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It is shown that sound damping in a mixture ofgases differing greatly in mass is determined 
almost completely by bulk viscosity, for which analytic expressions are obtained. The 
theoretically described strong dispersion of the sound velocity in such a system is in good 
agreement with experiment. 

A 

INTRODUCTION The linearized operator K,, describes elastic collisions of the 

~ ~ f .  1, devoted to measurement ofthe sound velocity particles of gas 1 both with one another and with particles of 
in a helium-xenon mixture, it was observed that the charac- gas 2; it takes the form 

ter of the frequency dependence of the sound velocity 
changes jumpwise on going through the relative-concentra- xi2 ($1 (v) 7 $2 (V) ) 

tion region c = N, (He) / (N,  (He) + N, (Xe) ) ~ 0 . 5 ,  where 
N [cmP3] is the number of particles per unit volume of gas. = Nl 5 wit (v, v', VI, vlf) rpi (vf) [ 41% (v) + $, (v') 
The sound velocity decreases with increase of frequency at 
c < 0.5 and increases at c > 0.5. An approximately similar 
behavior of the sound velocity was predicted theoretically in 
Ref. 2. Its authors solved numerically the equations of two- 
temperature hydrodynamics with phenomenologically in- 
troduced coefficients describing the dynamics of equaliza- 
tion of the mixture-component velocities and temperatures 
of and with three usual transport coefficients describing the 
thermal conductivity and viscosity of the considered mix- 
ture. 

We develop in the present paper a kinetic approach to 
the description of the frequency dependence of the sound 
velocity. It shows that in the transition concentration region 
c ~ 0 . 5  the frequency dependence of the sound velocity is 
determined in fact by only one transport coefficient-the 
rate of momentum exchange between the mixture compo- 
nents. The value of this coefficient is reliably determined by 
comparing the theoretical experimental frequency depen- 

- $1 (vl) - $1 (~1') I dvr dvl dvlR+N2 1 W12 (v, V, v,, V,) cp, (V) 

x [$I (v) f $z(V) - $1 ( ~ 1 )  - $ g ( V i )  IdV dV, dv,. (4)  
Here Nl W,, is the number of v.vl-  v, .v,' transitions per unit 
time in collisions of the first-gas particles with one another, 
and N, W,, is the number of analogous transitions inzolli- 
sions of particles of different species. The operator K,, is 
obtained from K,, by the interchange 1-2. 

To continue the description it is convenient to intro- 
duce the two-component vector $ = ($,,$,), define the sca- 
lar product by the relation4 

h A 

and introduce the operators A and K: 

denies of the sound velocity. 
~ ~ ~ l ~ ~ i ~  equations are obtained for the frequency de- which enable us to rewrite the system ( 3 )  in compact form: 

pendence bf thesound velocity and for the bulk viscosity. -io$+A$+R$=O. (5 

Thex axis is chosen along the direction of the vector q. Solu- 
$1. KINETIC APPROACH tion of Eq. (5)  yields the dispersion dependence ofhq on o. 

For a kinetic description of the propagation of sound It can be shown that the introduced operator K is Her- 
vibrations in a mixture of two gases, we represent the compo- mitian and that its eigenvalues ?re non-negative. Four of the 
nent distribution function in the form eigenfunctions of the operator K correspond to a zero eigen- 

where q, ,,, are Maxwellian distribution functions, N , , ,  are 
the densities of gases 1 and 2, respectively, and 1x1 < 1. We 
seek next the functions x in plane-wave form: 

x(r, V, t) =$(v)exp (iqr-iot) . (2)  

Substituting ( 1) in the transport equations for the distribu- 
tion functions f, (r,v,t), f, (r, V, t )  and using (2 1, we obtain by 
the usual linearization ~ rocedu re~  the following system of 
equations: 

-io$l(v)+iqv$i(v) +&2($i(v), $2(V) ) = O ,  ( 3  

value R = 0: 

as is easily verified by direct substitution in (4) .  In Eq. ( 6 ) ,  
,u = cm, + ( 1 - C )  m2 and Tis the gas temperature in ener- 
gy units. The first of these functions reflects the fact that the 
functions ( 1 ) remain equilibrium distribution functions 
when the total number of particles is changed but the per- 
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centages of the mixt%re components are preserved. The ac- 
tion of the operator K on the functions F, and F, is zero in 
view of the momentum and energy conservation laws. In a 
mixture of gases with not greatly disparate masses all the 
remaining eigenfunctions correspond in order of magnitude 
of eigenvalues R equal to the gas-kinetic frequency of the 
collisions, R - Nuugk , which exceeds noticeably in the hy- 
drodynamic limit both the sound frequency and the quantity 
qu,. This means that these eigenfunctions relax to the equi- 
librium value in times much shorter than w- '. The distribu- 
tion function corresponding to weakly damped vibrations of 
such a system is therefore described by the linear combinz- 
tion of the functions ( 6 )  which diagonalizes the operator A .  

