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We investigate the dynamics of coherent population of Rydberg atomic levels by a short laser 
pulse, and the dynamics of resonant ionization with excitation of many Rydberg levels as 
intermediate states. We also investigate transitions to the continuum or to states of a discrete 
spectrum from a state that is a coherent superposition of Rydberg-level wave functions and is 
induced by a radiation pulse of short duration at a definite delay relative to the instant of 
production of the initial state. We investigate the dependence of the probabilities of these 
transitions on the delay time and on the duration of the transition-inducing pulse. A number of 
interference phenomena that lead to an increase of the transition probabilities and to their 
unusual dependence on the pulse duration are observed, and are found to be due to the formation 
of packets of coherently populated Rydberg levels. 

1. INTRODUCTION 

Action of a short pulse of electromagnetic radiation of 
suitable frequency on an atom can cause coherent popula- 
tion of highly excited, Rydberg, atomic levels. Coherent 
population means that the ensuing state is described by a 
wave function (and not by a diagonal density matrix) that is 
a superposition (packet) of wave functions pn of Rydberg 
levels En. Such a state can result either from a direct one- 
photon transition or from multiphoton excitation. Coher- 
ently populated Rydberg levels can assume the role of inter- 
mediate levels in multiphoton excitation of higher 
multiplicity or in multiphoton ionization. A transition from 
a group of coherently populated Rydberg levels to the con- 
tinuum or to other states of a discrete spectrum can be effect- 
ed either by the same field that produces the initial packet of 
the Rydberg-level wave functions or by another pulse of 
electromagnetic radiation of different frequency and dura- 
tion, possibly turned on at some time to later than the instant 
of production of the initial packet. 

Inasmuch coherent population establishes phase rela- 
tions between the probability amplitudes of finding an atom 
in states p,, it is obvious that in transitions to other states 
interference can take place between transitions from differ- 
ent Rydberg levels En. Since these phase relations vary with 
time, the degree of interference of the transitions can also 
depend on the time. This raises the question of identifying 
the specific manifestations of the discussed interference phe- 
nomena, and their dependences on the duration of the pulse 
that causes the transition, on its delay time to, on their local- 
ization in the atomic spectrum of the initial level packet, on 
whether the transition is to higher or lower stats of the dis- 
crete spectrum or to the continuum, etc. The present paper 
deals with these questions. 

We consider in the next section the dynamics of coher- 
ent population of Rydberg levels acted upon by a short laser 
pulse, and two-step (resonant) ionization in which the Ryd- 
berg levels assume the role of intermediate states. We consid- 
er next the photoionization of coherently populated Ryd- 
berg levels by another radiation pulse as a function of its 
duration and delay time, transitions to the continuum, in- 

duced recombination, and transitions between groups of 
Rydberg levels. 

2. COHERENT POPULATION OF RYDBERG LEVELS AND 
TWO-PHOTON IONIZATION 

Let an atom in the ground (p,) state (with energy E,) 
be acted upon by a short radiation pulse of frequency w and 
with maximum amplitude F, of the electric field strength 
and with maximum amplitude of the temporal envelope 

where T, is the pulse duration at half maximum (we shall 
hereafter designate the pulse duration by T, bearing in mind 
the difference between T and 7,). 

The Gaussian form ( 1 ) of the envelope f ( t )  is the most 
suitable for single-frequency laser pulses. In the case of atom 
interaction with a microwave field, other regimes can be re- 
alized, in which f ( t )  is closer to a step function. All the 
results and qualitative relations obtained below are indepen- 
dent of the form of the envelope. We therefore present below, 
where possible, general equations with an arbitrary function 
f ( t )  as well as (for clarity and to obtain explicit analytic 
expressions) the corresponding equations corresponding to 
the Gaussian envelope f ( t )  of Eq. ( 1 ) . 

Let the frequency w be lower than the ionization thresh- 
old, w < I Eel, but close enough to it to permit even one-pho- 
ton excitation to raise the atom to a Rydberg state p, with 
energy E, = - 1/2n2 (in atomic units) and with large val- 
ues n $1  of the principle quantum number. The time-depen- 
dent probability amplitudes of excitation of Rydberg levels 
can be easily obtained in first-order perturbation theory in 
the interaction of the atom with the field F,: 

where V,, = - d,, SF, and d is the dipole moment of the 
atom. 

The probability of exciting an individual Rydberg level 
in the entire time of the pulse ( 1 ) is equal to 
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The total probability of exciting all the Rydberg levels is 
equal to the sum of the w, or Eq. ( 3 ) . According to Ref. 1 ,  
the dependence of the matrix elements Vno with n % 1 on n is 
given by 

where V,, is the matrix element of the transition from the 
ground state to the first excited one. 

