
Sound viscosity in media in thermodynamic disequilibrium 
N. E. Molevich and A. N. Oraevskii 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 
(Submitted 7 July 1987) 
Zh. Eksp. Teor Fiz. 94,128-1 32 (March 1988) 

Media in thermodynamic disequilibrium are considered. I t  is shown that negative second 
viscosity can exist in a large class of such media and leads to instability of sound waves. 

Gasdynamic theory of sound absorption takes into ac- 
count two viscosity coefficients, shear viscosity and second 
(bulk) viscosity. Second viscosity is manifested in processes 
accompanied by a change of the volume of the medium, and 
is due to the finite time needed to establish thermodynamic 
equilibrium as the sound wave propagates. If the period of 
the sound wave is of the same order as the time to establish 
equilibrium (the relaxation time T) ,  contraction and expan- 
sion of the medium will involve an appreciable energy dissi- 
pation due to irreversibility of the processes. This dissipation 
is determined by the second viscosity and can exceed sub- 
stantially the sound damping to friction, i.e., to shear viscos- 
ity. It is shown in Refs. 1 and 2 that the second-viscosity 
coefficient is defined as 

where c, = (c,, T,/c,, m ) ' I 2 ,  and c, = (c,,~,/c,rn)"~ 
are the velocities of the high-frequency (w> l / r )  and low- 
frequency (w< 1 / ~ )  sound, while c,, , c,, , and c,,, c, are 
the heat capacities of the high- and low-frequency sound at 
constant pressure and volume. 

The velocity c ,  of a sound wave propagating in a medi- 
um under thermodynamic equilibrium is always higher than 
the velocity c, (Ref. 3),  and the second viscosity is positive, 
meaning sound absorption. Interest attaches to a medium in 
which a thermodynamic disequilibrium is maintained even 
in the stationary regime. Such are, for example, laser media, 
a glow-discharge plasma, media with chemical reactions, 
etc. It is known that in such media Rayleigh instability of 
sound can set in,4 whereby the sound can become amplified 
under suitable phase relations between the oscillating energy 
source and the acoustic perturbations. The rather apprecia- 
ble number of studies devoted to finding the amplification 
coefficient of sound in media with nonequilibrium excitation 
of the internal degrees of freedom, chemically active media, 
or weakly ionized plasma with electron temperature higher 
than that of the heavy particles"' use an equally large num- 
ber of expressions for the instability growth rate. This makes 
their practical use difficult and obscures the common char- 
acter of the amplification mechanism. We show in the pres- 
ent paper that the growth rate of the acoustic instability in 
such nonequilibrium media can be expressed in unified form 
by introducing the second-viscosity coefficient in the form 
( 1 ). The generalized amplification condition is the change 
of sign (reversal) of the second-viscosity coefficient. The 
connection between sound amplification in gases and the re- 
versal of the second-viscosity sign was first indicated in Refs. 
12 and 13 as applied to media with nonequilibrium excita- 
tion of the internal degrees of freedom of the mole~ules .~~" '~ '  ' 
It will be shown below that reversal of second viscosity is 
possible in media with an energy source and in the absence of 

nonequilibrium population of the internal levels of the mole- 
cules. 

Consider sound propagation in a gas containing a sta- 
tionary energy source. This source can comprise discharge 
electrons that heat the gas by colliding with its molecules, 
absorbed light energy, chemical reactions, and others. The 
heat removal may be by transverse propulsion of the gas. The 
initial set of equations, in the absence of dissipative processes 
due to shear viscosity and heat conduction, is of the form 

wherep, P, T, and v are the density, pressure, temperature, 
and velocity of the gas, m the molecule mass, c, is the speci- 
fied heat of the equilibrium degrees of freedom per molecule 
at constant volume, and Q is the source power per molecule 
of the medium. 

