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A number of exact solutions of a two-dimensional conformal quantum field theory with a global 
Z,  symmetry is constructed. The solutions obtained can describe the critical behavior of Zn - 
invariant statistical systems. 

1. INTRODUCTION 

One of the fundamental problems of the theory of sec- 
ond-order phase transitions is the description of all possible 
types of universal critical behavior. If one adopts the hypoth- 
esis of conformal invariance of large-scale critical fluctu- 
ation~,'~' the problem can be reduced to that of constructing 
all conformally invariant solutions of Euclidean quantum 
field theory. 

At the present time a number of exact solutions of the 
two-dimensional conformal quantum field theory are known 
(Refs. 3-18) describing the critical (or multicritical) be- 
havior of two-dimensional statistical systems, including the 
Ising model3 and its Z ,  generali~ation,~ the Ashkin-Teller 
model,6 the RSOS models,!6," etc. At the basis of the study 
of such exactly solvable models is following general ap- 
proach first applied in Ref. 3 to the Virasoro algebra. 

1. The starting object for the construction of the solu- 
tion is the current algebra of the conformally invariant mod- 
el-a closed associative algebra containing the Virasoro al- 
gebra: 

as a subalgebra. As current algebras were considered, e.g., 
the superconformal symmetry algebra (Refs. 7,8 ), its N = 2 
extension (Refs. 5, 9, 1 I),  the parafermion current algebra 
(Refs. 4, 5,6), and the Kac-Moody algebras (Refs. 12, 15). 

2. After the construction of the current algebra one can 
classify the field space of two-dimensional conformal quan- 
tum field theory in terms of its irreducible representations. 
Among these representations a particularly important role is 
played by the so-called strongly degenerate representations. 
Their exceptional feature in the construction of the exactly 
solvable models is related to the fact that, firstly, starting 
only from strongly degenerate representations one can con- 
struct closed operator algebras, and secondly, the correla- 
tion functions of fields belonging to strongly degenerate rep- 
resentations satisfy ordinary linear differential equations 
and can be expressed in terms of multiple contour integrals 
generalizing those introduced in Refs. 14 and 21. 

3. The field space of conformal quantum field theory 
contains, in general, an infinite number of irreducible repre- 
sentations of the current algebra; however, for certain values 
of the central charge c in Eq. ( 1.1 ) it becomes possible to 
construct an operator algebra on the basis of a finite number 
of strongly degenerate representations. Models with such 
operator algebras are called minimal and they lend them- 
selves to a most complete investigation. 

In Ref. 13 the described scheme for constructing exact- 
ly solvable models was applied to a current algebra which, in 
addition to the energy-momentum tensor, contained a cur- 
rent W, of spin 3. In the present paper we construct an infi- 
nite set of exactly solvable models of two-dimensional quan- 
tum field theory, for which the current algebra together with 
the energy-momentum tensor contains local currents W, (z) 
( k  = 3,4, ..., n) .  The structure of this algebra is discussed in 
Sec. 2. In particular, it turns out that the W, -algebra under 
investigation is an algebra with quadratic defining relations. 
The following two sections of the paper are devoted to a 
study of the irreducible representations of a Wn -invariant 
quantum field theory. One also finds there a derivation of the 
formula for the spectrum of the strongly degenerate repre- 
sentations, generalizing the Kac f o r m ~ l a ~ * ~ '  for the Virasoro 
algebra. In Sec. 5 we study the qualitative structure of the 
operator algebra constructed from the strongly degenerate 
representations of the Wn -algebra. We note that the struc- 
ture coefficients in such an operator algebra, as well as all the 
correlation functions, can be expressed in terms of multiple 
contour integrals. The simplest examples of calculations of 
four-point functions are listed in the Appendix. In Sec. 6 we 
discuss the minimal models satisfying the positivity condi- 
tion. They exhibit explicit 2, -symmetry, and are character- 
ized by two integers n and p (n = 2, 3 ,..., p = n + 1, 
n + 2, ...), therefore we denote them by [ Z  Lp' 1. The central 
charge c of the Virasoro algebra ( 1.1 ) in these models takes 
the values 

and the spectrum of anomalous dimensions of the Wn -invar- 
iant (principal) fields is determined by the relation 

where the positive integers Ii, 1; ( i  = 1, ..., n - 1 ) are subject 
to the conditions 

and the vectors mi are the fundamental weights of the Lie 
algebra sl (n ), satisfying the relations 
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o,o,=k (n-m) In np~ l  k ~ m .  (1.4) 

The [ Z i p ' ]  models include a number of known solutions. 
Thus, the [ M ,  ] models related to the strongly degenerate 
representations of the Virasoro algebra are denoted here by 
[Z i P ' ] ,  and the [Z, ] models constructed in Ref. 4 coincide 
with our models [ Z  + "1. We think that forp > n + 1 the 
models [Z f ' ]  describe the multicritical behavior of two- 
dimensional statistical systems with global Z ,  symmetry. In 
particular, the anomalous dimensions (1.3) agree exactly 
with the critical exponents characterizing the critical points 
of the models constructed in Ref. 18. 

