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This paper is devoted to the development of a theory of waves propagating in a two-component 
gaseous medium. In all cases considered we use only the method of two-fluid relativistic 
electromagnetic gasdynamics in the framework of the special relativity theory. We pay special 
attention to the problem of the interaction in a mixture of both neutral and charged gases when 
they move relative to one another. This interaction is for charged gases responsible for the 
appearance of ohmic resistance to an electrical current. 

INTRODUCTION 

The study of waves propagating in a plasma is a tradi- 
tional part of plasma physics and a large number of papers 
have been devoted to it.'.' For the solution of various prob- 
lems were invoked both two- and one-fluid approaches and 
also kinetic considerations without sufficiently analyzing 
the regions where each method is applicable and without 
justification of the corresponding limiting approaches. One 
must note also the incorrectness of using nonrelativistic 
equations of motion together with the relativistic equations 
of electrodynamics. In the present paper we apply consis- 
tently the mathematical apparatus of two-fluid relativistic 
electromagnetic gasdynamics (REMGD) including the 
complete set of Maxwell equations and the equations of the 
relativistic gasdynamics for the electron and ion gases. We 
take the finite plasma temperature, the effect of phenomena 
leading to wave damping, limiting cases of slow waves, and 
so on, into account in the framework of a single gasdynamic 
approach based upon using the equations of a two-fluid 
REMGD. 

In this paper we consider linear waves in a homoge- 
neous two-component medium. In the case of a plasma 
which is a mixture of electron and ion gases this medium 
may be anisotropic due to the pressure of a uniform external 
magnetic field. When we take dissipative processes which 
lead to the damping of propagating waves into account, we 
restrict ourselves to studying the interaction between the 
components of the mixture of two gases. For the plasma 
components such an interaction is equivalent to the appear- 
ance of an ohmic resistance due to the "friction" of the elec- 
tron and ion gases when they move relative to one another. 

The complete set of REMGD equations contains the 
Maxwell equations and the gasdynamic equations of motion 
obtained by setting the divergence of the total relativistic 
energy-momentum tensor and the set of dissipative tensors 
equal to zero. When describing the interaction to two gases 
we use an "interaction tensor"; for its construction we in- 
voke the requirement of relativistic invariance and satisfac- 
tion of the correspondence principle. 

All our considerations are made in the framework of 
Einstein's special relativity theory and allow us to take the 
limit to the non-relativistic case. We take into account the 
existence of uniform isotropic radiation in local thermody- 
namic equilibrium with matter of the two relativistic fac- 
tors-the fact that the macroscopic velocity of the gas and 
the random velocities of the particles in it are comparable to 

the velocity of light-only the latter factor effects the propa- 
gation of linear waves in a medium at rest and it leads to an 
effective increase of weight of the particles of a hot gas. 

1. RELATIVISTIC ELECTROMAGNETIC GASDYNAMIC 
EQUATIONS 

In the framework of the special relativity theory the 
REMGD equations are derived from the conservation law 
for the divergence of the total energy-momentum 4-tensor 

in four-dimensional space-time x i =  (ct,xa),ds2 = g, 
dx'dxk = c2dt - dr2, where we use the invariant velocity 4- 
vector ui = dxi/ds = ( 1/T, va/cT),T = ( 1 - u2dc2) 'I2. 

The symmetric energy-momentum tensor Ti, contains 
the material tensor Ti,, the electromagnetic tensor Y,, and 
the sum of the dissipative tensors 'i,. The tensors Ti, and 
7, defined by their mixed components are, respectively, 
equal to3 

T?=pc2Wu,uk-phik, T ,k=-F,IFkl+' / iG,kFi , ,Fin ,  ( 2 )  

where Fi, is the antisymmetric electromagnetic field tensor, 
p the pressure, and p = mn the rest-mass density. The en- 
thalpy c2W and entropy S per unit rest mass are determined 
by the expressions 

where Ef? is the internal energy and T the temperature. 
Multiplying Eq. ( 1 ) by u' (and after that summing over 

i) and using uiui = 1,d /ds = uia /ax' = r- 'd /cdt, we get 
the mass-entropy conservation 

where the electromagnetic field tensor 7f; does not contrib- 
ute to this equation. Equation ( 4 )  combines the rest-mass 
energy and entropy conservation laws. For a known energy 
production and with account taken of the change in rest- 
mass energy, Eq. ( 4 )  splits into two:"' 

Herepa(n,T) is the energy production (in cm3/c) in the rest 
system of an element of the fluid, ?, =.itk. The right-hand 
side of Eq. (5 )  determines the heat release both in this pro- 
cess and in dissipative processes described by the tensor 'if;. 
W h e n p ~  = 0 the first Eq. ( 5 )  becomes the rest-mass conser- 
vation equation for the gas. 