In the case of gases with highly disparate masses, the 
times of energy and momentum transfer from one gas to the 
other, which are of the order of (Nvu,, m , /m2)  - ', turn out 
to be much longer than the mean free path time (Nuu ) - I .  

g!k 
This means that besides the functions ( 6 )  the operator K has 
also other eigenfunctions that correspond to small eigenval- 
ues A< Nvugk . These functions can be written in the form of 
a linear combination of the functions 

since this combination makes it possible to construct both 
functions of the type ( 6 ) ,  which describe the vibrations of 
the entire mixture as whole, and functions that describe vi- 
brations of each gas separately. 

Substituting a linear combination of the functions ( 7 )  
in Eq. ( 5 1, which is2n equation for the eigenvalues A = iw of 
the operator A + K, we obtain a secular equation for the 
connection between q and w: 

Here ul = ( T / m ,  ) ' I 2  and u, = ( T / m , )  ' I 2  are the mean 
thermal velocities of the molecules, while G, and G, are giv- 
en by 

Nm 
G , = - - I ~  T W l z ( v ,  V ,  v', V') vx(uX-ux') 

x (pi ( V ) ( L ) ~  ( V )  dv dV dv' dV' 

mi Xdv dV dv' dV'-Nuat, --- , 
In 2 

where a,, is the transport cross section for the scattering of 
the light particles by the heavy ones. I t  is taken into account 
in ( 8 )  that the result of the action of the operator K on the 
functions 

.v2 'I' 
and FA=(-$)'i@3+(y) @ a  

A 

from the set ( 6 )  is zero, K F2 = 0, Therefore the only ma 
trix elements of the operator K N / N ,  which differ from zero 
in the basis (7 )  are: 

N1ml Nl 
K55 =- G,, Kea =- Gs, 

Nzm2 N2 

'I: 

The quantities (m , /m2)G2  and G,, which characterize re- 
spectively the rate of particle momentum and energy ex- 
change in the light and heavy gases, are of the same order of 
magnitude. The hindrance to the momentum and energy 
transfer is manifested by the presence of the factor m , /m,  
and leads to the appearance of bulk viscosity. It will be 
shown below that at not too great a difference between the 
concentrations of the light and heavy gases this bulk viscos- 
ity is much larger than the shear viscosity obt5ined when all 
the remaining eigenfunctions of the operator K are included 
in the analysis. In the upshot, it is just this excess of the bulk 
over the shear viscosity which justifies the description of the 
mixture vibrations in the basis of the functions (7) .  

$2. HYDRODYNAMIC APPROACH 

Vibrations in a mixture of light and heavy gases admit 
of a hydrodynamic description in which, however, it must be 
recognized that the component temperatures and velocity 
directions can differ.2 This situation is described by the fol- 
lowing equations: 
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Here n , ,  n,, T,, T,, ii ,, and Z,  are respectively the concentra- 
tions, temperatures, and directional velocities of compo- 
nents 1 and 2. The terms proportional to the differences 
ii, - ii, and T, - TI describe the equalization of the veloc- 
ities and temperatures of the mixture components, while the 
constants B and Q determine the rate of this equalization. 

The system ( 10) is linearized in the standard manner: 

n,=N, [I+& cxp ( iqx- iot)  1, T,=T [1+% exp ( iqx- iot)  1, 

E,=ukE, exp ( iqx- iot) ,  
(11) 

u,=(Tlm,)'", k=1, 2, IT,, T,, i i , ~ ~ .  

Substituting ( 1 1 ) in ( 10) and retaining only the terms 
linear in the variables L%'~, 5, , and Fk we obtain for them a 
system of equations that can be solutions if a determinant 
that coincides with (8 )  after substitution 

B= (iV,N2mllN) G2,  Q= (NlN21N) G,  

is equal to zero. 
Note that no such equality is observed in Ref. 5, where 

the hydrodynamic equations did not take into account the 
equalization of the component temperatures, and the disper- 
sion equation corresponding to (8 )  contains errors. 

