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An effect of considerable order of magnitude, enhancement of resonant transition radiation in 
strongly inhomogeneous layers with a nonlinear profile, was observed on the boundary of an 
overdense plasma. The greatest intensity enhancement, compared with nonresonant radiation, is 
obtained in this case for nonrelativistic charges. In the relativistic resonance region, the radiation 
has a frequency-angular spectrum that differs qualitatively from the spectrum of the nonresonant 
radiation, and can exceed the latter in intensity if the collisions are weak. Structural effects in 
transition radiation are investigated in boundary layers of an equilibrium or inverted plasma. 

1. INTRODUCTION 2. ITERATION REPRESENTATION FOR THE FIELDS IN A 
BOUNDARY LAYER 

The idea of transition radiation, which has by now be- 
come classical, and its applications were developed mainly Transition radiation of a charge q moving with constant 

by considering the model of a charge crossing an ideally velocity v in a direction along which the properties of the 

abrupt interface of two media with different dielectric con- medium change (along the x axis) is described by the equa- 

stants and E ~ .  In the time since the publication of the pio- tion for the amplitude B(x; w, k, ) of the magnetic field of the 

neering paper,1 the laws governing this radiation have been s~atiOtem~Oral  ex^(^^^ - i k ~  ' r ~  ) (Ref. 7 )  : 

thoroughly investigated (see, e.g., Refs. 2 and 3) .  The 
known criterion for the use of an idealized abrupt boundary 
is smallness of the boundary-layer thickness d compared 
with the length Lf ( d < L f )  over which the radiation is pro- 
d ~ c e d . ~ - ~  If the opposite inequality (d$ L,-) holds, the tran- 
sition radiation is exponentially small. These conclusions, 
obtained for dielectric transition layers, can generally speak- 
ing not be extended to include the case of an inhomogeneous 
plasma, in which appearance of plasma resonance points 
with E ~ O  is A manifestation of the peculiarities 
of the resonant transition radiation (RTR) that is produced 
in this case is, in particular, that RTR from a gradual layer 
can exceed the radiation from an abrupt discontinuity of a 
plasma having the same maximum plasma frequency. Up to 
now, however, RTR was investigated only for smoothly in- 
homogeneous monotonic layers6-" (wd / c  > 1, where w is the 
frequency) or for a homogeneous layer in vacuum." The 
class of structural effects that depend on the plasma inhomo- 
geneity profile in the vicinity of the resonance point was 
thereby excluded in fact from consideration. It will be shown 
below that the structural effects become most noticeable in 
the case of thin (boundary) plasma layers (wd /c & 1 ) . The 
qualitative differences of the laws governing the RTR in lin- 
ear layers and in layers of higher order (having an extremum 
or an inflection of the density) " offer promise of an appre- 
ciable (in order of magnitude) increase of the RTR intensity 
in boundary plasma layers with complicated profiles, which 
are produced, in particular, in decay of the free boundary of 
a non-isothermal p l a ~ m a ' ~ * ' ~  when powerful electromagnet- 
ic radiation acts on the and also in film island 
structures (Refs. 18 and 19) ." New applications are uncov- 
ered here by the fact that the most appreciable (compared 
with a linear layer) turns out to be the enhancement of the 
RTR for nonrelativistic charges, particularly for intersec- 
tion of a strongly inhomogeneous plasma with a modulated 
electron beam (for example, in systems of the type used in 
Ref. 22). 

with a sourc'e f (x )  = ( qyw/2i?r2c2) exp( - iwx/v) . Here 
y = ck,/w and E(X) is the dielectric constant of the medi- 
um, assumed homogeneous outside a layer of thickness 
d = d , + d , , i . e . , a t x <  - d , a n d x > d , : ~ ( x <  - d l )  = E ~ ,  
E(X > d 2 )  = E ~ .  I t  is assumed that the inhomogeneous plas- 
ma layer is thin enough so that 

d. 

and has a zero, or arbitrary order n, of the dielectric constant 
in the interval - d ,  < x  <d,. 

