
Trapping and entraining of electromagnetic-field packets by ion-sound waves 
into supercritical regions of an inhomogeneous plasma 

E. M. Gromov and V. I. Talanov 

Institute ofApplied Physics, Academy of Sciences of the USSR 
(Submitted 29 April 1987) 
Zh. Eksp. Teor. Fiz. 94,83-94 (March 1988) 

We discuss the mechanism for trapping and entraining of electromagnetic ( E M )  field packets by 
ion-sound waves into supercritical regions of an inhomogeneous plasma. The transfer is caused by 
the fact that there exist, in an inhomogeneous plasma with strong ion-sound waves, EM field 
states which are dragged along by these waves into dense plasma layers. We determine the 
efficiency of the excitation of the entrained states of the EM field by incidence of EM radiation of a 
given frequency upon the plasma and we find the penetration depth of the trapped field into the 
dense plasma layers. We show that it is possible that the EM field can penetrate into plasma layers 
having local density values several times larger than the density in the region of the turning point 
of the radiation incident upon the plasma. 

1. INTRODUCTION 

The problems of the penetration of electromagnetic 
(EM) waves into inhomogeneous plasma regions with local 
values of the plasma frequency larger than the frequency of 
the radiation incident upon the plasma (supercritical re- 
gions) are of considerable interest both for the theory of 
wave propagation and for applied studies of plasma physics. 
In the past the penetration of strong high-frequency waves 
has been studied; their action leads to a considerable nonlin- 
ear restructuring of the parameters of the medium. In par- 
ticular, the excitation of electro-acoustic waves by a modula- 
ted EM wave, incident from the vacuum, at the boundary 
between the vacuum and a uniform supercritical plasma has 
been studied in Ref. 8. 

In the present paper the penetration of EM field 
bunches into supercritical regions of a smoothly inhomogen- 
eous plasma is connected with their transport by strong ion- 
acoustic waves. This transport is caused by the existence in 
an inhomogeneous medium of quasi-localized states of the 
EM field, which are of variable frequency and are dragged 
along by the low-frequency wave of the parameter of the 
m e d i ~ m . ~  The transport mechanism can be demonstrated 
using as a model the problem of evolution of a one-dimen- 
sional wave field $(z,t) described in dimensionless variables 
by a Schrodinger type of equation: 

with a potential 

where t ( z  - a t )  is a low-frequency perturbation of the po- 
tential and moves with a velocity a > 0 into a region with 
large values of the stationary potential U,,(z) = z/2. Equa- 
tion ( I )  can be reduced through a change of the independent 
variables 

and of the required function 

$=$(E, t )  esp ( i a z - i u t2 /4 )  

to the form 

from which it follows that for well- or hump-type perturba- 
tions t ( [ )  of the potential there can exist metastable states 
which are dragged into the region z > 0, 

- 
$nZ$n ( E )  exp (-iv,,t-iat2/4+iaE), 

with a frequency w ,  = Rep ,  + a t  /2 which increases mono- 
tonically with time. After the lifetime of the metastable state 
t, = IIm p, I-', an upwards shift Aw by an amount of the 
order alIm p, I - '  is reached. The penetration depth of the 
field is then z,,, = 2Aw = 2a/ Im p, I '. The magnitude of 
this shift and the penetration depth are larger for low-lying 
weakly damped states. 

We consider in the present paper EM field states which 
are dragged along by ion-sound waves into dense plasma 
layers. We determine the coefficients for the excitation of 
such states. We find the lifetime and the corresponding pene- 
tration depth of the field dragged into the dense plasma lay- 
ers. We show the possibility that the entrained field can be 
dragged into plasma layers with a local value of the density 
several times larger than the value of the plasma density in 
the trapping region. 

2. BASIC EQUATIONS 

We consider the field of EM waves in a plane-layered 
plasma without an external magnetic field in the presence of 
strong nonstationary density perturbations produced by ion- 
sound waves. To be specific, the wave vectors of the EM and 
ion-sound waves considered are assumed to be collinear with 
the direction of the density gradient of the unperturbed plas- 
ma, which coincides with the z axis. In that case, the equa- 
tions describing the interaction of the EM waves with the 
strong ion-sound waves have the form 

where E is the electric field strength of the EM wave, D the 
electric induction, c the velocity of light, p,  the perturbation 
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of the plasma density in the ion-sound wave, p, = p,(z) the 
value of the plasma density when there are no ion-sound 
perturbations, and c, the ion-sound wave velocity. The elec- 
trical induction D is connected with the field strength E 
through the integral relation'' 