For one-dimensional perturbation of the form - exp( - iwt + ikx), the linearized system of equations ( 2 )  
leads to the dispersion relation 

,-. 
c o k  mu - Q,, (- i ( o ~ ~ ) - l  k2 = - 

To cp - (Q,, - Q,,)(- icoTQ)-1 ' 
( 3  

where c, is the heat capacity of the equilibrium degrees of 
freedom at constant pressure 

To and p, are the unperturbed values of the corresponding 
quantities, Qo = Q( Togo),  and I re / = To/l QOl is the char- 
acteristic time of the source. 

I t  is correct to express the perturbations of the param- 
eters of the medium in the form of plane waves if the amplifi- 
cation (absorption) a at the wavelength A is small, i.e., if 

or, taking ( 3 )  into account, if 

If k has a negative real part, the inequality ( 5 )  must be 
reversed. According to (3 ) ,  Re k < 0 if 

Under condition ( 5 )  we obtain from ( 3 )  for 
k = k ' + i k V  
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We consider the two limiting cases of high2nd lew fre- 
quzncgs. &t high frequencies w 1 rQ I % 1 Qo - Qol/cp, 
(lQ,(Q, - Q , ) I / C ~ C ~ ) ' ~ ~  it follows from (6)  and ( 7 )  that 

where a _  is the amplification coefficient of the high-fre- 
quency sound. 

 or ~ / T ~ I < I G ~  - Go~/cp9 ( I Q ~ ( G , -  60)~/cpc,)"Z 
we have 

co=I ( ~ o l m ) ( ~ o - ~ o ) / ( - ~ o )  1 '", (10) 

where a, is the low-frequescy sound amplification coeffi- 
cient. Note that in the case Q, = 0 the condition (4)  is not 
met for low frequencies, so that no sound wave propagates in 
this frequency band. 

Expressions (9)  and ( 1 1 ) can be written in the usual 
form for the absorption coefficient if second viscosity exists 
in the medium 

where 

V h  

At c,, = c,, ca = - Q,,, c, = Q,, - Q,, and r = rQ 
expression ( 13) takes the form ( 1 ). The amplification con- 
dition, according to ( 12), is p < 0 or 

For chemically active media, the energy source can be 
represented in the form Q = Hk( T)p, p,/p, where k and H 
are the rate and enthalpy of the chemical reaction (H < 0 and 
H > 0 for endothermic and exothermic reactions, respective- 
ly), and p ,  and p, are the densities of the reagents. The am- 
plification coefficients a, and a ,  (12) coincide then with 
the acoustic-instability growth rates given in Refs. 7 and 8. 
Amplification is possible for both exothermic and endother- 
mic reactions if condition ( 14) is met. For endothermic re- 
actions, the condition (14) means that the energy absorp- 
tion should be smaller at the maxima of the sound wave than 
at the minima. Of course, to maintain the medium station- 
ary, additional heat removal is necessary at Q, < 0. 

Another example of a medium in which sound amplifi- 
cation was extensively investigated is a weakly ionized plas- 
ma.536 Here Qo is the electron energy loss in colli$ons with 
heavy particles. It is assumed in Refs. 5 and 6 that Q, = 0, so 
that the condition (4)  is not met. For the high-frequency 
band, the coefficient a ,  defined by Eq. ( 12) coincides, 
apart from the notation, with the corresponding amplifica- 
tion coefficient obtained in these papers. 

If the source power is consumed initially in excitation of 
the internal (say, vibrational) degrees of freedom, the sys- 
tem ( 2 )  must be supplemented by the relaxation equation 

where E, and &Zq are the reserve of the vibrational energy and 
its equilibrium value per molecule, and r, is the vibrational 
relaxation time. In addition, account must be taken of the 
change of E, in the equation for the energy conservation law 
(in analogy with Ref. 13 1. As a result, the dispersion relation 
(3)  is transformed into 

A 

k= z u2m [c, + cka - QO (- imQ)-l - IWZ~C,] , (15) 
To [c, + ckp - (^QO - oO) (- io-cQ)-l - iotkcp] 

where 

ckp = (d~, /dT),  = c,,, + (E: - &y9 )/To are the low fre- 
quency vibrational heat capacities, c, is the equilibrium vi- 
brational heat capacity, and E:~ are the stationary values 
of E,  and ceq, and T, = d In rk/d In To. 