2. THE STRUCTURE OF THE W,,-ALGEBRAS 

We consider a two-dimensional conformally invariant 
quantum field theory which, in addition to the energy-mo- 
mentum tensor T(z) (T(5) ), which generates the conformal 
transformations, contains a set of conserved local currents 
Wk (z) ( k ( 5 ) ) ,  k = 3, 4 . .  n with spins sk 
= k(Sk = - k).  The fields Wk (z) depend only on the vari- 
ables z = x ,  + ix, (5 = x ,  - ix,), i.e., have conformal di- 
mensions (k,O) ((0,k) ). It will be convenient in some cases 
to denote the field by T(z) - W, (z) (T(5) = W, ( 2 )  ), and 
the unit operator by I = W,. In the sequel we shall essential- 
ly consider the right-handed components of the fields 
Wk (z), considering that all the conclusions extend to the 
left-handed components Wk (5). 

Let ( A )  denote the field space of our conformal quan- 
tum field theory, fields which are local with respect to the 
currents Wk (z). We introduce in this space the operators 
Wk (s) (S = 0, + 1, + 2, ... ) by means of the operator expan- 
sions: 

A (z, ~ E ( A I ,  

We shall assume that the operators Wk (s) form an associ- 
ative algebra (the W, -algebra) with nonlinear commutation 
relations of the following form: 

where the numbers u, ,  ..., up are subject to the conditions 

2 u,=sI+sz, u l G u 2  < . . . < up,  (2.2b) 
r = l  

and are such that if u, = u , ,  , , then i, >i,+ , . (Products of 
this type will be called normal-ordered and in the sequel will 
be placed between pairs of colons.) There are the following 
restrictions on the structure of the coefficients bp of this alge- 
bra: 1 ) the operators W? (s) - L, form a subalgebra of ( 1.1 ), 
2) the coefficients bj::,2''p are nonzero only if 

i k 2  ( i , . .  . . . i p ;  11, j 2 4 n ) ,  (2.3) 
k= 1 

3) the coefficients 

vanish. 

We note that the formulated requirements are general- 
izations of the properties of the W,-algebra constructed in 
Ref. 19 by means of an explicit solution of the associativity 
equations (Jacobi identities). For n > 3 such a method of 
obtaining a nontrivial example of a W, -algebra becomes ex- 
traordinarily difficult, and therefore we guarantee that the 
Jacobi identity is satisfied by constructing a faithful repre- 
sentation of a nontrivial W, -algebra within the universal en- 
veloping algebra of the Heisenberg algebra. 

For this purpose we consider an (n - 1 )-component 
free massless scalar field q(z,5) = q(z )  + @(L), 
q = (p l ,  ...,pn- I ), which is determined by its two-point 
correlators 

(qi(z)'pj(0) >=-2hij  In z, (qi(Z)qj(0) >=-2tiij In 5, 
(cp,(z)qj (0) )=O. (2.5) 

The fields p (z) define the operators 

which generate the Heisenberg algebra: 

In the universal enveloping algebra r, - , of the algebra 
(2.6) we construct a set of fields Wk (z) ( k  = 0,2, ..., n) in the 
following manner. We consider the formal differential oper- 
ator of the form 

where the symbol :....: denotes normal ordering of the fields 
q(z),andthenvectorshi ( i =  1, ..., n); 81=, hi = 0)  forman 
overcomplete set in the (n - 1)-dimensional Euclidean 
space, subject to the conditions 

By means of the usual commutation relations of the operator 
d /dz the product R, can be reduced to the form 

which determines uniquely the system of fields Wk (z). In 
particular 

WO=I, wl = 2-'"hk 5 = 0, since hhPO, 
A = l  dz 

k= 1 

where the vector 

It is easy to see that the field W,(z) = T(z) defined by the 
relation (2.10) generates the Virasoro algebra ( 1.1 ) with 
central charge 
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The asymptotic condition T(z) ccz-4 for z-+ oc (Ref. 3 )  re- 
quires that the field ~ ( z )  should behave asymptotically, for 
z-+ CQ like14 

where 

In the classical case the transition from the variables u, 
= dp,/dz to the variables W, (z) is called the Miura trans- 

formation. The properties of this transformation are dis- 
cussed in the review.22 In particular, it follows from the re- 
sults exposed in this review that the Poisson brackets of the 
variables 

have a quadratic representation in terms of these same vari- 
ables," i.e., the following relation holds 

where 

(here the brackets are calculated with the help of the rela- 
tions (2.6), where in (2.6b) one must replace the commuta- 
tor with the classical Poisson bracket). 