Let the duration of pulse ( 1 ) be such that 

where n ,  = (21 E ,  + w 1 ) - ' I 2  is the principal quantum num- 
ber corresponding to the center of the band of excited Ryd- 
berg levels. The condition ( 5 )  means that the width of this 
band ( -  1/r) is much larger than the distance A, En;' 
between the closest Rydberg levels. If r )  n:, the width of 
this band is much less than the distance to the threshold of 
continuum, but if r < n i  the band of excited levels contains 
also continuum states. In any case, the condition ( 5 )  makes 
it possible to change over in the calculation of the total exci- 
tation probability from summation over n to integration 
with respect to E n ;  this yields 

The linear W ( T )  dependence is more reminiscent of the 
initial stage of photoionization2 than the initial stage of reso- 
nant excitation of discrete levels. In the latter case, as is well 
known, there are produced Rabi oscillations3 whose initial 
stage corresponds to a quadratic w ( r )  dependence. 

In the case of long pulses, when condition (5 )  is not 
met, it is impossible to change to integration when w ,  ( 3 )  is 
summed. For r )  n i ,  on the contrary, the principal role in the 
sum Z, w ,  is played by one term n = no (or else three, n = no 
and no 1 )  with minimum energy-difference modulus 
IE, - E , - w l .  If IE, -E,-wl,, = 0 ,  the W ( T )  in- 
creases quadratically, corresponding to the initial stage of 
Rabi  oscillation^.^ If, however I E n  - E ,  - w I m i ,  7 %  1, then 
W ( T )  and all wn ( T )  decrease exponentially, meaning that 
the field is turned on and off adiabatically slowly in the non- 
resonant case. The complete function W ( T )  is shown in Fig. 
1 a. 

The onset of the linear W ( T )  dependence ( 6 )  in lieu of 
the quadratic one during the initial stage [under condition 
( 5 )  ] is not yet a manifestation of some interference effect. It 
is simply the result of addition of probabilities. The probabil- 
ity w, ( 3 )  of transition to each Rydberg level E n  under con- 
dition ( 5 )  is proportional to ?. The number, in the sum over 
m, of those terms which make a noticeable contribution to w 
is of the order of T-'/A,, = n i r - ' ,  and it is this which leads 
to the linearity of w ( 7 )  ( 6 ) .  Even this very simple result, 
however, shows that under condition (5)  there is essentially 
no difference between photoionization and excitation of 
high Rydberg levels. 

FIG. 1. Probability of excitation ( a )  and of two-photon ionization ( b )  vs 
the pulse duration r :  1--exact resonance, 2-nonresonant case. 

We find now in second-order perturbation theory the 
probability of two-photon ionization, assuming as before 
that w is close to but smaller than lEol. The probability am- 
plitude of a transition to a continuum state of energy 
E -  Eo + 2w during the entire time of action of the pulse ( 1 )  
is equal to 

where the C, ( t )  are defined by Eq. ( 2 ) .  
The dependence of the matrix elements V,, of the 

bound-free transitions on n is similar to ( 4 )  (Ref. 1 ) : 

V -Vn-" 
En- t (8 

where V = const. For w 4 1, according to Refs. 4 and 5, 

V-Fo/mS'a. (9) 

Actually, of course, the "constant" V depends on E, but 
this dependence is slow and can be neglected if there are no 
autoionizing levels in the energy region E- Eo + 2w (the 
flat continuum approximation6). 

Using Eqs. ( 7 ) - ( 9 ) ,  it is easy to find also the total ioni- 
zation probability 

In the integration with respect to E w e  have used here 
the usual approximation with a large excess above the 
threshold,'.' an approximation based on the assumption that 
the width ( - 1/r) of the continuum populated-levels bands 
is much less than E ,  + 2w. This allows us to extend the limits 
of the integration with respect to E to [ - oo , + oo 1. 

Equation ( 1 0 )  is a direct generalization of the known 
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equations that describe resonant ionization of an atom via an 
isolated resonant level in the regime of broadening of the 
resonance due to the short duration of the pulse.7-9 

Under condition (5), it is possible again in Eq. ( 10) to 
change in the sum over n  to integration with respect to En ; 
with allowance for ( 2 )  and (4), this yields 

On the contrary, for T )  ni and IE, - w - EoImin ~4 1 
(exact resonance), the main contribution in the sum over n  
in Eq. ( 10) is made by one single term (with n  = no) : 

4.- t 

nV 'VZ 
w = '" d t f  ( t )  ( j f (t') dt' )' PT'. 