m 

D ( z ,  t )  = j di ~ ( i ,  t ,  Z )  E ( z ,  t-n, ( 3  
0 

and the form of the kernel E(?,t,z) is determined by the prop- 
erties of the medium. The ?-dependence o f i  (?,t,z) character- 
izes the temporal dispersion of the medium and the depen- 
dence on z  and t  corresponds to the inhomogeneity and 
non-stationarity of the parameters of the medium. The set of 
Eqs. ( 1 ), ( 2 )  for well- or hump-type profiles of the ion- 
sound density perturbations has solutions describing E M  
field states which are dragged along by such perturbations. 
We consider first of all entrained states of the field, neglect- 
ing the action of the E M  waves on the ion-sound perturba- 
tions. Afterwards we take into account the change in the ion- 
sound wave parameters due to the action of the EM field. 

3. ENTRAINED EM FIELD STATES IN AN INHOMOGENEOUS 
PLASMA 

We consider the field of EM waves in a plane-layered 
plasma with a monotonic density profile in which a strong 
ion-sound perturbation propagates in the direction of the 
density gradient. We write the field of the EM waves E ( z , t )  
in ( 1 )  in the form of a wave packet with a frequency w ( t )  
which varies slowly with time: 

where EO(z, t )  is the envelope of the wave packet. Assuming 
the characteristic time To for a change in the frequency w 
and of the envelope field E, to be much larger than the wave 
period, T,w 4 1, we expand the amplitude EO(z,t - 2)  and 
the phase 

t-f 

(1 - i) 1 dice (i) 
in ( 3 )  in series in the vicinity of t  up to terms of order 
( To w )  - ( 1. We then perform in ( 3 )  transformations simi- 
lar to those in Ref. 11 and use the definition of the permittivi- 
ty of a medium with temporal dispersion 

to substitute the relation obtained for the electric induction 
D(z , t )  into ( 1 ) . Retaining in the formula obtained terms of 
order ( To w )  - I ,  we have the following equation for the field 
envelope E,, 

, dZE, c- - - dEo 
2io -- 

d z2 d t  

1 d o  a2eo 
- 02~,+i e'  j 0'1 E.=O, ( 5  1 ( 2 d t  90' 

where 

e o ( w ,  t ,  2 )  =1-0,>~(2, t ) l u 2 ( t )  

is the quasi-stationary value of the permittivity of an inho- 

mogeneous and non-stationary plasma, 

is the plasma frequency, N ( z , t )  the plasma density; 
E' = Im E is the imaginary part of the permittivity and is 
connected with the non-stationarity of the parameters of a 
medium with temporal dispersion, and leads to an additional 
phase shift between D and E. If the wave packets (4) which 
we are considering are of finite size, the magnitude of the 
imaginary part E' found from the condition that there exists 
for such packets the adiabatic i n ~ a r i a n t ' ' . ' ~  

is equal to 1/2(dw/dt)  ( a  2 ~ o / a w 2 ) .  In that case Eq. (5 )  for 
the wave-packet envelope Eo in an inhomogeneous and non- 
stationary plasma takes the form 

a2E 
Cz 0 - + 02eo ( a ,  t ,  z ) ]  ~ ~ - 0 .  ( 6 )  a z2 at 

We set the plasma density N ( z , t )  in (6)  equal to 

N ( z ,  t )  =No (l+z/L) +N,(z-cat, v t )  , 

where N ( z )  = N,,(1 + z / L )  is the stationary value of the 
density, N, ( z  - c, t ,vt)  is the deviation of the plasma den- 
sity, caused by the propagation of the ion-sound wave into 
the dense plasma layers, from its equilibrium value N ( z ) ;  
v g  1 is a small parameter corresponding to the change in the 
parameters of the ion-sound perturbation in the inhomogen- 
eous plasma. If we change the variables 

and the required function 

and neglect in the relation obtained terms of order ( c , / c ) ' ,  
Eq. ( 6 )  takes the form 

where 

4neZN, (E, v t )  npz (g, vt) = 
me 

Equation ( 7 )  together with ( 8 )  describes the envelope 
of the EM wave packet. The frequency w ( t )  of this packet is 
determined from the solution of the boundary-value prob- 
lem for Eq. ( 8 )  for the eigenvalues of the field states $ de- 
scribed by Eq. ( 8 )  for a given profile 3: (6 ,v t ) :  

Hence it follows that in an inhomogeneous plasma and when 
there are strong ion-sound waves present it is possible that 
there exist EM field states which are dragged along into 
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dense plasma layers and have a frequency which increases 
monotonically with time. 