The transition to the quantum case leads to a deforma- 
tion of the coefficients 6 in Eq. (2.14) and a replacement of 
the ordinary product by the normal ordered product of the 
operators Wj (s).  We list here only the commutators of the 
operators Wj (s) with the operators L, = W, (p) and W, (0), 
which allow us to prove that the fields W, (s) generate a 
quantum W, -algebra, and to determine the coefficients b, in 
the relation (2.2) from its associativity condition: 

[ w3 (01, W ,  ( k )  I 
= 2k (6,,,-1) W,+l ( k )  + 2'"iao (2j-31-k) kWj (k )  

j 

(n - j f  4) ! - 2 (23/*ia02 q-1 --A 

q = l  (n-i)  I 

x { c:-" w ~ - ~  ( p )  ~ k - p :  + *;,gwj-q ( k )  }. 
p - - m  

Here the coefficients A ,',, , B i,, , C: are defined by the rela- 
tions 

where in the last equation the variable i equals k /2 for even k 
and (k + 1 )/2 for odd k. 

The corresponding coefficients 8 in Eq. (2.14) can be 
obtained from the relations (2.15) if one sets a, = CQ . 

3.THE FIELD SPACE OF A Wn-INVARIANT FIELD THEORY 
AND ITS REPRESENTATION IN rn-, 

The field space of a W,-invariant field theory can be 
classified in terms of the irreducible representations [@(fi) ] 
of the W, -algebra, i.e., represented in the form 

Each of the subspace [@ (P) ] is generated by a W,, -invariant 
(principal) field @(P) satisfying the equations 

with some numerical parameters w, (p). We note that the 
last equations are compatible on account of the condition 
(2.4). The set of parameters [w(P) 1 = [w,(P), ..., w, (PI I 
completely determines the representation [@(B) 1. The 
whole space [@(fi)] consists of fields which are obtained 
from the field @(P)  by successive application of the opera- 
tors W, (s) with s < O  and k = 2, ..., n. 

For the W, -algebra defined by the commutation rela- 
tions (2.15) the space ( A )  can be represented in T, - , . For 
this we define in T, - , the fields Vo = :exp [iPq(z) ] :. We 
note that on account of the asymptotic condition (2.14) the 
correlation functions of the fields Vo have the form 

where 
N 

One can verify that the fields Vo(z) satisfy the equations 
(3.2), i.e., are W, -invariant fields (a( [w] ) = Vo), where 
the eigenvalues [ w (P) ] are determined by the most singular 
term of the expansion operator 

It follows from Eqs. (2.7) and(2.9) for the fields Wk ( 2 )  that 
the number wk (0) can be obtained by means of the relation 

Applying the relation (3.5) to the functions zJ ( j = 0, 
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1, ..., n - 2),  we obtain a system of linear equations for the 
parameters wk (p) 

The solution of this system has the form 
k 

In particular, 

We note that the left-hand side of the equation (3.6) is 
invariant to the discrete transformation of the parameters 
p+p1 :  

where the numbers m' are obtained from the numbers 
m = 1, ..., n by some permutation P. Thus, to a given set of 
numbers [ w (p) ] correspond n! different values of the pa- 
rameters p. In particular, to the permutation (1, ..., n )  
+ ( n ,  - 1 . 1  ) corresponds the transformation 
p- 2a, - p: where the vector p* is defined by 

The representation [@( [w] ) ]  = [Q>(P)] = [ Vg ] of 
the W, -algebra in I?, - , can be constructed by applying to 
the invariant field Vp the operators W, (s) with s < 0. Then 
one must identify the representations [ Vp ] and [ VPf 1, 
where the numbers p and p' are related by (3.8 ); in particu- 
lar, [ Vg ] = [ V.a,, - 8 " ] ' 

4. STRONGLY DEGENERATE REPRESENTATIONS AND 
THEIR SPECTRUM 

The degenerate representations of the algebra of supple- 
mental symmetries play an important role in the construc- 
tion of exact solution of conformal quantum field theory. 
Almost all the known solutions are related to representa- 
tions of this kind (see Refs. 3, 8, 10, 13). 