Outside the inhomogeneity region of the medium, the 
solution of Eq. ( 1 ) can be written, with allowance for the 
radiation condition, in the form 

where 

(o/c) (Ei,2-~~)", y2<E1,2  
g1,z = 

- I (  I I Ic) ( Y ~ - E I , z ) ' ~ ,  y ' > ~ , , ~  ' 
- 

C ,,, are the unknown amplitudes of the free fields, and B f,, 
is the forced solution (the field of the charge q in a homoge- 
neous medium) : 

iqy p2/2nZo o x  v B P , ~  (4 = i - p V ~ i , 2 - y ~ )  p i ) ,  !=--. ( 4 )  
C 

By virtue of the conditions (2) ,  the field B ( x )  can be 
determined approximately within the inhomogeneous layer 
- d l  < x  < d,. To this end, it is convenient to rewrite Eq. ( 1 ) 

in integral form 
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where C,,,  are arbitrary constants, 

and the solution can be sought in the form of an iteration 
series in terms of the small parameter (w/d /c12 4 1: 

B(x) =B(O' (x) +B(" (x) + . . . . (6) 

The first term takes the form 
5 

F(x') (7) B(O)(x) =C,+C,I (x) + j dxf [ I (x)  -I (XI) ] - 
-4 

E (XI) ' 

and the succeeding terms can be obtained from the iteration 
formula 

We call attention to the fact that in view of the presence 
of poles in the integrands, the integrals themselves in the 
iteration formulas ( 7 )  and (9)  may be not small for layers of 
higher order (with n > 1) even if condition (2)  is met. It is 
therefore correct to discard the inessential part of the series 
( 6 )  only in the final equations for the radiation-field ampli- 
tudes. 

3. CALCULATION OFTHE RADIATION FIELDS 

The derivative of the field B ( x ) ,  which is needed to 
solve the boundary-value problem, is defined by the relation 

The constants C ,, are obtained from the boundary condi- 
tions 

which follow from Eq. ( 1 ) integrated in small vicinities of 
the points x = - d l  and x = d,. As a result, discarding 
small terms of order wd /c and higher, we obtain the follow- 
ing representation for the free-wave amplitudes outside the 
layer 

(10) 
in terms of the dimensionless resonant parameters 

o 
J i=-  5% j2=- o j dx exp (-iox/u) 

C - d ,  e(x) ' E (XI 
. (11) 

- d l  

The general equations ( 10) and ( 1 1 ) enable us to inves- 
tigate the RTR regularities in thick structures of various 
types, viz., in a plasma with a condensed layer (e.g., a soli- 
ton), in inhomogeneous plasma films located in vacuum, in 
semiconductor sandwiches, in MIS structures, etc. We shall 
consider hereafter, for the sake of argument, RTR in an in- 
homogeneous layer on an interface of vacuum with a over- 
dense plasma (&, = 1, E, < 0).3' For a particle entering the 
plasma, the spectral-angular density of the radiation emitted 
backwards (into the vacuum) is expressed by the equation 

in terms of the amplitude C,  of Eq. ( lo ) ,  for which we must 
put y = sin 19 and cg,/w = cos 8 (6' is the angle between the 
emitted radiation and the normal to the plasma surface). 

While general enough with respect to both the param- 
eterp and the layer profile, Eqs. ( 10) and ( 12) are not illus- 
trative enough for the analysis of the spectral and angular 
characteristics of the RTR. It is more expedient for this pur- 
pose to write separate equations for nonrelativistic (p< l )  
and relativistic (p -  1 ) charges. In the former case, neglect- 
ing terms of order B ,, we get 

- - 
2q2 cos" 1 12+i$ [exp (iod,lv) - E ~ - '  exp (-iod21v) ] 
xc sin 0 I J,+ [e2-'(sinL 0-E?) " + i  cos 0]/sin2 0 

The simplifications in the latter case are brought about by 
the fact that the radiation energy density can be expressed 
only in terms of the parameter J,. The result is 