4. TRAPPING OF EM FIELD PACKETS IN ENTRAINED STATES 

To determine the efficiency of the excitation of the en- 
trained EM field states we assume that an EM wave of fre- 
quency w, is incident from the vacuum onto a plane-layered 
plasma normal to its surface, so that in the absence of ion- 
sound density perturbations a field distribution 

E (z, t )  =E, ( z )  esp  ( h o t )  

with an amplitude which is constant in time and which is 
described by the equation 

is established in the plasma. Furthermore, we assume that 
from the region, of incidence of the EM field upon the plas- 
ma in there propagates the direction of the density gradient 
an ion-sound wave in the form of a compression step: 

Assuming that the ion-sound wave speed and the scale of the 
plasma inhomogeneity L are sufficiently large quantities, we 
take it that an ion-sound perturbation does not affect the 
nature of the propagation of the EM field incident upon the 
plasma when the plasma frequency in that perturbation 
[ w i  ( t )  + G i  (6,vt) ] ' I 2  is less than the critical value w,, and 
becomes opaque to the field incident upon the plasma at the 
time t * when the quantity [ w i  ( t )  + 5: (6,vt) ] ' I 2  reaches 
the critical value w,. If we write the EM wave field in the 
region z> c, t *, for t > t *, as a sum of the fields of the en- 
trained states the envelope and frequency of which are de- 
scribed by Eqs. (7)-(91,  and, to be specific, assuming that 
the field E, in the region z  > c, t * contains m oscillation com- 
binations we get for that time at z> c, t *, in terms of the 
variables z' = z - c, t *, t ' = t - t * (we drop the primes in 
what follows) 

c.0, ( 0 )  
+.., (21  = ~c.,,,., ( z )  exp ( i  - z) , 

c2 

where C,., is the coefficient for the excitation of the nth 
state 

by the field $, . The functions $,,,, in ( 10) satisfy the equa- 
tion 

with boundary condition $,,,, (0 )  = 0. The solution of 
( 1  1 )  is in that case the Airy function Ai( -p,,,, ) with 
argument 

where 
~ = z k , ,  ko=o, ( 0 )  I c ,  A-'=koL, 

- ~l,,>,,,=pmin,/O,'(o), on2(0)  =up2 (0) (I+F.). 

while thequantity --p,,,, = --,Em,,, A -2'"s the m(n) th  
root of the Airy function Ai( --p,,,, ) = 0. Multiplying 

( 10) by the complex conjugate $*, (2) of the quantity $, ( z )  
and integrating the relation obtained over z from 0 to + m ,  

using ( l l ) ,  we get 
m 

C.,. = exp (iVgm) j d (--p.) Ai (-p.) Ai (-p.) 

-1 

X e x ~ ( - i V h )  [ -om - d ( - p . ) ~ i ' ( - ~ , ) ]  , (12) 

where 

To start with we analyze Eq. (12) for small values of the 
parameter V. We assume that in the region which gives the 
essential contribution to the integral ( 12), 0 <p, <p,  , the 
relation Vp, < 1 is satisfied. In that case, using in (12) the 
relation exp( - iVp, ) =. 1 - iVp, and the condition that 
the Airy functions Ai( - p, ) and Ai( - p, ) are orthogo- 
nal when m # n, we get for the excitation coefficients 

The excitation coefficient is in this case small and propor- 
tional to the parameter V. The way C,,, depends on the 
indexes m and n is described by the integral I,,, and is found 
by numerically integrating that relation. We give here the 
quantities I,,, for m-values 4 and 6 and n values 1 and 2: 

It is clear that the amplitude of the excitation coefficient 
increases both when the number of the excited state n in- 
creases, and when the number m decreases. 

We analyze Eq. ( 12) for parameter values V )  1,'' cor- 
responding to large values of the inhomogeneity scale k&. 
We consider the case m)n. The argument of the function 
Ai ( - p, ) in the region where Ai ( - p, ) is localized is then 
a large negative quantity, p, ) 1, and we can write the func- 
tion Ai( - p, ) in the form 

When V )  1 we can use (13) to integrate the numerator of 
(12) by the stationary-phase method (see, e.g., Ref. 13). 
Assuming the stationary phase point, pz = V 2  > 1, to lie in- 
side the integration interval of (12) we take the function 
Ai( - p, ) p i  outside the integral sign with the value at 
that point. Expanding the exponent in the integrand in the 
vicinity of pz in a series up to terms of order (p,  - pz ) *  

and extending the lower integration limit in the obtained 
integral to - W ,  we get 
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We evaluate the norm of the Airy functions 
w 