The time component of Eq. ( 1 ) gives the conservation 
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law of the total energy, which in the absence of an electro- 
magnetic field has the form 

The partial derivative with respect to time pertains to the 
total energy p g *  which is equal to the sum of the relativistic 
rest-mass ( p  go), thermal ( p  29, 1, and kinetic ( p  8, ), ener- 
gies: ' 

p ~ ~ = p ~ c 2 i r 2 - p = p ~ , + p 8 T + ~ K ,  
( 7  

With allowance for ( 5 ) ,  we can write the energy-momentum 
conservation law in the form 

The complete set of relativistic gasdynamics equations for a 
neutral gas can thus be written as the set of vector equations 

and the energy conservation law ( 6 )  will be their conse- 
quence. 

Together with the viscosity and the thermal conductiv- 
ity, the interaction of gases moving with different velocities 
is an important dissipative process. In particular, this pro- 
cess is responsible for the occurrence of resistance to an elec- 
trical current in a plasma. 

The invariant 4-vector of the interaction of two gases, 
which satisfies the momentum conservation law and which 
is a linear combination of the Cvectors ui+ and u; , can be 
written in the form2' 

T ~ = &  (aui+-pu,-). ( 1 0 )  

The rate at which heat is released in each gas in its own 
system of coordinates, Q = pTdS/ds = - cuir,, will then be 
equal to 

Q+=-c(a-P/rt),  Q-=-c(p-a/rr),  ( 1 1 )  

and the total heat release is 

Qr=Q++Q-=c(a+p) (1lr '-1) 3 2 c Z v  (IlI"1).  

Theinvariant quantity l / T f  = u? ui- = (1 - v + v / c 2 ) /  
T + r - which occurs here can be expressed in term of the 
invariant relativistic relative velocity 

which is less than the velocity of light, v,,, < c. The interac- 
tion parameter Y has the dimension of g/s.cm3. 

If we determine a and 0 from the conditions Q + /Q - 
= m _ /m  + ,a + 0 = 2cv, we find 

When m + = m - and in the nonrelativistic limit for any 
m + and m - this expression changes accordingly to 

r,=&cv (ui+-ui-). 

The heat releases Q + - and Q, are given according to ( 1 1 ) by 
the formulae 

The expressions for Q * are positive and invariant, if Y < 0  is 
an invariant function. The entropy of each gas then in- 
creases. The rate of release of thermal energy in the "labora- 
tory" system of coordinates are 

q+=Q+r+.  (14 )  

The rate of change of total energy of each of the gases in the 
laboratory frame of reference, U = - c r  0 - - - + c ( a /  
T + - p / T  _ ), can be written in the form 

They vanish in the relativistic mass center system. 
In the case of neutral gases, when the densities are con- 

served, the change in energy is the sum of the changes of 
their thermal and kinetic energies: U = q + U,  . According 
to Eqs. ( 13)-(15) it follows that the rates of change of the 
kinetic energies of each of the interacting gases are 

The total set of two-fluid REMGD equations contains the 
Maxwell equations for the electromagnetic field: 

and the gasdynamics equations for each of the charged gases: 

The remaining pair of Maxwell equations, 

div B=O, div E==4xpe, (19 )  

are satisfied automatically if they were satisfied at the initial 
instant of time. Equations ( 1 8 )  are a set of equations for 
each gas. The charge and current densities are given by the 
formulae 

which connect these electrodynamic quantities with the gas- 
dynamic velocity v and the density n = pm, where p is the 
rest-mass density. Under the condition ?,t = - 'i; we get 
from ( 17) and ( 1 8 )  the total energy conservation law: 
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containing the electromagnetic field energy density- 
(E + B 2)/8n and the Poynting vector c l E ~ B 1 / 4 n .  

The interaction 4-vector of two oppositely charges gas- 
es, which determines the ohmic resistance, can be obtained 
from ( 12) through the substitution v- ( e  + e - (n + n - /a 
( a  is the electrical conductivity) : 

It follows from (18) and (22) that the invariant rates of 
release of Joule heat in ion and electron gases in their own 
coordinate systems are given by the expressions 

The ratio Q + /Q _ = m - /m + and the total heat release 

Qz=20-'1 e+e-ln+n-c2(l/r'-I) 

are independent of the ion and electron masses and in the 
nonrelativistic limit for a neutral gas ( 1 e + n + I = I e _ n - I ) 
change to the expression Q, = j2/a which is known from 
electrodynamics. 