2q2 cos2 0 (1-pL) J,+ip (I-&.-I) [I-bZ-ib (sina 0-E,) '''1 [I-ip (sin2@-&,)"]-' 
w ( q 0 )  = (I-~"os")-~ - i 

J,+ [&?-I (sin"&;) '.+i cos 0]/sin2 0 
1 (14) 

nc  sin 0 

The nonresonant terms proportional to p and p were re- mains the same as for backward radiation in the case of a 

tained to illustrate the limiting transition to an ideally particle entering the plasma. The transition radiation of a 
abrupt boundary ( d  - 0, J,,, + 0) ,  when ( 13 ) and ( 14) coin- nonrelativistic particle, as seen from ( 1 1 ) and ( 13 ), no long- 

cide with the corresponding equations in Ref. 3. Transition er has this symmetry. TO analyze this circumstance, and also 
radiation in front of a relativistic particle emerging from a for a comparative estimate of the resonance effect in bound- 
plasma into a vacuum can be described by the same equation ary layers of various types, it is necessary to specify the pro- 

with p replaced by - p ,  i.e., the resonant contribution re- file of the layer. 
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4. STANDARD BOUNDARY LAYER OF GENERAL FORM. 
COMPARISON WITH RTR IN A LINEAR LAYER 

Without loss of generality, we place the plasma-reso- 
nance point that is essential for the considered effect at the 
origin ( x  = O), and model the ~ ( x )  dependence in its vicini- 
ty by a set of power-law functions of the form ~ ( x )  = f (x/  
I)" + E,, - iv, where the n = 1, 2, 3 . . . is the order of the 
layer, 1 5  d ,,, the scale, E, the parameter of frequency detun- 
ing from resonance at x = O( 1~~14  1 ), and v the relative fre- 
quency of the collisions ( v  4 1 ) . The use of standard layers of 
this type makes it possible to investigate the laws governing 
the resonant transition radiation as a function of the profile 
of Re E(X) near the resonance point, including the case of 
layers with resonant inflection point (for odd n ) ,  for layers 
with resonant extrema of the dielectric constant (for even 
n) .  It makes it also possible to track the limiting transition to 
a steplike boundary (as n - cc ). 

If Re E ( X )  goes through zero linearly (n = 1, lower sign 
of the E(X) dependence), the integrands in Eqs. ( 1 1 ) con- 
tain one pole located at the point x = I(&, - iv) in the lower 
half-plane. The contribution of this pole is of the same order 
of magnitude as the principal values of the integrals: 

d* 

( i )  01 exp ( - iox lu)  J, =-(- c jcix x + i n )  
-6 

so that IJ ;,\)I -wd/c< 1, just as in the absence of plasma 
resonance. As a result, no qualitative singularities will ap- 
pear in the transition radiation compared with the nonreson- 
ant case. On the other hand, the corrections necessitated by 
the resonance appear, as follows from ( 13 ) and ( 14), only in 
transition layers of thickness on the order of the formation 
length d ?  Lf- Iw/u f w ( ~ , , ,  - y )  1'2/cl - I .  In sufficiently 
abrupt (boundary) layers, by virtue of inequalities (2) ,  this 
condition can be met either for a slowly moving charge 
(p 5 wd /c) or for a strongly transcritical plasma half-space 
( I 2 (wd /c) -2 ) .  In the former case, nonresonant as well 
as resonant transition radiation is vanishingly small, (w(w, 
8 )  a ( o d  / c ) ~ ) ,  and in the latter the resonant corrections are 
noticeable only for glancing angles of the radiation (T/ 
2 - 6 5 w d / c ) .  