P. = 5 d(-p.)Ai2(-p.), 
, - ( 1 5 )  
- Pm 

for which we use ( 1  1 ) to integrate ( 1 5 )  by parts. Using the 
boundary condition Ai( - pm ) = 0, we have 

When m 9 1  we see, using ( 13 1, that the norm of the Airy 
functions equals p; '/*/?r. As a result Eq. ( 1 4 )  takes the 
form 

It follows from ( 1 6 )  that the most efficient excitation of 
entrained states En is realized in the interval 

while the maximum value of the amplitude of the excited 
states decreases with increasing m. When 

the quantity C,,, is exponentially small and equal to zero 
when V2 >pm . What we have said is illustrated in Figs. 1  and 
2 .  We show in Fig. 1  the function /C,,, /*  as function of the 
parameter V for various values of the number of the excited 
state n and in Fig. 2 the function (C,,, l2  as function of V for 
various values of m. 

5. ENTRAINING OF EM FIELD PACKETS INTO A 
SUPERCRITICAL PLASMA 

EM field packets trapped by entrained states penetrate 
in a supercritical plasma into dense plasma layers. The pene- 
tration depth and, correspondingly, the lifetime of these 
states in an inhomogeneous plasma are determined by three 
factors: 1 )  the nonlinear transformation of the ion-sound 
wave energy in the entrained field, 2 )  the tunnel de-excita- 
tion of the EM field from the localization region, and 3 )  
thermal losses due to collisions of the plasma particles. We 
consider the effect of each of these factors separately. 

1. Nonlinear transformation of ion-sound waves in an 
inhomogeneous plasma 

The ion-sound waves perform work on the trapped EM 
field they entrain into dense plasma layers. This leads to a 

FIG. 1. Square of the modulus of the excitation coefficient IC,,,, 1 '  as func- 
tion of the parameter V for different values of the number of excited state: 
curve 1 corresponds to the value n = 1, curve 2 to n = 2. 

FIG. 2. Square of the modulus of the excitation coefficient C, , ,  l 2  as 
function of the parameter V for different values of m: curve 1 corresponds 
to the value m = 4, curve 2 to m = 6.  

change in the ion-sound wave parameters, in this case to 
their damping caused by the nonlinear transformation into 
the entrained EM field. 

To determine the efficiency of such a transformation we 
turn to Eq. ( 2 ) .  In that equation we change to a frame of 
reference moving with the ion-sound wave speed c,. In the 
resultant equation we discard terms with second derivatives 
in time and use the relation 

to get 

We shall be interested in ion-sound perturbations of density 
p, for which p, ( 6 -  - co ,vt)  - 0. We neglect also the emis- 
sion of EM field from the localization region 
E ( 6 -  - m , t )  -0. Integrating ( 1 7 )  over 6 and using in the 
relation obtained the assumptions made above we get 

We multiply ( 1 8 )  by p,/p;/' and once again integrate the 
obtained relation over 6 from - w to + w : 

The expression in the braces in ( 1 9 )  corresponds to the ion- 
sound wave energy W, ( t )  in the inhomogeneous plasma. 
We show that the second term in ( 1 9 )  corresponds to the 
rate of change in the energy of the entrained EM field. In the 
approximation of real values of the eigenvaluesp, which, as 
before, corresponds to neglecting the emission of EM field 
from the trapping region, the intensity of the EM field 
dragged along by the ion-sound wave can, if we use ( 7 ) ,  be 
written in the form 

where $, is given by Eq. ( 8 ) .  We assume that the character- 
istic time for a change in the function $, is sufficiently large 
so that in ( 8 )  the term with the time derivative is small com- 
pared with the other terms in the equation and can be ne- 
glected. In that case we get for $, the quasi-stationary equa- 
tion 
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We multiply (21 ) by d$,*/dcand add it to the complex con- 
jugateequation. Substituting thequantityp,d I $, l2/al from 
the relation obtained into ( 19) and using (20) we get 