A representation [@ (p) ] of a W, -algebra will be called 
degenerate if the space of fields obtained from the field @ (0) 
by applying the operators Wk (s) with s < 0 contains the 
null-vector X, satisfying the equations 

for some integer N (called the level of degeneracy ). In this 
case our representation becomes reducible. In order to ob- 
tain irreducible representations we must set the vector X, 
together with the whole subspace [x, ] it generates equal to 
zero. A representation [@(P) ] may, in general, contain sev- 
eral independent null-vectors x,,. This requires factoring 
the space [@(P) ] with respect to the whole subspace [x,, 1. 
We shall call the representation [@ (P) ] strongly degener- 

ate if it contains no fewer than n - 1 independent null-vec- 
tors. 

A representation of a W ,  -algebra in I?, - , allows for an 
explicit construction of the null-vectors in [ V(0) ] and to 
obtain restrictions on the parameters p corresponding to 
strongly degenerate representations. With this in mind we 
consider the following operators in I?, - , : 

where the vectors ej ( j = 1, ..., n - 1 ) form a basis in the 
space of positive roots of the algebra sl(n),  and are deter- 
mined by the relations 

If the parameters a, satisfy the equations 

then the operators Q,! * ' commute with all the operators 
Wk (s) ( k  = 2 ,..., n; s = 0, + 1 ,...). To prove this assertion it 
suffices to prove that the singular part of the operator prod- 
uct of the fields Wk (7) and Vj' * ' (z) = :exp [ia + e,cp(z) ] : 
can be represented in the form 

If one considers the differential operators dm/dvm 
(m = O,l, ..., n) as elements of an independent basis in an 
(n + 1)-dimensional linear space, and takes into account 
that they act only on functions which depend on the variable 
7, then the last relation can be rewritten in the form 

In order to expand the operator product R,  (7) V,! * ' (z) we 
make use of Wick's theorem. It is necessary to consider that 
owing to the relations (4.3) the fields e,p(z), which enter 
into the operator V,! * ' have nonvanishing contractions 
only with two successive factors in the product R,  (7) : 

which implies that the operator product R, (7) Vj' * ' (z) has 
the form (4.6). 

a 
= -[ (z-T,) -f v;*' (z) ]+ 0 ( I ) ,  az (4.7) 

The operators Qj' * ' which commute with all the opera- 
tors W, (s) allow one to construct null vectors x,, by the 
standard method and to obtain the restrictions on the pa- 
rameters p. This procedure has been described in detail in 
Ref. 13 for the W,-algebra. The transition to the case n > 3 
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does not lead to any complications. Therefore we list only 
the equations for the vectorsp, which determine the strong- 
ly degenerate representations of the W, -algebra. The corre- 
sponding equations have the form 

where I,, 1 ,! are positive integers. In the case when the rela- 
tions (4.8) are satisfied, the representation [ V p ]  will con- 
tain n - 1 null-vectors xN8 with degeneracy level N, = l i l  j. 
The solution of the equations (4.8) can be represented in the 
form 

P(ilL')= P(11,. . . , L1 1 11', . . , , LL,) 

where the vectors wi define the fundamental weights of the 
Lie algebra sl(n),  which satisfy the conditions 

Substituting the vectors p ( l i  ,..., 1,- 11 l, ..., 1 A _,  ) into Eq. 
(3.7), we obtain an array of numbers 
w, (1, ,..., I,-, 11 ; ,..., 1, ... , ) which determines the spectrum 
of the strongly degenerate representations of the W,, -alge- 
bra. In particular, the anomalous dimensions of the strongly 
degenerate fields is determined by the formula 

5.THE CORRELATION FUNCTIONS AND THE STRUCTURE 
OF THE OPERATOR ALGEBRA OF STRONGLY DEGENERATE 
FIELDS 

We denote by @(I  I I ') the strongly degenerate principal 
fields ( [ w ( I  1 1' ) ] ) and consider the L-point correlation 
functions of the form 

where we have temporarily omitted the dependence of the 
correlation functions on the variables Ti. The representation 
of the W,, -algebra and invariant fields 

described in the previous sections, in terms of free fields, 
allows one to construct in the standard manner an integral 
representation for the correlation functions ( 5. l a )  (see 
Refs. 13 and 14). Indeed, up to normalization, one can asso- 
ciate to the correlator (5. l a )  the expression 

where the expectation value in (5. lb )  is taken according to 
Eq. (3.3),Pi denoteeitherp(li!I,') o r2a , -p  *(l , j l ;) ,and 
the integration is over noncontractible closed curves on the 
Riemann surface of the integrand. The correlation functions 