RTR exhibits a qualitative unique feature in boundary 
layers of higher order (with n > 1 ) .  The distinctive features 
of layers with resonant inflections (extrema) of the density 
are formally connected with the locations of the poles of the 
integrands in Eqs. ( 1 1 ) on both sides of the real axis (at  the 
points x = I[ rf (E, - iv) ] "" ). This leads to a fast growth 
ofthe integrals J,,, that characterize the polarizability of the 
layer. Physically, on the other hand, this increase is due to 
the qualitative broadening of the region of resonant swelling 
of the longitudinal component of the electric field 
( E x  ( x )  a ~ - I ( x )  by a factor v" - """ $1  (Ref. 23) com- 
pared with a linear layer (n  = 1 ). The foregoing allows us to 
speak of a principally enhanced RTR in boundary layers 
with n > 1. 

5. ENHANCED RTR. CUBIC LAYER 

The differences between the laws governing the RTR 
for linear and nonlinear boundary layers with close profiles 
E(X) (i.e., the effects of the fine structure of the latter) be- 
come most pronounced in the presence of an inflection point 
(n = 3) .  

Taking into account in the calculation of the integrals 
( 11 ) only the resonant contribution from the poles of the 
function E-I  ( x )  (the nonresonant terms are of the order of 
wd /c), we arrive in this case at the following expressions for 
the parameters J,,, : 

( 3 )  0 1  2ni/3 J ,  = - 
c ( s I exp ( i . 2 ~ / 3 )  

- [ ~ - e x ~ ( F ) ] e x ~ [ i $ ~ ~ l ~ ~ e r p  ('f I -  2n )]) ( V > O I .  

determined by the modulus / Y l  and argument 
p = arg Y(0 < q, < T )  of the generalized detuning parameter 
Y = iv - E,,. It can be seen from ( 17) and ( 18) that the pa- 
rameters J 1;; are estimated as ratios of two small quantities 
wl /C and lY1213, SO that these parameters may be not small 
even in thin layers if lYl 5 ( w l / ~ ) ~ ' ~ .  It is just in the last case 
that enhancement is realized relative to a monotonic (lin- 
ear) RTR layer. 

A general property of RTR, which distinguishes it from 
nonresonant radiation, is the weak dependence of the RTR 
characteristics on the relativistic parameter 6 .  As seen from 
Eqs. ( 13)-( 18), this dependence manifests itself only in a 
decrease of the RTR in two limiting cases: ultrarelativistic 
velocities ( 1 - p 4 1) and very low velocities u, when the 
resonance parameters J2 become substantially smaller than 
Jl (estimates of the corresponding values o f 0  depend on the 
profile of the layer and will be presented below). In the re- 
maining regions of values o f 8  the spectral energy density of 
the enhanced RTR (in contrast to the RTR in the linear 
layer, where always w,,, 5 q2/c) (wl /c) 2 ,  turns out to be of 
the same order as the spectral energy density of the nonre- 
sonant transition radiation of the relativistic particles on an 
ideally abrupt boundary: w-q2/c if 8 #0, n/2. Thus, in the 
nonrelativistic region the enhanced RTR is substantially 
larger (in order of magnitude) than the resonant transition 
radiation whose spectral energy density, for 8 #O, n/2, can 
be estimated at w-p2q2/c. The enhanced-RTR energy is 
concentrated in this case in a narrow spectral interval of 
relative width Iw - w,i/w, 5 (@,I / c ) ~ / ~  near the plasma fre- 
quency w, in the inflection of the concentration (see Fig. 
l a ) .  The RTR angle spectrum, in contrast to the nonreson- 
ant case, is closely related to the frequency spectrum (what 
is similar, naturally, is the absence of radiation at 8 = 0, n/  
2).  As seen from ( 13) and ( 14), the enhanced RTR passes 
as v-0 along the angle cone 8- (c (E ,~~ '~ /w, I )  'I2, which is 
narrower and is closer to thex axis the closer the frequency w 
tow,. The maximum radiation intensity also increases in this 