Assuming that in (22) the scale L of the plasma inhomoge- 
neity is much larger than the localization region of the func- 
tions $, we take the quantity w i  (6 + c, T )  from under the 
integral sign at its value in the point 4, of the largest maxi- 
mum of the field $, . For instance, for compression-step ion- 
sound perturbations the point 6, is close to the turning point 
of the field $, on the linear profile 6, zL,ii,. Performing 
then in (22) the integration and neglecting as before the 
emission of EM field from the localization region we get 

m 

One sees easily that the expression within the braces in (23) 
is the energy W, ( t )  of the EM field dragged along by the 
ion-sound wave in the inhomogeneous plasma and hence, 
Eq. (23) is the energy conservation law for the "ion-sound 
wave + entrained EM field" system in an inhomogeneous 
plasma when one neglects the emission of EM field from the 
localization region, 

d 
- {W,  ( t )  +W* ( t ) ) = O .  
dt 

(24) 

The energy of the field entrained by the nth state increases 
with time in proportion to its frequency, W$ a w, ( t ) .  Such a 
change is caused by the work done by the ion-sound waves 
on the entrained field and it follows from (24) that it is ac- 
companied by a nonlinear damping (transformation) of 
these waves in the inhomogeneous plasma into an entrained 
high-frequency field. The penetration of the EM field into 
the supercritical region is realized under the condition that 
the energy W, of the ion-sound waves is much larger than 
the energy W, of the entrained field. We determine the non- 
linear transformation time t, from the condition 
W, (tNL ) - W+ (t, ). Putting for estimates w, ( t )  -a, ( t )  
we find that in a plasma with a linear density profile N(z) the 
nonlinear transformation time in dimensionless units 
r = tc, /L equals 

2. Tunneling "radiation". Trapped states of an entrained field 
in an inhomogeneous plasma 

The change in the number Pof photons of the entrained 
EM field caused by their tunneling through a density barrier 
in the low-density region is 

where T is the coefficient for transmission of photons 
through the density barrier, to is the flight time of the pho- 
tons along a closed trajectory in the localization region neg- 
lecting de-excitation. As an example of ion-sound density 
perturbations we consider a compression step and use the 
fact that it follows from ( 18) that the amplitude N, of the 
perturbations, when they propagate in a continuous-inho- 
mogeneous medium and when we neglect the effect of the 
entrained EM field on these perturbations, changes in pro- 
portion to N ' I 2 ( t )  : 

In that case the quasi-localized states are those whose num- 
ber, according to (2  1 ), satisfies the inequality 

The coefficient for the transmission of photons which are in 
one of these states through the density barrier takes, with 
allowance for (21 ), the form 

We determine the flight time of the photons of the EM field 
along a closed trajectory in the 4 > 0 region from the relation 

where 4, is the turning point of the field $, , 

is the group velocity of the wave packet (k (g)  is the wave 
number of the packet), which, with allowance for (21 ), is 
equal in the > 0 region to k,c2 (,G, - { / L  ) ' I2 .  Hence, the 
time t, is equal to 

bn"'L~p ( t )  

cop  (0) * 
(29) 

Using (28) and (29) tointegrate (26) weget for the number 
of photons in the EM bunch 

n 

where 

It follows from (30) that as t- cc there remains a finite 
number of photons in the localization region 

which are trapped by the ion-sound perturbation. Here 
r(2/3,r],) is the incomplete gamma function. 

When a, = aT(2/3,r],) < 1 the number of trapped 
photons P( cc ) differs from its initial value P(0)  by a factor 
less than e.  Determining the lifetime of the entrained states 
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t,,, from the condition P(t,,, ) = P(O)/e we find that when 
a, < 1 the states of the EM field dragged into the supercriti- 
cal plasma can be defined as non-emitting or trapped. 

When a, > 1 the lifetime of the entrained states is finite 
and such states are metastable. We find the time t,,, from the 
relation 

where v1 = v ( t  = trad). We give an upper bound for the 
quantity t,,, . To do this we use in (32) the obvious inequali- 
ty 

and we find that the time T for the emission of the entrained 
field in dimensionless units does not exceed the value 

After that time the EM field penetrates into a region with 
density 

is then of the order of 1.9. s. The frequency of the bunch 
increases approximately in proportion to (N, /No) ' I 2  - 2.3, 
i.e., by a factor 2.3. 

We can estimate the time for tunneling radiation t,,, 
from Eq. ( 33). For instance, when an EM field in the ground 
state ( n  = 1 ) is dragged along, the radiation time t,,, for a 
plasma with the parameters given above is longer than t, for 
a relative initial height of the step N, (0)/No > 7.5. loW2. We 
can estimate the time t, for the nonlinear transformation of 
the ion-sound wave energy into the entrained EM field from 
(25). In a plasma with the parameters given above the time 
t, is larger than t, when W, (O)/ W,, (0 )  > 3.6. 