32122 -_ - - 
At r%n; and IE, - w - E o I m i n ~ )  1 the sum over n  in 

( 10) receives contributions from several terms with n  close 
to no, and for these terms 

c,, ( t )  = - ViOf ( t )  

2no"(En-Eo-a) 
exp { i  (En-Eo-a) t )  ( 13) 

and 
+- 

The complete function w, ( T )  is shown in Fig. lb. The 
region 7) ni is that of ordinary resonant ionization through 
an isolated [for I En - w - Eo 1 ,,, T < 1 ( 12) (Fig. 
lb, curve I ) ]  or through direct nonresonant two-photon 
ionization [for I En - w - EO1,,, T )  1 ( 14) (Fig. lb, curve 
2) 1. There are no interference effects at all in this region. At 
exact resonance we have w, cc ?, as is well known from the 
theory of resonance 

The region T < ni (5)  is the interference region. In this 
case the probability amplitudes of the excitation of the Ryd- 
berg lekels Cn ( t )  are coherently added in the sum ( 10) over 
n.  The number of terms that make a noticeable contribution 
to the sum is of the order of T - ' / A , ,  = n ; / r ,  which in- 
creases the ionization probability by n:/? times and leads to 
a linear w, ( 7 )  dependence ( 1 1 ) . The total ionization prob- 
ability w, ( 1 1 ) is smaller than the total probability w (6)  of 
excitation of Rydberg levels if V< 1 [Eq. ( 9 )  1 .  This is the 
condition for the validity of perturbation theory with respect 
to the second degree of two-photon ionization under condi- 
tions (5)  for interference of intermediate Rydberg levels. 

3. PHOTOIONIZATION OF COHERENTLY POPULATED 
RYDBERG LEVELS BY A SECOND RADIATION PULSE 

It was assumed up to now that the transitions to the 
continuum were induced by the same pulse that produced 
the coherent population of the Rydberg levels. With the 
problem so formulated, the width of a packet of coherently 
populated Rydberg levels was uniquely connected with the 
duration of the interaction. Another formulation of the 
problem is also possible, as mentioned in the Introduction. 
One can produce a packet of coherently populated Rydberg 

levels of definite width AE by a single electromagnetic-field 
pulse, and the photoionization or other transitions from this 
state can be produced by another pulse of different duration 
T .  In this formulation of the problem, the connection is lost 
between the initial width AE of the packet and the pulse 
duration T .  

Thus, let the wave function of the atom be given at the 
initial instant t = 0 in the form of a packet of coherently 
populated Rydberg levels. 

We normalize the wave function ( 15) to unity; this yields 

Strictly speaking, it is necessary to sum in ( 15) not only 
over the principal quantum number n  ) 1 but also over the 
orbital quantum number I and its projection m,. We assume 
for simplicity that only the expansion coefficients corre- 
sponding to some definite I<n differ from zero in this sum. 
Such a situation obtains, for example, in the case of coherent 
population of Rydberg levels, which occurs in a one-photon 
transition from the ground S state. In this case all the pn in 
the sum ( 15) are wave functions of P states. 

If An is the width of the packet ( 15), n )  I ,  and the 
probability amplitudes CLO' are smooth functions of n, i.e., 
change little when n  changes by unity, then it is possible to 
change over in the sum ( 16) to integration with respect to n. 
Taking this circumstance into account, we approximate CE 
by a Gaussian function, 

where no is the principal quantum-number corresponding to 
the center of the packet C  Lo' ( no  = i i ) .  

Assume that no and An satisfy the conditions 

which means that the theoretical packet width 
AE = A n A , ,  = An/ni  is much larger than the distance A , ,  
between the nearest levels, but much smaller than the dis- 
tance to the continuum threshold 1 /2n i .  

In the general case the CE depend on the method of 
producing the wave packet. If the packet is produced by the 
short radiation pulse that excites the atom, then C  coin- 
cides with C n  ( co ) (2) ,  i.e., it is determined by the Fourier 
transform of the envelope of the exciting field. If this enve- 
lope is the Gaussian function ( 1 ) , then C  Lo' is also described 
by the Gaussian relation ( 17). By virtue of the condition 
(18) the power-law variation of the matrix elements Von in 
(2)  with n  is slow over an interval -An;  we can therefore 
neglect this variation and put Von =: V,,, . Just as before, all 
the results obtained below do not depend qualitatively on the 
explicit form of C  F'. The Gaussian dependence ( 18) will be 
used for illustration and to obtain ultimately correct numeri- 
cal coefficients. 

Let now the atom be acted upon by a pulse of electro- 
magnetic radiation of frequency w ,  maximum electric field 
amplitude Fo, pulse duration T ,  delay time to of the field max- 
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imum relative to the instant t = 0 of packet formation ( 15), 
and temporal envelope 

All the remarks made above concerning the envelope ( 1 ) are 
applicable to the choice of the explicit form of the envelope 
( 1 9 ) .  

