-frequency fields. 

Taking the conditions (2.18) and k, = 0 into account, 
the functions P, and T, can be approximately represent- 
ed in the form 

where S = (a,-w,, )/a,< 1 is the frequency deviation. 
From (3.1) and (3.2) we get w = iy, where 

~ ~ k v [ k V ~ ] ~  y=- -  + - ( I +  
4na 5azv, ,  

The instability buildup is thus aperiodic (Re w = 0) .  
According to (3.3), the maximum instability growth 

rate is reached when the perturbations propagate in a direc- 
tion transverse to the pump-wave electric-field strength vec- 
tor (klV, ). For the growth rate that is a maximum with 
respect to the angle we have from (3.3) 

and in accordance with (3.4) the most effective instability 
buildup occurs at S = 0, when 

It follows from (3.5) that the threshold pump field is given 
by 

The instability growth rate (3.5) increases with decrease in 
the perturbation wavelength and is a maximum at the limit 
k z  vei /V,, of the validity of the theory, and its order of 
magnitude is 

The first inequality in (3.18) restricts the validity of Eq. 
(3.7) to a region in which VE < uv,. 

The instability considered in the present section corre- 
sponds in fact to parametric excitation, under plasma reso- 
nance conditions, of a quasistatic magnetic field and high- 
frequency longitudinal electron oscillations. The magnetic 
field generated by the instability development has an intensi- 
ty vector perpendicular to the plane of the vectors k and E,, 
and the connection between the amplitudes of the perturba- 
tion fields is given by (klE,, S = 0 )  

(6BI. (3.8) 
c vei 

The high-frequency longitudinal fields differ in phase by .rr 
from each other and by .rr/2 from the quasistatic magnetic 
field. Relation (3.8) shows that the energy density of the 
high-frequency longitudinal perturbations exceeds the ener- 
gy density of the quasistatic magnetic field. 

Note that in the derivation of the dispersion equation 
for the aperiodic perturbations we have neglected the contri- 
bution of the electromagnetic fields at double the pump fre- 
quency. A more accurate calculation performed by us shows 
that allowance for the second harmonic of the perturbation 
field does not influence the results. 

4. STIMULATED MAGNETIC SCATTERING (SMS) 

We proceed now to a discussion of the most interesting 
case k,#O with w, 2 a,, . The main contribution to the dis- 
perison equation (2.14) is produced then for small T+ or 
T-, when Re T +  = 0, which is reached if 

k ? = ~ 2 1 < k , = ~ 2 k k ~  cos c p ,  (4.1) 

and it suffices to consider in (4.1) only the minus sign 
(which corresponds to Re T+ = 0) ,  since the plus sign (Re 
T-  = 0) corresponds to simple replacement of p by .rr - p. 
Then 

and the dispersion equation takes the form (cos 6 = (k.E,)/ 
kE0 ) 

2 0 ~ , 2 + 4 ~ ~ k ~ ~  C O S ~  ( P  x{- ( 3 c o s 2 0 - I ) +  ( 2  cos2 0 - sin2 c p )  
avei ( 1 ) ~ ~ ~ ~ , ~ - - 2 i w w ~ '  

( 2 wLez+4cZko2 cos2 q~ 
x -+ 

av,, oLe2ve i -2 iooo2  

with w = Re w + iy in (4.2), as usual. 
It can be shown with the aid of (4.2) that the maximum 

growth rate is realized at 6 = ~ / 2 ,  i.e., for perturbations 
with a wave vector transverse to the pump electric field 

510 Sov. Phys. JETP 67 (3), March 1988 Abdullaev etal. 51 0 



strength vector E,. In this case Re w = 0, and we have for the 
growth rate 

According to (4.3), instability sets at an excess above the 
threshold defined by the relation 

i.e., in order of magnitude we have V, ,,,, zcv,,/w,,. 
In accordance with the condition .r < Y,, and with Eqs. 

(4.3) and (4.4) we find that in the region of sufficiently 
dense plasma w,zw,, the expression (4.3) for the instabil- 
ity growth rate is valid only near the instability threshold. 
Depending on the excess above threshold and on the param- 
eter a, the angle p,,, at which instability builds up most 
effectively is in the range 180" 2 p,,, 135". The ratio of the 
perturbation-field amplitudes is in this case of the order of 
/SE+I/ISBI 2 1. 