The mechanism proposed here thus indicates the possi- 
bility that EM waves can penetrate into a supercritical plas- 
ma to an appreciable depth, which is undoubtedly of interest 
for transporting EM field energy into dense plasma layers. 

One can similarly consider the trapping and entraining 
of Langmuir wave packets in an inhomogeneous plasma. It 
proves also possible to consider the entraining of high-fre- 
quency wave packets in a radially inhomogeneous plasma 
into central dense layers by spherically converging ion- 
sound waves. 

"For E M  waves the condition V S  1 is reached for very large values of k,,L. 

3. Thermal losses 

To estimate the effect of thermal losses due to collisions 
of the plasma particles we must recognize that the collision 
frequency is proportional to the plasma density N ( z ) .  For a 
linear profile, N(z) = No ( 1 + z/L), the number of photons 
in the EM bunch will change with time according to 

where t, = Y,' ( Z  = 0 )  is the lifetime of the bunch in its ini- 
tial position with z = 0, t, (in s )  z 5. ~ o - ~ T  3'2 (in K)/N,, 
(in cmW3), C, (in cm/s) --, 1 0 ~ 7 " ' ~  (in K ) .  After a time t, , 
determined by the condition t, + c, t 2,/(2L) = t ,  , the num- 
ber of EM field photons is reduced by a factor e and then the 
bunch has reached a region with density 

Putting in this example the plasma parameters equal to 
T, -5.106 K, and No- lOI4 cm-< we get c,t, =: 125 cm. 
When L-  10 cm we find that after its lifetime t, the bunch 
has penetrated into a region with density N, /No - 5.1. The 
lifetime of the bunch itself, 

. - 
However, theconsideration of this case is of methodological interest as in 
a studv of the travving of other kinds of hf waves into entrained states the .. - 
relation V 5  1 can be reached for relatively smaller values of L. For in- 
stance, for Langmuir waves the parameter Vcorresponds to the quantity 
( c , / V ,  ) ( L  /rD ) ' I 3  ( VT is the thermal velocity and r ,  the Debye radius 
in the trapping region) and reaches values of the order unity for 
L-r,, ( m , / m < ,  )3''. 

'A. V. Gurevich and A. V. Shvartsburg, Nonlinear Theory of Radiowave 
Propagation in the Ionosphere [in Russian], Nauka, Moscow, 1973. 

'H. H. Chen and C. S. Liu, Phys. Rev. Lett. 37,693 (1976). 
'K. V. Chubkar and V. V. Yan'kov, Fiz. Plazmy 3, 1398 (1977) [Sov. J. 
Plasma Phys. 3, 780 ( 1977) 1. 

4M. R. Gupta, B. K. Som, B. Dasgupta, Phys. Rev. A69, 172 (1978). 
'R. R. Ramazashvili and A. N. Starodub, Pis'ma Zh. Eksp. Teor. Fiz. 29, 
41 (1979) [JETPLett. 29,37 (1979)l. 

'A. I. Smirnov and G. M. Fraiman, Zh. Eksp. Teor. Fiz. 83, 1503 ( 1982) 
[Sov. Phys. JETP 56, 865 (1982)l. 

'S .  S. Moiseev, V. V. Mukhin, V. E. Novikov, and R. Z. Sagdeev, Dokl. 
Akad. Nauk SSSR273,857 (1983) [Sov. Phys. Dokl. 28,1031 ( 1982)l. 
'V. I. Karpman, Non-linear Waves in Dispersive Media, $30, Pergamon, 
1978. 

'E. M. Gromov, I. N. Didenkulov, and V. I. Talanov, Radiofiz. 30, 562 
(1987). 

"'L. D. Landau and E. M. Lifshitz, Elcctrodynamicsof Continuous Media, 
Pergamon, 1984. 

"Yu. A. Kravtsov and Yu. I .  Orlov, Geometric Optics of Inhomogeneous 
Media [in Russian], Nauka, Moscow, 1980, Ch. 111. 

"Yu. A. Kravtsov, L. A. Ostrovskii, and N. S. Stepanov, TIIEF 62, 91 
( 1974). 

"M. B. Vinogradova, 0. V. Rudenko, and A. P. Sukhorukov, WaveTheo- 
ry [in Russian], Nauka, Moscow, 1979, Ch. VIII. 

Translated by D. ter Haar 

485 Sov. Phys. JETP 67 (3), March 1988 E. M. Grornov and V. I. Talanov 485 