Thus, the foregoing kinetic analysis enables us to ex- 
press the phenomenological constants introduced into the 
hydrodynamics in terms of the elastic cross sections for scat- 
tering of particles of one gas by those of the other. One of 
these constants could have been obtained also by another 
method. The quantity A4 = Bii,/N, has the physical mean- 
ing of the force exerted by the immobile gas 1 on one particle 
of gas 2 that moves with velocity uZ. Substituting for G, the 
expression from ( 9 ) ,  we obtain for the value of this force 

which coincides with the one given in Ref. 3. We were unable 
to obtain a similar expression for G,. 

The presence of the terms B(ii2 - G I  ) and Q( T, - Ti  ) 
in ( 10) and their connection with G, and G, from ( 9 )  leads 
to the conclusion that their presence causes the bulk viscos- 
ity in the mixture. The microscopic equations obtained for B 
and Q allow us to state that this bulk viscosity is much larger 
than the shear viscosity not accounted for in ( 10). The possi- 
bility of neglecting the corresponding terms in ( l o ) ,  which 
we shall prove rigorously below, leads in fact to the much 
simpler form of ( 10) compared with the employed two-tem- 
perature hydrodynamics equations,, in which the influences 
of the shear viscosity and thermal conductivity are retained. 
As a result, Eqs. (10) and (8 )  can be solved analytically, 

whereas the hydrodynamic equations in Ref. 2 were investi- 
gated only numerically. 

$3. VIBRATIONAL MODES 

Introducing the notation a = m,/m,, u ,  = u, 
u, = ~ a " ~ ,  we rewrite Eq. (8 )  in the form of a biquadratic 
equation for the variable qu: 

+ioG,a-aG,G, f w b + i G 2 - -  [ o f  iG3]= 0. 1 :?I 
(12) 

Solutions of this equation give the dependence of the wave 
vector q = q' + iq" on the vibration frequency. The form of 
the functions q(w)  depends substantially on the values of the 
parameters aG, and G,, and they can be simplified in the two 
limiting cases w aG2 and w $ aG,. 

In the low-frequency limit w <aG,, when the light and 
heavy gases have time to exchange momentum energy dur- 
ing a vibration period, we obtain 

( o G 2 )  
q s , 4  = +2-''2 --- ( i -  

U 

The second of these solutions corresponds to a strongly 
damped vibration for which q"/qf = 1. The solution (13) 
attenuates weakly over a wavelength q"/ql-w/aG, < 1 and 
propagates at the velocity u, of the sound in the mixture. It 
is easy also to verify that this solution corresponds to vibra- 
tions of both gases, since it is a linear combination of all six 
functions ( 7 ) .  The sound damping ( 13) determines the bulk 
viscosity 

which depends on the percentage composition of the mixture 
and reaches at  c-1 - a  a maximum equal to 
5 = l p ~ f  ( 1  - a/2)/aG2 ( 1  - a = 0.97 in the case of an He- 
Xe mixture). In the limiting case N,  % N, expression ( 13 ) 
coincides with that obtained in Ref. 4. 

We consider now the relation between the contribution 
made to the sound damping by the bulk viscosity contained 
in ( 13 ) and the shear viscosity not included in Eqs. (8  ) and 
(10) .  

In  the case of the gas He and Xe of interest to us, it is 
known that their shear viscosities (in the pure gases) differ 
by only a few times (see, e.g., Ref. 6).  The damping due to 
the shear viscosity in the mixture can therefore be estimated 
at  

where, in order of magnitude, 77 - uC/3Natr. Recognizing 
further that Nua, - 3G2, we obtain ultimately for qf' 

" 4 o u2 q," " 
u, 27 2G2 v," 
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Stipulating that the damping in ( 13 ), due to bulk viscosity, ( ~ / m , ) ' y a ~ ,  
exceed the damping due to shear viscosity ( 15) by, say, sev- * 
en times, we find that this takes place in the concentration a 
interval 0.17 < c < 1 - a2=0.99. This condition means in 
fact that the shear viscosity of the mixture can be disregard- 
ed when the relative concentration of the He exceeds 20%. 