For a tenuous plasma w,,$o,, , when the threshold val- 
ue of the field is given according to (4.4) by 

it is possible to assess the instability buildup in a wide range 
of the excess above threshold, up to V ,  $ V , , , ,  . The corre- 
sponding instability growth rate that follows from (4.3) is 

It follows from (4.5) that the maximum growth rate corre- 
sponds to p,,, = 135" and is equal to 

According to (4.6), instability development in a tenuous- 
plasma region is characterized by a linear dependence of the 
growth rate on the pump-energy flux density. 

Under conditions of optimal instability buildup, corre- 
sponding to realization of relation (4.6), we have the follow- 
ing connection between the amplitudes of perturbation fields 
in a rarefield plasma: 

In contrast to the instability discussed in Sec. 3, no phase 
shift is produced between the high-frequency field and the 
quasistatic magnetic field. 

The nonpotential aperiodic parameter instability con- 
sidered here corresponds to the onset of a field SE, of a 
transverse electromagnetic magnetic wave, in fact the field 
of a scattered wave. The pump wave is scattered here by the 
perturbations produced by this wave in a quasistatic magnet- 
ic field. This is why we call this process stimulated magnetic 
scattering (SMS) . According to (4.1 ), besides the scattered- 
wave field SE, there is produced in SMS a scattered field 

SE- corresponding to optimal instability buildup at angles 
0 S p,,, 5 45" (p,,, z 45" for wO$w,, ) .  

Thus, in SMS the angles between the scattered-wave 
vectors k, = k f k,, and the vector kO are close to 90" for 
scattering in a tenuous plasma (w,$w,, ) and in the range 
0-90" for scattering in a sufficiently dense plasma 
(coo= wLe ). In an inhomogeneous (say, a laser) plasma this 
means that SMS leads to a rather broad angular distribution 
of the scattered ratiation. This makes it possible to relate the 
SMS phenomenon to the process of diffuse scattering of radi- 
ation by a laser plasma. lS.'' 

Turning to Eq. (2.14) and taking (4.1 ) into account, 
we easily verify that (SE+.E,) = 0. This means that SMS 
rotates the electromagnetic-wave polarizan wave by 90" (the 
vectors SE, lie in the plane passing through k and ko and 
perpendicular to E,,) . 

Summarizing the contents of this section, we emphasize 
that the revealed parameteric instability corresponds to sti- 
mulated scattering of the electromagnetic pump wave by 
quasistatic excitations of the magnetic field. This scattering 
is characterized by large scattering angles and by a 90" rota- 
tion of the electromagnetic-wave polarization vector, and is 
not subject to a frequency shift. The aggregate of these fea- 
tures distinguishes the described mechanism of nonlinear 
scattering in a dissipative plasma from the heretofore known 
ones (SBS, SRS, STS) . 

Note that we started above with a fully ionized plasma 
as the model. Yet the results of the present paper can be used 
for a weakly ionized plasma by assuming a = 1 and taking 
vCi to mean the frequency of the collisions between electrons 
and neutral atoms. 

The authors thank V. P. Silin for interest, attention, 
helpful criticism, and discussions. 

APPENDIX 

The SMS phenomenon investigated in the present paper 
is a unique nonlinear process in which only transverse fields 
participate. As noted in the Introduction, this process is pos- 
sible only in a dissipative medium. We prove this statement 
by using the hydrodynamic equations for a cold nondissipa- 
tive plasma: 

Taking into account the identity 
u2 

(uV)u=V-- [urotu] 
7 

(A.2) 

and the Maxwell equation 

we obtain after taking the curls of both sides of (A. 1 ) 

where R = curl u + (e/moc)B is the generalized curl. It is 
easily seen from (A.4) that if R ( t  = 0) = 0 at the initial 
instant, we have also (a a / & ) ,  = , = 0. By successively dif- 
ferentiating (A.4) we verify that all the higher-order deriva- 
tives also vanish: 
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If the function f l ( r , t )  is analytic, this means that it is equal 
to zero also at t > 0. This premise is a generalization, to the 
case of a cold nondissipative plasma located in an electro- 
magnetic field, of the known Lagrange theorem of conserva- 
tion of the curl of an ideal liquid." 

Since the plasma has in the initial state only the pump 
waves (2.4),  it follows that 

According to the generalized Lagrange theorem, no motion 
with a nonzero generalized curl can take place in the plasma 
during the subsequent evolution in time. 

Relation (A .6 )  excludes the possibility of nonlinear in- 
teraction of waves with participation of only transverse 
waves. In fact, calculating the curl of the current 

rot j=en, rot u+e [On,u] , (A71 

we see that nonlinear interaction of waves in a nondissipative 
(cold) plasma is possible only if the motion of the medium is 
accompanied by perturbations of its density. 
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