The thermodynamic function occurring in the 
REMGD equations for a perfect gas in equilibrium with iso- 
tropic radiation (photon gas) are given by the equations 

p=knT+'I3nT1, pB=knT/( y-I) + a T ,  (24) 

which depend only on the density n and temperature T. Here 
y is the adiabatic index, a = n2k 4/15fi3~3 = 7.56. 10-Iserg/ 
cm3K4 is the Stefan-Boltzmann constant, k = 1.38.10-16 
erg/K is the Boltzmann constant. For an approximate treat- 
ment of the dynamics of a mixture of neutral gases one nor- 
mally uses the effective particle mass m = p /  
n = Bm,n,/Bn, . The equations of state for degenerate gas- 
es which have a constant entropy are given in Refs. 7 and 8. 

Moreover, for a study of waves in a uniform two-com- 
ponent plasma one considers the case p~ = 0 and takes into 
account only the single dissipative force (22).  The equation 
of state (24) with account taken of equilibrium radiation is 
used solely for a single-temperature gas. 

2. SOUND WAVES 

The equations of relativistic gasdynamics for a neutral 
gas without dissipation and when the rest mass is conserved, 
p~ = 0 are, according to (9 )  and (3 )  the set 

In the linear approximation when waves are propagating in a 
uniform medium at rest r = ( 1 - v2/c2) ' I 2  z 1 and Eqs. 
(25) differ from the nonrelativistic ones only because of the 
heavier particle mass, m - m* = m W. Plane longitudinal 
sound waves can propagate in a neutral gas; in the linear 
approximation they are proportional to exp i(k.r - wt) and 
the perturbation of the velocity v in them is directed along 
the wave vector k. 

It follows from (25) that the phase velocity of the sound 
waves w/k = c, is given by the formula 

If we assume that W and p are function of n and T, the 
expression for c: can be written in the form 

The subscripts n and T indicate partial derivatives with re- 
spect to n and T. In the case when W ,  = 0 we have cf 
= ,0c2 Wp/ w. 

If we neglect radiation we have for a perfect gas from 
(27) 

ca2 = 
VIP (28) 

I+yp/(y-l)pcZ ' 

From this it is clear that the sound phase velocity increases 
when the dimensionless parameter yp/pc2 increases, and in 
the limit y p / p 2 )  1 it tends to ( y  - 1)  '12c. As the sound 
phase velocity is the same as the group velocity 
V,, = dw/dk which cannot exceed the light velocity c, it 
follows from (28) that there is a restriction on the magni- 
tude of the adiabatic index ( 1 < y < 2)  which determines the 
sound velocity. 

Evaluating the sound velocity in a perfect gas, taking 
equilibrium radiation into account, leads, according to Eqs. 
(24) and (27), to 

wherep = mc2/kTand 6 = 4a T 3/3kn are dimensionless pa- 
rameters. The requirement cf < c2 leads as in the earlier case 
also to the restriction 1 < y < 2  and c, is a maximum as 
p+O,S-0, when c, - ( y  - 1) Il2c. 

The limiting value of the sound velocity c, = c is 
reached as p- cc in the case of a so-called extremely rigid 
equation of state9 p = c2bpZg% = p, W = 1 + 2bp corre- 
sponding to y = 2, when 

Here c, - c  as bp- C C ,  also in agreement with the formula 
c, = ( y  - 1) IJ2c for the limit of the sound velocity. 

3. SOUND WAVES IN A MIXTURE OF NEUTRAL GASES 

The sound velocity in a mixture of neutral gases is 
usually unique and determined by the properties of the mix- 
ture as a whole. Such a result can be the consequence only of 
a rather strong interaction between the separate components 
of the mixture. Below we consider the mixture of two neutral 
gases which interact with one another through a "friction 
force" which in the non-relativistic limit is proportional to 
the difference of the velocities of the gases. 