We consider now the limiting case of high frequencies. 
For w % aG2 the solution of ( 12) is 

0' uGz  'I* 

q = +  i -  u, =($) u, 
Vn V.n 

Since the inequality w 4aG2 must always be met (only then 
is the hydrodynamic approach valid), the mode (16) is 
weakly damped only if 

G2 ( I - C )  < 0 < G Z ,  (18) 

i.e., in the case 0 < 1 - c< 1, corresponding to a high relative 
concentration of the light gas. The solution corresponding to 
(16) is in this case a linear combination of the functions @,, 
@,, and @, from the set (7 ) ,  i.e., describes only the vibra- 
tions of the light gas, a fact reflected also by their propaga- 
tion velocity. The solution described by the mode (17) is 
made up of the functions @,, @,, and a,, i.e., it describes 
vibrations of only the heavy gas with velocity v ,  = v,ali2. 
As seen from ( 17), this solution is always weakly damped. It 
must be borne in mind, however, that this solution was ob- 
tained without allowance for the shear viscosity which does 
not lead to a substantial increase of the damping only when 
the heavy-gas hydrodynamics is valid with a large margin, 
i.e., when the following additional condition is met: 

aGz<<o<<lV,u,o,,- ( I - c )  Gza"2. (19) 

In the specific case of an He-Xe mixture, al l2 = 0.17, this 
condition is met without margin, so that the damping of the 
mode ( 17), due to the unaccounted-for shear viscosity, is 
always appreciable. Thus, for example, putting c = 0.3 and 
o = 0.07G2 > aG2 = 0.03G2, we find that the frequency of 
the heavy sound is only half the collision frequency, i.e., the 
sound is damped over a distance of the order of the wave- 
length. 

Combining inequalities ( 18) and ( 19), we get the con- 
dition for simultaneous propagation of weakly damped vi- 
brations of the light (16) and heavy ( 17) gases at high fre- 
quencies w)aG2. Since all2 < 1, the right-hand side of (20) 
is smaller than the left-hand side, from which it is clear that 
inequalities ( 18) and ( 19) are not satisfied simultaneously 
even if they are relaxed, i.e., when the "much less than" sign 
is replaced by "less than." This means that at all frequencies 
w > aG2 and at arbitrary concentrations one of the modes is 
damped over distances shorter than the wavelength. This 
conclusion is the diametric opposite of the conclusion of Ref. 
5, whose Eq. (3 )  actually asserts the possibility of simulta- 
neous propagation of two weakly damped vibrations in light 
and heavy gases. 

In the intermediate frequency region w -aG, the roots 
of Eq. ( 12) cannot be simplified and the character of their 
frequency dependence is illustrated in Fig. 1. Figure l a  
shows plots of qf(w/aG2) and q" (w/aG2) at a relative con- 
centration c = 0.4. Curve 1 for w <aG describes sound prop- 

FIG. 1 .  Real (q', curves 1 and 2 )  and imaginary (q", curves 1' and 2") 
parts of the wave vector vs the frequency w in units of aG,/u and aG,, 
respectively, at c = 0.4 ( a )  and c = 0.5 (b) .  

agation with velocity v, in the mixture. At w -aG2 the slope 
of this curve changes, and at a %aG2 its slope corresponds to 
propagation of sound with velocity v, in a heavy mixture. 
The damping of this vibration (curve 1') increases with fre- 
quency and remains relatively small in the considered region 
( q W / q '  < 1/3). Curve 2 describes strongly damped vibration. 
At c < 0.4 the situation remains similar to that shown in Fig. 
la, the only difference being that curves 2 and 2' are even 
closer to each other. 

At a relative concentration c z 0 . 5  the situation changes 
radically. Curve 1 in the region w-aG2 changes slope as 
before (see Fig. lb ) ,  but in the region w > aG, its slope corre- 
sponds to the sound velocity u, not in the heavy but in the 
light gas. This situation is realized further on in the entire 
concentration region 0.5 < c < 1. 

As seen from Fig. 1, at least one of the modes is strongly 
damped at all frequencies. 

$4. COMPARISON WITH EXPERIMENT 

Sound propagation in an He-Xe mixture was experi- 
mentally investigated in Ref. 1. The dependence ofthe sound 
velocity on the gas pressurep was measured at constant fre- 
quency w = 1.005 MHz and at different relative concentra- 
tions of the mixture. The measurement results were present- 
ed in the form of plots of the sound velocity vs the parameter 
w/p. It was observed that the sound velocity us = us (w/p) 
increases with increase of w/p at a relative concentration 
c > 0.5, and decreases at c < 0.5. Let us examine the relation 
between these results and the theory expounded above. 