213 112 case and its estimate as w - w,is w - ( q2/c) (w0l /cIYI ) . 
In other words, in a weakly collisional plasma ( v <  (a, , / /  
c ) ~ " ) ,  in a qarrow frequency band (IE,~ 4 ( w , l / ~ ) " ~ ) ,  the 
enhancement of the RTR exceeds substantially in intensity 
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FIG. 1. Spectral energy density of transition radiation of a nonrelativistic 
charge in a boundary plasma layer: a-with inflection of the density pro- 
file, b--with a parabolic density well at v( v ,  (0, is the plasma frequency 
at the inflection or minimum point, (a, I,,, is the maximum plasma 
frequency of the layer, A , - o , ( o o l / c ) 3 1 2 ,  A 2 - o o ( o , , l / ~ ) 2 ) .  

the nonresonant radiation of not only nonrelativistic but also 
of relativistic particles. 

An investigation of expressions ( 17 ) and ( 18 ) makes it 
possible to formulate the following sufficient conditions for 
the extinction of RTR in a cubic layer: 

ollc< 19 I Z h ,  (19) 

c p f  n F n  PK (ollc) I Q I '" sin-. 
3 

The first inequality corresponds physically to suppression of 
the resonant peak in the inflection of the concentration, on 
account of collisions and detuning ( J , , ,  -0).  To interpret 
the second condition, we consider it first in the case of small 
detunings ( I E , I ~ Y ) ,  when sin ( g , / 3 ) ~ s i n  [(g, + 2 ~ ) /  
31 - 1, so that we have in lieu of (20) 

The right-hand side of inequality (21) is equal to the width 
of the region of resonant swelling of the field in the cubic 
layer.23 In other words, the sufficient condition (21) for 
RTR extinction is of the interference type and points to a 
suppression of the effect (J,-+O) in the case when the 
charged particle negotiates during the field period a distance 
much shorter than the width of the resonance region. Condi- 
tion (20) has the same meaning also at large detunings 
( / E , / B Y )  orifeithersin(g,/3)=:~/(3/~,I)<l ( i f ~ , < O )  or 
sin[(p + 2n)/3] Z V / ( ~ E , )  < 1 (if&, > 0) ,  so that condition 
(20) can be rewritten in the form 

Here, too, the right-hand side of the inequality is equal to the 

resonant-region width, but substantially narrowed com- 
pared with the case I E , ~  5 vin view ofthe displacement of the 
resonant peak of the field to one of the branches of the cubic 
parabola. As a result, the interference quenching of the RTR 
comes into play at much lower velocities v.  

The foregoing allows us to introduce the following esti- 
mates for the internal 1:;' and external 1 i:) scales of the 
cubic layers in which enhanced RTR will be effectively gen- 
erated: 

This shows that the necessary condition for the existence of 
the enhanced RTR in a cubic layer has the simple and clear 
form 

PBv. (24) 

At PZ Y the effect is selective with respect to the scale I; this 
can be used for diagnostics of semi-inhomogeneous plasma 
formations. 

The use of cubic standard layers permits a substantial 
refinement of the notions related to the use of an idealization 
of an abrupt boundary, especially for nonrelativistic 
charges. In fact, as seen from ( 13 ) and ( 14), the standard 
condition for going to the limit in the approximation of an 
ideally abrupt boundary3-" 

does not take into account the resonant contribution, which 
is essential for n > 1, to the transition radiation and must be 
replaced in a cubic layer by the much more stringent condi- 
tion4' 

On the other hand, the standard condition l%Lf for a 
smooth transition layer, when the nonresonant radiation is 
exponentially small, is still insufficient to suppress the RTR 
from the density inflection, since this condition is fully com- 
patible with the inequality I < I k5). 