When we take the interaction of the gases, which is de- 
scribed by the Cvector ( 12), into account we can write the 
linearized equations of motion (25) for the mixture in the 
form 

@/at=-p div V, dp=pc2dw, 

~ T Y ~ v I ~ ~ = - V ~ T Y ( V , - V - )  

(as the change in the entropy ac v2). 
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When there is no interaction ( v  = 0 )  the sound veloc- 
ities in each of the components are different: 

and are determined by their "own" functions W +  (p,p) . For 
a longitudinal wave in a mixture of gases (indicated by the 
indexes ) we find, assuming the perturbations 6,  p, u, to 
be a exp[i(kx - wt) 1, the set of equations 

where p *  = p  W. If we temporarily write vw/p*k * = 0 we 
can write the dispersion relation that follows from (33) in 
the form of a biquadratic equation in w/k = u: 

Here c + = c$ are the sound velocities in the separate inter- 
acting gases, determined by Eqs. (32). 

When c + = c - = c ,  Eq. (34) splits into two equa- 
tions: 

Hence it follows that in that case there are solutions corre- 
sponding to undamped and damped sound waves. It is clear 
from (33) that in the undamped wave u +  = u -  , i.e., both 
gases oscillate with the same velocities. 

The formal solution of Eq. (34) will be 

u2='12 {c+'?-~-~-i(~++P-) 
+[ (c+~-c- ' )~-~~(P+-P-)  (c+'+c-')- (P++P-)Z]ib). (36) 

In the case of a weak interaction, p/c,2< 1 it follows from 
(36) that 

i.e., there are two weakly damped waves with phase veloc- 
ities which are the same as the sound velocities in the non- 
interacting gases. 

In the opposite limiting case of strongly interacting gas- 
es, p / ~ : %  1, one of the roots of Eq. (36) describes a strongly 
damped wave, while we get for the second the expression 

from which it follows that 

-- 
k 

(39) 
There is thus in that case a weakly damped sound wave with 
a phase velocity and a damping rate which are invariant un- 
der an exchange of the indexes + and which are determined 
by the general properties of the gas mixture. When 
c +  = C _  the damping rate vanishes. One can show that the 
set of propagating waves consists only of the cases (37) and 
(39), as all other waves are strongly damped. 

For a mixture of non-relativistic gases, 
p*  = p, C: = yp/p, the phase velocity is, according to (39) 
equal to 

Putting V i ,  = y ( p +  + p -  ) / ( p +  + p -  1, we find an 
expression for the effective adiabatic index for the gas mix- 
ture: y =  ( y + p +  + y - P -  ) / (P+ + p -  ). 

The coefficient of the velocity difference in (31) is of 
the order of v/p- 1/r  where r is the relaxation time. One 
verifies easily that the dimensionless small expansion pa- 
rameter used in deriving (39) is of the order of w~ = ~ T T /  

T, , i.e., the relaxation time r must be small compared to the 
wave period T, . 

4. ELECTROMAGNETIC WAVES IN TWO-FLUID REMGD 

The linearized equations describing the propagation of 
waves in a uniform two-component plasma at rest when we 
take into account the finite conductivity and when there is a 
uniform magnetic field present can, according to ( 17), ( l a ) ,  
and (22),  be written in the form 

We have put here 

where in the unperturbed state 
v = O , E = O , n +  = n -  = n. Substituting into (41) the re- 
quired solution cc exp[i(k*r - o t )  ] for the perturbations, 
we get 

in 
Vfi = -(kv)k, 

0 

ie o enc 
= *-([VBI-_v),  m'c 

w h e r e V = v +  - v -  and the tilde indicates perturbations 
of the corresponding quantities. 

Choosing a Cartesian system of coordinates such that 
the x axis is directed along k and the xy plane contains the 
vector B, we find a set of six equations for the components of 
the velocities v + and v : 

Here 
u=o/k, Q=eB/mSc, P=x2c2/4na, 

a2=x2/k2=4ne2n/m'c2k2. 
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and a* is a dimensionless parameter proportional to the den- 
sity n. 

A. Waves in an ideal plasma without a magnbtic field 

It is clear from ( 4 3 )  that when there is no magnetic field 
(C4 = 0 )  there are two kinds of waves, longitudinal and 
transverse, with the velocity vector v in them directed, re- 
spectively, along and at right angles to the wave vector k. 
Neglecting the interaction between the electron and ion gas- 
es ( p  = O ) ,  the phase and group velocities of the transverse 
waves are equal to 

From this it is clear that V,, >c, V,, < 1 and in free space as 
x: + x2- - 0  the phase and group velocities tend to the 
light velocity c. 