The probability amplitudes C, ( w ) of the transition to 
the continuum states, calculated in first-order perturbation 
theory, are determined by the previous equation ( 7 ) ,  in 
which the lower integration limit must be replaced by t ' = 0 
and the functions Cn ( t )  by C p' ( 17). The function (19) 
must be used for the envelope f ( t  '). 

The total ionization probability is determined by the 
integral of I C, ( w ) 1 over the energies E; this integral is 
calculated in an approximation with a large excess above the 
thre~hold.~,'-~ It is implied that the bandwidth -max(r-', 
AE) of the populated levels of the continuum is small com- 
pared with En + w ,  where En, = - 1 /24 ,  so that the limits 
of integration with respect to E can be extended to - w and 
+ w . The calculation result is 

n-n' 
w = " V ' ~ ~ : " ~ . . ' " ' f ( t t ) e x p  ( i y t ) d t ,  

2noS n,n, 0 n (20) 

where we used, by virtue of the condition ( 18), expansions 
of the energies En and E :, near En<, . We change in (20) from 
summation over n and n' to summation over n and 
m=n' - n. After this we replace the sum over n by an inte- 
gral, something always possible since, by virtue of the condi- 
tions ( 18 ) , the characteristic interval of the values of n, over 
which the integrand changes substantially, is always greater 
than unity. As a result of integration with respect to n, with 
allowance for the explicit form of C Lo', we obtain from (20) 

OD 

In the general case of arbitrary C r ' ,  the factor exp( - m2/ 
4An2) in (21) will be replaced by some function of m which 
has a at m = 0 a maximum of width -An. 

We can change in (21 ) to integration with respect to m 
if t<ni ,  as is the case when 

Under these restrictions on T and t, replacement of the sum 
by an integral in (21 ) and integration with respect to m yield 

where @(XI is the probability integral, lo @(x)  -- 1 at x %  1 
and @(x) -0 at x &  1. 

For arbitrary CF' ,  the factor exp( - (AE)2t 2,  in (23) 
is replaced by the Fourier transform of a slow function of m 
which replaces exp( - m2/4An2) in (2 1 ), at the frequency 
tn, 3. 

Depending on to, the exponential factor in Eq. (23) de- 
scribes an exponential decrease, whereas the factor in the 
square bracket is doubled with increase of to. The ratio of 
these two factors is different at large and small values of the 
parameter AE, . 

If AET< 1, the time of the exponential decrease of 
w, (to) (23) is equal to (AH)-', and the time for the prob- 
ability integral @ to increase from 0 to 1 is of the order of 
T 4 ( AE) - '. The transition probability w, (to) first de- 
creases rapidly to half its value within an interval to-T; this 
is followed by a slower exponential decrease with a rate con- 
stant equal to AE. If, however AETS 1, the characteristic 
time to-T of the exponential decrease of w, (to) (23) is 
much smaller than the growth time of the probability inte- 
gral from 0 to 1, which is of the order of r2AE% r .  In this case 
the maximum of w, (to) is much less pronounced than at 
small values of AET (Fig. 2) .  

The described w, (to) dependence is qualitatively un- 
derstandable. If the initial packet ( 15) is ionized at to = 0 by 
only half a pulse with t > 0, then at to > T almost the entire 
ionizing radiation pulse (that part of the pulse for which 
t > 0)  takes part in this process. If at the same time AET< 2, 
neither noticeable dephasing of the wave functions of the 
packet ( 15) nor the associated decrease of the ionization 
probability takes place within the time T. Therefore, when 
the time to varies from 0 to T the ionization probability in- 
creases in proportion to the area under the f 2 ( t )  curve with 
t >  0, i.e., by an approximate factor of two. If, however, 
AErS 1, this effect is suppressed by the rapid decrease 
[within a time - (AB)-'1 of the ionization probability, 
owing to the dephasing of the terms in the sum ( 15) at t > 0. 
It is clear thus that the form of the w, (to) curves in Fig. 2 
does not depend qualitatively on the explicit forms of CE' 
and f ( t ) .  