At low frequencies (small values of the parameter w/p) 
the sound velocity is determined from Eq. (13):  
us = u, = (5T/3p)  I i 2  and is independent of frequency. This 
case corresponds to the plateau on Fig. 2, which is located in 
the region of low frequencies w < aG2 up to which Eq. ( 13) is 
valid. As seen from Fig. 1, in the region w -aG2 an abrupt 
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FIG. 2. Sound velocity vs frequency at various relative concentrations of 
the light gas.The solid curves describe the dependence obtained from Eq. 
( 18). The shaded regions contain the points corresponding to the experi- 
mental data of Ref. I. The upper and lower regions describe the dispersion 
of the sound velocity at relative concentrations 0.2 < c  <0.5 and 
0.7 < c <0.8, respectively. 

change takes place in the dependence of the sound velocity 
on the frequency (curve 1 ), as is indeed observed in experi- 
ment.' In that reference, the results of which are shown in 
Fig. 2, the corresponding frequency w = w, was assumed to 
be = 70 MHz/atm. We put therefore aG2/p = 70 MHz/ 
atm. If it is assumed in (9)  that the transport scattering cross 
section utr is independent of the relative velocity v, we obtain 
G, = ( 3m ,/m2) G,. One can hardly expect allowance for the 
dependence of utr on v to lead to a substantial change of this 
relation. On the other hand, it was verified that changing G, 
by a factor of two leads to a practically unnoticeable change 
of the presented theoretical curves. We therefore put hence- 
forth G, = (3ml/m2)G2 throughout. 

The sound velocity was measured in Ref. 1 up to values 
w/p = 100 MHz/atm. The corresponding regions of w/aG, 
are located in Fig. 1 to the left of the vertical straight lines." 
As seen from Fig. 1, in the frequency region w - aG, in which 
the sound velocity changes radically, the damping of both 
modes is appreciable, but the damping of the mode corre- 
sponding to curve 1 is at least several times smaller than the 
damping of the vibration described by curve 2. Since the 
total damping of the sound in experiment 1 was strong 
enough, it is natural to assume that the detector recorded in 
fact only wave 1. 

The sound velocity corresponding to the vibrations de- 
scribed by curves 1 of Fig. 1 is compared in Fig. 2 with the 

measured velocity at different relative light-gas concentra- 
tions. It can be seen that the agreement with experiment is 
quite satisfactory. A similar comparison for the case 
aG2 = 100 MHz/atm shows a noticeable discrepancy 
between the theoretical and experimental curves, and leads 
to the conclusion that the value of aG2 assumed in Fig. 2 is 
accurate enough. 

Equation ( 13),  which shows the presence of bulk vis- 
cosity in the considered mixture is valid, with sufficient ac- 
curacy, up to values w 5 aG,, as demonstrated by direct com- 
parison of the damping given by this equation with curve 1' 
of Fig. 1. For w = aG2 and, e.g., c = 0.5, it can be seen from 
( 13) that the sound is damped over a distance of four wave- 
lengths. So large a damping of the sound may turn out to be 
very useful when such mixtures are used as working media in 
experiments on wave-front reversal by the method of stirnu- 
lated Rayleigh scattering. Thus, for example, in the mixture 
N ,  (He)  = N2(Xe) = 3. lo2" cm3 we obtain for the recipro- 
cal time r ' = w2/2G2a of the onset of stimulated Rayleigh 
scattering (w = qv, = 6.10' s q = lo5 cm-', 
v, = 3. lo4 cm/s, G,a = 277.100 MHz/atm 10 atm) the 
values r-' = 1.5.109 s- '  and r =  lo-" s. In pure xenon 
with N,(Xe) = 3.1OZ0 cm-3 we get under these conditions 
r- ' = w2/3G2 = 6. lo7 S- I, which makes it impossible to 
use pulses of duration shorter than T = 0.5. s. 

'' Note that the experimentally investigated maximum sound frequencies 
exceed aG, by only 3070, so that the region w%aG, in which the modes 
( 16) and (17) appear is not reached. 

'J. R. Bowler and E. A. Johnson, Phys. Rev. Lett. 54,329 (1985). 
'R. J .  Huck, and E. A. Johnson, ibid. 44, 142 (1980). 
3E. M. Lifshitz and A. P. Piaevskii, Physical Kinetics, Pergamon, 1981 
Chap. 1. 
4V. A. Alekseev and P. G. Fedorov, Kratk. Soohshch. Fiz. (FIAN)  No. 4, 
7 (1985). 

5P. B. Lerner and I. M. Sokolov, ibid. No. 3, 12 (1986). 
'W. H Lowdermilk and N. Bloembergen, Phys. Rev. AS, 1423 (1972). 

Translated by J. G. Adashko 

503 Sov. Phys. JETP 67 (3), March 1988 V. A. Alekseev and P. G. Fedorov 503 