The dispersion equation for longitudinal waves which 
follow from the first Eq. ( 4 3 )  has, when a, = 0 and 0 = 0 ,  
the form 

( ~ ~ - c + ~ - a + ~ c ~ )  ( U ~ - C - ~ - ~ - ~ C ~ )  =a+2a-2c', 

where c . = c' are the sound velocities in the positively and 
negatively charged gases. Solving the biquadratic equation 
we find 

The relation obtained determines two velocities for the fast 
and the slow longitudinal waves. In the case a2 4c:/c2 it 
follows from ( 4 5 )  that 

o / k = c + ,  o /L=c- ,  ( 4 6 )  

i.e., there are two phase velocities which are equal to the 
sound velocities in two non-interacting neutral gases. For 
the opposite sign of the inequality a2>cf/c2 we get 

Here both phase velocities are collectivized, as they depend 
on the general characteristics of the plasma. In a plasma the 
fast wave is called the Langmuir wave and the slow one the 
sound wave. 

The simplest dispersion relation is obtained for gases 
consisting of particles with equal mass, m + = m - = m, 
wherec, = c -  =c, andx ,  = x -  = x. In that case the 
phase and group velocities equal, respectively, 

For the slow wave the phase and group velocities are exactly 
the same as the relativistic sound velocity c, whereas the 
phase velocity of the fast wave is larger than c, and the group 
velocity less than c,. It is clear from ( 4 8 )  that the group 

velocity of the Langmuir waves vanishes only when c, = 0 ,  
i.e., at zero temperature. 

B. Waves propagating along the magnetic field 

It is clear from ( 4 3 )  that when there is a magnetic field 
present the simplest case to analyze is a wave moving along 
the magnetic field when a =  Q,. The magnetic field in that 
case does not affect the longitudinal wave and, if there is no 
dissipation, it follows from ( 4 3 )  for the transverse wave that 

u,+-u,- is2 v,+-u,- i8 
u,* a2 = f - UZ, u,* a 2 .  = T - U,. 

1-u2/cz ku 1-u2ic2 ku  

Introducing the complex velocity vector u = u, + i v ,  we get 
a set of two equations for v * : 

The dispersion equal for u = w / k  which follows from this 
has the form 

( 1 - u 2 / c 2 ) ( u - 8 + / k )  ( ~ + Q - / k ) + ( a + ~ + a - ~ ) u ~ = O .  ( 5  1 )  

For waves with the opposite circular polarization u -  - u 
and v = v,  - i v , .  

For particles with equal masses this equation reduces to 
a biquadratic one, and this enables us to find its exact solu- 
tion: 

o2 3xzc2 SZ2 
k2 2 /c2 

For low-frequency oscillations, u2/c2< 1, it follows from 
( 5 1 )  that 

Hence we get for a rather dense plasma, a: + a2- % 1 ,  

In the non-relativistic limit transverse waves propagate in 
this case with the Alfvtn velocity in agreement with classical 
MHD. 

C. Waves propagating at an angle to the magnetic field 

Solving the first two Eqs. ( 4 3 )  with respect to v, and u, 
and substituting them into the third equation we get a disper- 
sion equation for waves propagating at an arbitrary angle to 
the magnetic field: 

( 5 3 )  
We have used here the notation 

., 9 

a= ( u ~ - c , ~ )  /c2-a', Dl =,a+a---a+-a--, 

b=l-uz/c2+az,  Dz=b+b--a+'a-2. 
( 5 4 )  
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In the general case Eq. (53) is rather complicated as it 
contains all earlier special cases. We therefore restrict our- 
selves to remarking that with B 1 and B ;  as the coordinates 
Eq. ( 53 ) will describe a set of second-order curves. 

In the case of particles with equal masses, m + = m - , 
Eq. (53) simplifies considerably and transforms into a pair 
of equations: 

Substituting here the expressions for a, 6, Dl,  and D, we get 
two equations which are cubic in u2: 

in accordance with the + -signs in Eqs. (55).  
In the cases a, = 0 and a, = 0 when the waves propa- 

gate along and at  right angles to the magnetic field, Eqs. 
(56) reduce to biquadratic ones. In the first case both Eqs. 
(56) lead to the single dispersion equation (52), and in the 
second case we have two solutions: 

corresponding to longitudinal and transverse polarisations 
[ k x v ]  = 0 and k-v = 0. One verifies easily that all roots are 
real and that the group velocity does not exceed the velocity 
of light as long as c, < c. 