The described behavior of the dependence of the ioniza- 
tion probability on the delay time to takes place only at small 
values of to, determined by the second inequality of (22). 
For longer to, to k nt , a change to integration in the sum (21 ) 
over m is generally speaking impossible. Let us consider, 
however, values of to that are close to 2n-kni, where k = 1,2, 
..., i.e., let 

where t 6 satisfies the second condition in (22), t A < n ; .  In 
this case replacement of the sum over m by an integral is 
possible, and leads to Eq. (23) with t,, replaced by t 6 ,  and 
with shifted values of the lower limit of the integral with 

FIG. 2. Dependence of the ionization probability on the delay time t, at 
AET( 1 (a)  and AET, 1 (b ) .  
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respect to t and of the argument of the probability integral a. 
The latter, as can be easily verified, takes the form 

Since the first of the conditions (22 is assumed met, 
the argument of the probability integral in (25) is large and 

1 for all k>l .  The function wi (to) is periodic starting 
with to = 277ni, and its period is 277ni = 277/An,, . Regardless 
of the structure of the first maximum of wi (to) (at small t) ,  
wi (to = 2?rkni ) = 2wi (to = 0) in all the succeeding maxi- 
ma (Fig. 2). 

The reason for the twofold increase of wi (277kni ) over 
wi (to = 0) is that at k # O  the ionization is effected during 
the entire pulse f ( t )  and not during half the pulse as in the 
case k = 0. 

The periodic character of the function w ( t )  has a simple 
physical cause. The wave packet (15) describes the state of 
an electron localized near the nucleus of the atom. The elec- 
tron usually moves away from the nucleus with time along 
an elongated elliptic orbit. Its interaction with the nucleus 
weakens, it becomes more and more free, and its ability to 
absorb a photon decreases (a  completely free electron can- 
not absorb a photon). This process is described by the expo- 
nential decrease of wi (to) in accordance with (23) (Fig. 2). 
After a time 211-/A,, = 2nni, however, the electron again 
approaches the nucleus and the photoionization probability 
again increases. Taken by itself, the periodic increase of 
wi (to), without analysis of the structure of the first maxi- 
mum of wi (to), was described by another method in a recent 
paper. ' 

We proceed now to analyze the dependence of the prob- 
ability wi (r) on the pulse duration. We consider the sim- 
plest case, when the delay time to is short enough 

Under these restrictions on to, Eq. (23) assumes the 
simpler form 

For large and small r (rAE( 1 and TAE, I ) ,  wi (7) is 
respectively a linear function and a constant 

In the general case of arbitrary C :' and f ( t )  it is im- 
possible to obtain a simple formula of type (27), but qualita- 
tively all the relations in (28) remain in force. When CAO' 
and f ( t )  deviate from the Gaussian curves ( 17) and ( 19), 
only the numerical coefficients in Eqs. (28) are changed. 

Equations (27) and (28), however, are valid only so 
long as r is not too large [the first of the restrictions in (22) 1. 
For larger r (7) ni ) it is necessary to retain in the sum (21 ) 
over m only the term with m = 0; this yields 

Consequently, at large r the linearity of the photoioni- 
zation probability in the pulse duration r is restored, but the 
growth rate of wi is in this case much smaller than for small r 
(28): 

The wi (7) dependence is totally represented in Fig. 3a. 
The effect of the initial rapid growth of wi (7) and of its 
subsequent leveling off to form a plateau are due to interfer- 
ence between different ionization channels. In fact, we can 
regard the ionization as an independent transition of each of 
the populated discrete levels to the continuum. The width of 
the maximum of the photoelectron energy distribution due 
to each such transfer is 1/r. If 1/r) A,(, , the neighboring 
maxima overlap and they can interfere. If 1/r) AE, all the 
maxima whose amplitudes are not small overlap. This is the 
case of maximum interference. It is seen directly from (20) 
that in this case 

which confirms the total-interference conclusion, since it is 
obvious that what are added in (3 1) are probability ampli- 
tudes and not probabilities IC Ao'12 of population of individ- 
ual levels. 

The probability of a transition to the continuum from 
each of the Rydberg levels has an order of magnitude 
V2A,,r. The number of such transitions [the number of 
terms in the sum (31) over n ]  is of the order of An, which 
leads to an increase of the ionization probability by(An)' 
times. 

Finally, the probability of finding an atom on each of 
the Rydberg levels is l/An, which explains qualitatively in 
final analysis the increase of the total ionization probability 
by An times (30). 

FIG. 3. Probabilities of photoionization ( a ) ,  of free-free transitions or of 
induced recombination (b) ,  and of bound-bound transitions "upward" 
[m,> no, ( c ) ]  and "downward" [m,  < no, ( d )  ] as functions of the pulse 
duration T. 
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The case 1 / ~ )  AE is the limit of the manifestation of the 
difference between coherent and noncoherent population of 
discrete levels. 

If AE) 1 / ~ )  A,,, , there is incomplete overlap of all the 
maxima produced in the continuum upon ionization of effec- 
tively populated discrete levels. Consequently, the interfer- 
ence in this case is likewise incomplete. The probability of 
transition from each level is as before V2A,, T, the number of 
interfering maxima becomes - l / r  in this case, so that the 
total probability - V2A,, is independent of r .  This explains 
the plateau on Fig. 3a. 