6. BOUNDARY LAYERS OF GENERAL FORM. RADIATION 
SYMMETRY 

In layers with other n > 1 the main laws governing the 
enhanced RTR remain qualitatively the same as for a cubic 
layer. The width of the region of resonant swelling of the 
field in such layer is estimated (for /&,I 5 Y )  at I t'" (Ref. 
23), and the parameters J,,, are of the order of 

Enhanced RTR is thus realized under the condition 
1 5 ( / c )  ' . E stimates of the internal and external 
scales of the layers that generate RTR effectively are ob- 
tained in the same manner as for a cubic layer, and lead to the 
following results: 

It must be borne in mind, however, that for layers of sym- 
metric form (even n )  the narrowing of the resonance region 
for large detunings ( / & , I  SY) takes place only for definite 
signs of&,: for E, < 0 in layers with a plasma-density well and 
for E, > 0 in layers with a density hump. For arbitrary signs 
of E, the correct estimate for I ::' is not (28) but 
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This equation must be used for both symmetric and asym- 
metric layers at n $. 1, when the contribution to the integrals 
( 1 1 ) from the resonance peaks of the field on the slopes of 
the layer is small compared with the contribution from the 
plateau section of thickness of order 1 191 I/" at the center of 
the layer. 

It is easily seen from (28) and (29) that the necessary 
condition for the existence of enhanced RTR does not de- 
pend on the order of the layer and retains the form (24). 

As already noted in Sec. 3, the RTR symmetry in vacu- 
um, for particles entering or leaving the plasma, is indepen- 
dent of the type of layer only if P- 1. The differences 
between the indicated cases for nonrelativistic motion of the 
charge are determined by the difference between the values 
of the parameter J2 for different particle-velocity directions, 
and are therefore absent only for symmetric layers (even n) ,  
when it suffices to reverse the sign ofp  in ( 13). For example, 
for a layer with a parabolic density well (n = 2, lower sign of 
the E ( X )  dependence) the form of the parameter J2 is sym- 
metric with respect to the sign of u: 

whereas when a particle goes off to the vacuum from a cubic 
layer the expression for the corresponding resonance param- 
eter 

( 3 )  2ni o l l c  J 2  = - 
3 J J  1'' e s p [ i ( 2 ~ - n ) / 3 ]  

differs from ( 18). This difference is immaterial for low de- 
tunings, so long as 191"2wl/lvl 4 1. When the inverse in- 
equality holds, expression ( 3  1 ) decreases very rapidly, 
whereas according to ( 18) quenching of the RTR at large 
detunings ( I & , /  $. v) takes place only under the much strong- 
er condition (22). Thus, in layers of odd order the enhanced 
RTR has an anisotropy of a type similar to that in a gradual 
layer."9 

As the transition of Re E ( X )  through zero becomes flat- 
ter, i.e., with increase of n, the differences between symmet- 
ric and asymmetric layers vanish. In particular, as n - W ,  
when the boundary layer contains a uniform section (pla- 
teau of thickness 21, the parameters J ,,, take the form 

2 ( o l l c )  
J , = - ,  

E,-iv 

2  ( o l l c )  sin ( o l l u )  
Jz = --- 

~ o - i v  oZ/u ' 

and are invariant to change of sign of the particle velocity. 
As a result, the interference quenching of the RTR has no 
anisotropy, and the quenching itself is realized at ol/l ~ 1 %  1. 

If the boundary layer contains several density inflec- 
tions or extrema with close plasma frequencies, their contri- 
butions to the integrals ( 11 ) are additive. The foregoing re- 
sults can therefore be used in RTR calculations for boundary 
layers having quite complicated profiles. 

7. RTR IN INVERTED PLASMA LAYERS 

In inverted plasma layers, which can be phenomeno- 
logically described by an enhancement parameter v < 0, the 
presence of plasma resonance in an inflection (extremum) 
of the density leads to a divergence, invariant to the sign of 
the velocity, of the spectral-angular energy density w(w, 6)  
of the transition radiation when the expression 

l i+[~z- i  (sinZ 0-e,)'"+i cos 01 /sinz 0=0 (34) 