When a2$ 1 it follows in the nonrelativistic case from 
(56) that 

uZ='/2 {cSZt V A 2 i  [ ( cS2f  TrA2)2-4~azVA2] '"), 

where V,, = B(4n-p) ' I 2  a n d p  = 2mn, i.e., we get the known 
expressions for the fast and slow magnetosonic waves in 
MHD1' achieving the limiting transition from two-fluid 
REMGD to one-fluid M H D  without the usual assumption 
tha tm,  > m - .  

D. Waves in a plasma with account of ohmic resistivity 

When we take into account the effect of the finite con- 
ductivity of the plasma on the wave propagation we restrict 
ourselves to the case when there is no external magnetic 
field. 

For longitudinal wave [ k x v ]  = 0 we get from (43) the 
dispersion equation 

u4- [c+'+ ~ - ~ + - c ' ( a + ~ + a - ~ )  (1-il~u/4no)] uL 
+c2(a+2c-2+a-2c+2) (I-ih-~/4no) +cf2cC2=0. (58) 

When the conductivity is sufficiently small, w / 4 r o $  1, it 
follows from this that 

In  the case of equal masses, m + = m - , Eq. (58) has an 
exact solution: 

o=&kc, o=f [ 2 ~ ~ c ~ + k ~ c , 2 -  ( X ~ C ~ / ~ ~ O )  '1 ' " - i ~ ~ c ~ / 4 n o .  

(60) 

There are therefore weakly damped waves both in the case of 
high and in the case of low electrical conductivity, and in the 
case of equal masses there exists an undamped sound wave. 

For transverse wave k*v = 0, it follows from (43) that 

u3-(I+ a + 2 + a - 2 ) ~ 2 ~ - i ( a + 2 + a - 2 )  (c2-u2) kc2/4n(s=0. (61 ) 

For high conductivity it follows from this that 

and in the opposite case of a low conductivity 

Here also there exist in both limiting cases propagating 
waves with a damping which tends to zero, respectively, as 
o- co and as 0-0. 

BASIC RESULTS 

1. To  take into account the effects of the interaction 
between the two gases when they move relative to one an- 
other, we have introduced a relativistically invariant 4-vec- 
tor of the exchange of momentum. In  the non-relativistic 
limit the corresponding friction force is proportional to the 
difference between the velocities of the gases and for a plas- 
ma is equivalent to ohmic resistance. 

2. We have obtained dispersion equations for electro- 
magnetic waves propagating in a two-component relativistic 
plasma. 

3. Starting from the requirement that the sound velocity 
is limited since it cannot exceed the light velocity, we ob- 
tained a restriction on the adiabatic index, 1 < y < 2. 

4. We have shown that when we take into account the 
interaction in a mixture of neutral gases, weakly damped 
"collective" sound waves propagate with a phase velocity 
which is determined by the general characteristics of the 
mixture as a whole. 

5. We have shown that sound waves in a plasma (in a 
mixture of charged particles) become collective at suffi- 
ciently large densities even without special account of the 
interaction between the plasma components. 

6. We have considered plasma-wave damping caused by 
the finite electrical conductivity and we have noted the exis- 
tence of undamped sound waves in the case of particles of 
equal masses. 

7. We have obtained general solutions of the dispersion 
equation for waves in a plasma propagating along and at 
right angles to the magnetic field in the case of equal masses 
of the charged particles. 

8. We have shown that the limiting transition to results 
described by one-fluid MHD is accomplished in the case of 
high densities 4re2n/mc2k '> 1 and low wave velocities w2/ 
k 2 ~ 2  4 1 and low particle velocities u$ <c2. 

The authors are very grateful to S. T. Belyaev, B. M. 
Bolotovskii, A. A. Vedenov, and B. E. Meerovich for useful 
discussions. 
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APPENDIX 

Ohm's law 

We can obtain the relativistic expression for Ohm's law 
in two-fluid REMGD by considering stationary plasma flow 
in a longitudinal electrical field E. We then look for the inter- 
action Cvector in the form 

From the conditions of conservation fo thermal energy in 
both ( + ) plasma components ui, 7: = 0 it follows that 

The conditions for the cancellation of the momentum 
changes by the electrical field E give 
p + = p - = - ce2n2/u, and hence, when n + = n _ 

uiq ) . 
The expression for the electrical field following from the two 
equations of momentum conservation takes corresponding- 
ly the form6 

In the non-relativistic limit this formula becomes Ohm's law 
E = j /u.  

"The corresponding splitting was carried out in Ref. 5 for a gravitating 
sphere in GRT. 

"The plus and minus are here the indexes of the components of the mix- 
ture of the two gases. 
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