Finally, at l / r  < A, ,  the maxima in the distribution of 
the photoelectrons become so narrow that they do not over- 
lap at all. In this case there is no interference. The photoioni- 
zation probability is determined by Eq. (29). It is obvious 
from (20) that in this case 

Since there is no interference, there is likewise no differ- 
ence between the coherent and noncoherent population of 
the levels: the photoionization probability depends only on 
the squares of the modulus of the probability amplitudes 
C :O'. 

We point out that at T) ni the conclusion that there are 
no interference effects is valid independently of the width of 
the wave packet (15). Even in the case An) 1, AE)nA, 
when the packet is broad and includes a large number of 
Rydberg levels, there is no interference at r ) n i ,  i.e., the 
photoionization is produced just as if the electron were on 
one isolated level E,, . This means that coherent population 
of a large number of levels is not enough for interference to 
be present; it is necessary also that the duration of the pulse 
that causes the transition to the continuum be short enough 
( 5 ) .  

We note, finally, that the criterion for the validity of the 
perturbation theory expounded above is smallness of the ion- 
ization probability (28), w i  & 1. The condition that wi be 
small in the vicinity of the plateau on Fig. 3a has the same 
form V& 1 as before. 

4.TRANSlTlONSTO THE CONTINUUM AND INDUCED 
RECOMBINATION 

It was assumed up to now that the initial packet ( 15) is 
produced in the region of highly excited discrete levels. A 
different situation is also possible, when the initial packet is 
produced in the continuum 

c ( O )  
1 (E-E) 

E - 
n'" (AE) '" 

where pE are the atomic functions of the continuous spec- 
trum, normalized to an energy 8-function, and Y ( t  = 0 )  is 
normalized to unity. 

Just as above, the explicit form of the function C g' is 
specified by the Gaussian curve (33). This enables us to car- 
ry out all the calculations through to conclusion, and deter- 
mine not only the principal relations, but also the numerical 
coefficients. The latter vary with the form of CLO' or f ( t ) ,  

but all the qualitative relations are independent of the explic- 
it forms of C g' and f ( t ) .  

If w < E, the electromagnetic-radiation pulse ( 19) can 
produce only transitions from the state (33) into other con- 
tinuum states E-E * w. If w > E, induced recombination 
E-En -E - w is also possible. We emphasize that in con- 
trast to the usually considered proce~ses, '~ in this case we are 
dealing with induced recombination on an individual atom, 
namely on the particular atom whose ionization by the pre- 
ceding pulse produced the photoelectrons. 

The matrix elements of the bound-free transitions are 
determined by Eqs. (8)  and (9) .  The matrix elements V,,. 
of free-free transitions are determined, in the approximation 
of a flat continuum6 by the same constant V [Eq. (9)  1, Refs. 
4 and 5: 

In both considered cases (free-free transitions and in- 
duced recombination) the result of the calculation of the 
transition probability w reduces to the foregoing (23), but 
without the restrictions (22) on the pulse duration T and on 
the delay time to. This is understandable: the electron in the 
continuum moves away from the atom and does not return 
to its initial position. Depending on the pulse duration T, no 
region of repeated slow linear growth appears in the transi- 
tion probabilities (Fig. 3b). This means that upon formation 
of a wave packet in the continuum and in the succeeding 
transitions (disregarding the influence of the neighboring 
atoms), a definite degree of interference remains at all T, and 
nothing imposes an upper bound on the plateau region in 
Fig. 3b. 

In the case of free-free transitions in an isolated atom, 
the laws formulated are almost obvious. They follow from 
the analysis of preceding section, in which no should be made 
to tend to infinity, thereby lifting the restrictions (22) on to 
and T. 

Let us dwell in somewhat greater detail on the case of 
induced recombination. The probability amplitudes of tran- 
sitions from state (33) into states p, corresponding to Ryd- 
berg levels En can be easily found in first-order perturbation 
theory: - 

i 
e n ( = ) =  -- 

2 
~EC:"V.. dtf (t) exp{i(E.-E+o)tf. 