A c ~ o r d i n ~  to ( 15 ) , the perturbations of the energy 
source Q, and Q, come into play primarily for sound of fre- 
quency 

In this case the instability growth rate is determined as be- 
fore by (12) and ( I ) ,  but subject to the substitutions 
C", = Cu + Cku, Cpm = Cp + Ckp. 

At higher frequencies, the influence of the source can be 
neglected. The amplification coefficient is again determined 
by (12) and ( I ) ,  but with c, =cp +ckp, c,, =c, +c,,, 
T = T,, as shown in Ref. 13. For these frequencies, the sec- 
ond viscosity and the corresponding amplification of the 
sound are due to the relaxational properties of the medium 
itself and to its degree of excitation, and do not depend on the 
method used for stationary maintenance of the nonequilibri- 
um energy distribution. 

We have considered so far gaseous media. We show in 
conclusion that negative sound viscosity can exist also in 
solids. Consider an isotropic solid with active centers whose 
excitation is not in equilibrium. If the longitudinal sound- 
wave frequencies are such that elasticity theory is valid (i.e., 
the medium can be regarded as homogenous and contin- 
uous), the initial system of equations describing the sound 
propagation in the direction of the x axis can be written in 
the form 

d T d'u dB + cu .- + 3ha,To - -  = 0. 
d t 8 t at ax 

where 8 is the energy stored in the active centers per cm3 
(we assume its equilibrium value to be zero), r, is the relaxa- 
tion time, r(, = d In ro/d In To, u is the displacement of the 
continuous medium in the x direction, K is the hydrostatic- 
compression modulus, B is the elastic modulus of the plane 
wave, and c, is the heat capacity at constant u per unit vol- 
ume (the analog of the specific heat at constant volume), 
and a. is the thermal-expansion coefficient. If the relaxation 
time depends on the strain in the medium or if the nonequi- 
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librium excitation source power depends on the temperature 
and on the strain, they must also be taken into account in the 
initial system. 

For one-dimensional perturbations u -exp(ikx 
- iwt), the dispersion equation corresponding to ( 16) takes 

the form 

where c,, = c , ,  c,, = c ,  + 9a;TJ ' / B  is the specific 
heat at constant volume and pressure of the high-frequency 
sound ( W T , > C , , / C ~ , ,  c d / c u ,  ); cd = c u m  + %',?,/To, 
c,, = c,, + 8?0.i,/To are the corresponding low-frequency 
specific heats. 

It follows from ( 17) that the amplification coefficients 
of high- and low-frequency sound are determined by ( 12), 
where the sound velocities are c: = c,,B /p,c,, 
c: = c,, B  /PC,,  , and the second viscosity is 

i.e., in full accord with ( 1 ). For .i < 0 the second viscosity is 
negative. Since, however, the thermal-expansion coefficient 
of a solid is small, and the specific heat is large, the amplifica- 
tion connected with the negative second viscosity will be 
very small at realistic energy inputs to the nonequilibrium 
degrees of freedom. 

The sound instability due to the Rayleigh mechanism 
can thus be caused, in a rather large class of media that are 
not in thermodynamic equilibrium, by negative second vis- 
cosity. This unified approach makes it possible not only to 

find the generalized amplification condition ( p < 0) , but 
also to simplify considerably the investigation of the nonlin- 
ear evolution of acoustic pulses and beams, and also their 
interaction with electromagnetic waves in nonequilibrium 
media. This is due to the possibility of using, in a number of 
cases, the corresponding equations for equilibrium media, 
but with reversal of the sign of the second-viscosity coeffi- 
cient, as can be seen from Refs. 12-14. 
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