in the denominator of Eq. (13) or (14) vanishes. Equation 
(34) coincides with the condition for giant amplification of a 
TM wave by an inverted plasma layer, and determines the 
frequencies and angles for which w (w, 8) -+ w . In the case of 
a linear passage of Re ~ ( x )  through zero (n = 1 ), the diver- 
gence of w(w, 8) turns out to be quite sensitive to the profile 
of the layer outside the resonance region. At a constant den- 
sity gradient in the transition layer, when d,/d, = - E, and 
J, = - (wl /c) [In ( - E,) + i ~ ] ,  there is no divergence of 
w ( W, 6).  If, however, the parameters .c2 and d ,,, are indepen- 
dent (layer with strongly varying density gradient), the ef- 
fect is possible for glancing radiation angles ( ~ z T /  
2 - ~ w l  /c) under conditions of strong transcriticality of the 
plasma half-space ( k (wl /c) -2).  

We consider here by way of example the case of a pla- 
teau-like (n - w ) density section ofthickness 21, located in a 
transition layer in the region of strong overdensity 
( I ~ ~ l + w ) . T h e n J ,  =2(wl/c)(~,- iv)- l ,andthecondi-  
tion (34) reduces to the relations 

For small detuning ( I&,[ 4 lvl), the energy density on the 
cone defined by (35) is estimated at w(w, 8) cc ( V / E , ) ~  1. 

The layer natural modes of the form exp i[w( 1 + iy/ 
2) t  - hy - g,,,x] are described by the equation 

An investigation of (36) demonstrates the instability of 
the bulk natural modes inside the cone (with a growth rate 
y = v + 2 (wl /c) . sin2 8 /COS 6 )  and of the surface modes of 
the layer (with a growth rate y = v). In other words, the 
effect of divergence on the cone is accompanied by emission 
of a weakly directional background. 

8. RTR IN A PLASMA WITH SPATIAL DISPERSION 

The results above are directly applicable to a plasma in 
which the spatial dispersion is suppressed by collisions 
(v$.vT = (rD/1)2n/("+2), where r, is the electron Debye 
r a d i u ~ ' ~ , ~ ~ ) .  They can be generalized to include the case of a 
heated plasma with v< v, in the absence of spatial plasmon 
resonances (i.e., for density profiles having a hump or inflec- 
tion of not too high an order n)  by replacing v by v, in the 
expressions for J,,, . On the other hand, the presence in the 
layer of trapped Langmuir oscillations leads, just as in the 
problem of absorption of a TM wave,12s25 to formation of a 
multifrequency structure of the spectrum of the enhanced 
RTR with intervals on the order of v, between the compo- 
nents (see Fig. b).  
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9. CONCLUSION 

Thus, the presence of inflection points or extrema of the 
~ ( x )  profile in the boundary layer leads to the appearance, at 
the corresponding plasma frequencies, of peaks of enhanced 
(in order of magnitude) RTR against a nonresonant back- 
ground. For nonrelativistic charges, substantial gain can be 
obtained not only in the spectral density w( W ,  6') (see above) 
but also in the total energy 

Indeed, as shown by analysis, the ratio of the energy W,,, 
of the enhanced RTR to the energy Wo of the nonresonant 
transition radiation ( W,-p '( q2/c) X (up ),,, , Ref. 3) can 
be estimated at 

This shows that WRTR exceeds W, substantially at 
p 2 g  ( w , l / ~ ) ~ ' ( ~  - ')  . 

Of course, structural effects similar to enhanced RTR 
appear also in moving boundary layers. The laws governing 
this transition scattering, however, are beyond the scope of 
the present article. 

"There are earlier reports of peculiarities of screening" and absorp- 
tion~2.~2 of TM waves by plasma layers of this type. 

"The strong increase of RTR in thin silver films, observed in Refs. 20 and 
21, was explained"' for a model of an homogeneous plasma layer. 

"There is obviously no resonant radiation in the region of high frequen- 
cies, where E~ > 0. 

4'Although for v '"L, 5 I<Ij;' the RTR is weak (w<q2/c), it is nonethe- 
less comparable with the nonresonant transition radiation. It is clear 
thus that the condition /<Ii, is insufficient for a change to the approxi- 
mation of an ideally abrupt boundary. 
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