0 

(34) 

Substituting C g' of (33) in (34) and using expressions 
(8)  and (9)  for the matrix elements V,,, we find that the 
probability w, of the induced recombination can be repre- 
sented in the form 

lo.=r, ,Cn(t=w) 1 2 = n h y .  j d t j  dt'f(t)f(t/), 

As a function of each of the variables t and t ', the inte- 
grand of (35) has maxima at t, t ' = 0 and t, t ' = to, with 
respective widths - r and - ( AE) - '. At small to the maxi- 
ma are equal and have a width - min( r, ( AE) - ' ). The same 
quantity limits ( t  - t ' 1  from above: 
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It-t'l Gmin {z, (AE)-'1. (36) 

It follows hence that it is possible to change in the sum 
(35) over n to integration with respect to En if 

where A , ,  is the distance between the nearest Rydberg levels - 
in the resonance region with initial energy -E, 

2 - I - -  En,, = - (2n,) ,E - w. It follows from (37) that the 
sufficient condition for the change from summation to inte- 
gration in Eq. (35) is smallness of A , ,  compared with the 
initial width AE of the packet in the continuum, indepen- 
dently of the pulse duration 7. Assuming that A,,, <AE and 
changing in (35) to integration with respect to En we obtain 
as a result expression (23) for the probability of the induced 
recombination. Consequently, at A , ,  <AE transitions from 
the continuum to highly excited Rydberg levels do not differ 
from the transition in the continuum. All the conclusions 
concerning the functions w(t,, T),  formulated above and il- 
lustrated in Fig. 3b, are also valid in this case. 

5. TRANSITIONS BETWEEN GROUPS OF RYDBERG LEVELS 

We turn again to the formulation of the problem de- 
scribed in Sec. 3, in which a packet (15) is formed at the 
initial instant of time t = 0 in the region of highly excited 
Rydberg levels. 

Let now the frequency w be less than the distance from 
the center of the packet, En,, = - 1/2n:, to the threshold of 
the vacuum, w < 1/2n;. This raises the question of transi- 
tions between two groups of closely located levels with a 
distance - w between the groups of levels. 

Let the index m label the levels of the initially non-pop- 
ulated group of levels, to which the transitions take place. 

According to Refs. 4 and 5, at low values of the orbital 
momentum I<m, n and m, n )  1, the matrix elements V,, 
can be represented in the form 

Vmn=V/ (mn)  %, (38 

where Vis the same constant (9 )  as in the matrix elements of 
the free-free and bound-free transitions. 

The total probability of the transition from the level 
group ( n )  to the level group ( m )  is obtained in analogy with 
the foregoing: 

m rn 

where the signs correspond to "up" and "down" transi- 
tions, for which m > n and m < n, respectively. 

If the pulse duration is not too long 

where m, is the center of the excited-levels band 
((2m:)-'- , ( 2 4  ) - ' f w) , the summation over m can be 
replaced by integration. In the expression obtained, the pre- 
exponential factor (nn') -"'can be replaced by n; ', and the 
energies En and En. can be located near En,, , so that the 

probability w can be represented in the form (23). Conse- 
quently, if condition (40) is met all the conclusions of Sec. 3 
concerning the dependence of the probability w on t ,  and T 

are valid. This means that under condition (40) the excited 
group of discrete levels does not differ essentially from the 
continuum. If m, > no, the condition (40) is less stringent 
than the first of the conditions (22).  In this case one can 
track, within the framework of condition (40),  all the stages, 
illustrated in Fig. 3a, of the variation of the W(T)  depen- 
dence. If the pulse duration at m, > n, become so long that 
condition (40) is violated, it is necessary to retain in the 
sums over m, n, and n' (39) only one term corresponding to 
the minimum value of I En - Em + w 1 .  The subsequent be- 
havior of the function w (7) depends on the relation between 
r - ' and  \En -Em +a/,,.  If IE, -Em +wlminr< l , ce r -  
tain two levels are in exact resonance, one each from the 
initial and final groups of levels. The probability w(7) in- 
creases quadratically (Fig. 3c, curve 1 ). 

If 1 En - Em + w 1 ,in r % 1, however, the probability 
W ( T )  decreases exponentially with increase of r (Fig. 3c, 
curve 2 ) . 

The reason why w ( r )  decreases in the nonresonant case 
is that a transition to the adiabatic limit takes place with 
increase of r. 

If m, < n,, the condition (40) is violated earlier than the 
first of the conditions (22).  There exists a range of r values 

in which the foregoing conclusion is not valid. In this case it 
is necessary first to sum over n and n' in (39) ,  using the 
explicit expression ( 17) for C r' and replacing these sums 
by integrals. The resultant sum over m can, by virtue of the 
condition m i  ) (AE) - I ,  also be replaced by an integral that 
can be easily calculated and leads to the previous result (23 ), 
according to which (AE)- 'w = const for r) t ,  all the way 
to r -n i .  

For r > ni ,  n, > m, it is again impossible to replace the 
sums over n and n' in (39) with an integral. On the contrary, 
it is necessary to retain in the sums only one term with the 
minimum values of I En - E, - w / and 1 En. - Em - w 1 .  
Depending on the relation between 1 En - Em - w / ,,, and 
l / r ,  the transition probability either increases quadratically 
or decreases exponential1 y (Fig. 3d).  Consequently, the 
only difference between the cases n,, < m,, and n, > m, (Figs. 
3c and 3d) is that in the former case the w ( r )  curve has a 
section n i  < r < mi with a second slow linear growth of 
(29),  and in the second case there is no such section. 

6. CONCLUSION 

Let us formulate the main conclusions that follow from 
the foregoing analysis. 

1. At a fixed duration of the pulse that causes the transi- 
tions between Rydberg levels, there exists a certain critical 
level number n, = 7"' above which (at  n > n, ) there is in 
fact no difference between transitions in a system of Rydberg 
levels and transitions in a continuum. Below this critical n 
(n < n, ), on the contrary, there is no interference whatever 
between transitions in a continuum or in a system of high 
Rydberg levels. When it comes to transitions between dis- 
crete-spectrum states, transitions at n < n, take place only 
between resonant level pairs, notwithstanding the possibility 
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of coherent initial population of a large number of levels 
A n )  1. As for photoionization, its probability at n  < n ,  is 
proportional to r and to the number of particles in the band 
of initially populated levels ( 3 2 ) .  

2 .  In both a continuum and in a discrete spectrum inter- 
ference exists above a critical value of n  ( n  > n ,  ), increases 
the transition probabilities, makes them dependent on the 
width A E  of the packet of coherently populated levels, and 
leads to a characteristic dependence on the pulse duration. 
For A E r  < 1 the interference is a maximum and w a T for 
E  = const, while for A E r  > 1 we have partial interference 
and w = const. 

3. The entire foregoing analysis was based on the use of 
perturbation theory. Generalization to the case of stronger 
fields deserves an independent investigation. Since free-free, 
bound-free, and bound-bound transitions proceed at n  > n ,  
essentially in like manner and are determined by one and the 
same constant V  ( 1 1 ) , we can formulate for the validity of 
perturbation theory the one criterion V <  1 or 

A similar criterion was obtained in Ref. 13. 
Note, however that in even weaker fields the dynamic 

Stark effect can lead to a substantial restructuring of the 
levels. Under nonresonance conditions, the Stark shift of 
high levels, just as the shift of the ionization threshold, is 
equal to the free-electron oscillation energy F : / 4 a 2  in the 
wave field.I4 This shift, which is the same for all levels, does 
not influence the dynamics of any of the processes. Correc- 
tions to F i / 4 w 2  are responsible for the level restructuring 
and can possibly not be small even in relatively weak fields. 
Particularly significant is the level coupling due to the dy- 
namic Stark effect under resonance conditions. It is quite 
difficult to formulate some single conditions under which 
the field is weak enough to be able to neglect all the indicated 
conditions. It is clear, however, that the level restructuring, 
regardless of its character, does not alter qualitatively the 
results formulated above. Changes can take place in the 
characteristic distance between levels or in the instant after 
which the discrete level structure appears in bound-bound 
transitions. There is apparently no change, however, in the 
plateau-like shape of the W ( T )  curves shown in Fig. 3. This is 
in fact one of our main results. It manifests itself to the fullest 
extent in the case of transitions in the continuum. 

It appears that the Stark effect imposes no restrictions 
at all in the continuum, since the only meaningful energy 
shift for the case of a free electron is the oscillation-energy 
shift. 

The transition probabilities in a continuum, according 
to our results above, increase linearly only in the section 
t <  ( A E ) - I .  The plateau region, which begins at 
t- ( A E )  - I ,  is not bounded from above. At such arbitrarily 
large t, interference takes place and its degree is such that 
w = const. Consequently, for a single atom in a continuum, 
the field-induced transitions and the energy acquisition by 
the electron can take place only in a limited time interval 
t < ( A E )  - I .  In this region the average electron energy in- 
creases linearly with t .  At t > ( A E )  - '  no more energy is ac- 
quired. It follows hence, in particular, that in a genuine con- 
tinuum there is no diffusion in energy for a single atom. 
These statements were proved above only in the weak-field 
approximation. It follows from the theory of above-thresh- 
old i~nizat ion,~ however, that they are valid also in a strong 
field. For above-threshold ionization A E  is equal to the mul- 
tiphoton ionization width Ti ofthe ground level. At t > r; l 

a stationary distribution is established in the continuum and 
the atom energy does not increase. Using the results of Ref. 
6, the average energy that the electron manages to acquire 
within a time T; ' can be estimated to be equal to Vw. The 
interference interpretation presented above reveals the phys- 
ical cause of the onset ofa stationary regime in above-thresh- 
old ionization at t > T ,  I .  
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