(5.1) are nonzero if one can choose integers Mi, M i  
( i  = 1, ..., n)  such that the condition (3.3b) should be satis- 
fied 

To calculate the three-point correlators (5.1) in the in- 
tegral ( 5. lb )  one can choose 

Then the equation (5.2) takes on the form 

We associate to each field @(I  11 ' )  two Z ,  -charges, q+ (1 )  
and q-(1'): 

If the numbers a+ and a are incommensurable, then mul- 
tiplying each side of Eq. (5.3) by a , ,  - , and making use of 
the relations ( 1.4) and (4. lo ) ,  it is easy to see that the condi- 
tion for M, ( M  :) to be integers requires conservation of the 
Z,, -charges g+ and q-, i.e., 

q i - ( I )+ qi-(2)+q+(3)=0 (mod n).  (5.5 

This conservation law is valid for any correlation function of 
the fields @ ( l  ( I  '). Some four-point correlation functions for 
the fields @(I  11 '; z,z) are listed in the Appendix. 

The analysis of the correlation functions shows that the 
fields @ ( I  11') form a closed operator algebra, i.e., that the 
operator expansion of the product of the fields @(I  11 ' )  and 
@(m lm') at nearby points admits a symbolic representation 
of the form 

where the expression in square brackets contains the contri- 
bution of the fields that pertain to the representation 
[@(slsl) 1 .  The coefficiens C in front of the principal fields 
[@(slsl)]  in the expansion (5.6) are called the structure 
constants of the operator algebra. The possible sets of 
numbers (sls') for fixed sets (I 11') and (m Im') for which the 
coefficients C are not zero define the selection rules or the 
qualitative structure of the operator algebra of the fields 
@(I  11'). 

The qualitative structure of the operator algebra of the 
fields @(I  1 I ') can be described by means of a Clebsch-Gor- 
dan expansion of the product of finite-dimensional represen- 
tations of the Lie algebra s l (n)  with highest weight deter- 
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mined by the arrays of numbers ( I )  ( ( I  ' ) ) and (m ) ( (m') ). 
The coefficients C are nonzero only for those arrays of 
numbers (s) ( (s') ) which define representations occurring 
in the Clebsch-Gordon expansion of the product of the rep- 
resentation (I)  e ( m )  ( ( I f )  e (m')) .  For the cases n = 2,3, 
such selection rules have been established in Refs. 3 and 13. 

6. MINIMAL MODELS 

If the numbers a+ and a- which satisfy (4.4) are in- 
commensurable then the operator algebra (5.6) contains the 
fields @ ( I  I I ') with all possible sets of numbers (I)  and (1 ' ) .  
However, if the parameters a+and  a- satisfy the relation 

where p and p' are mutually prime integers, then one can 
construct a field theory containing a finite number of princi- 
pal fields @ ( I  11') (a  similar situation arises also for other 
known solutions of two-dimensional quantum field theory, 
see Refs. 3, 10, and 13). In particular, if the condition (6.1 ) 
is satisfied, it is necessary to make the following identifica- 
tion of the fields @: 

where 
n - l  

i.e., the given fields are characterized by identical values of 
the numbers w, : 

The relations (6.2) lead to additional selection rules, an 
analysis of which shows that the set of fields 

where the arrays of integers (1) and (1 ') are subject to the 
conditions 

form a closed operator algebra ( a  minimal model). 
Of greatest interest, from a physical point of view, is the 

"principal series" of minimal models, which corresponds to 
the choicep' = p  + 1. In this case the parameter 

and the central charge c in Eq. (2.12) take on the values 
( 1.2). Making use of a method developed in Ref. 23 one can 
show that the minimal models of the principal series with 
p = n + 1, n + 2, ... satisfy the positivity condition (see Ref. 
20). We denote such models by [Z After identification 
of (6.2) withp' = p  + 1 the [ZLp'] models contain 

p!  ( p - I )  !In! ( n - I ) !  (p -n ) !  ( p - i z f l ) !  

spinless local fields @ ( I  j 1 ' ) with dimensionalities A ( I  I I '), 

defined by the equations ( 1.3). All values of the numbers 
w, ( I  11') with k > 2 corresponding to these fields can be ob- 
tained from the formulas (6.1 ), (4.9), and (3.7). 

We note that on account of the commensurability of the 
parameters a + and a - and the identifications (6.2) the con- 
servation law of the two Z,-charges q+ and q- is violated in 
the minimal models, and only one Z, charge q is conserved, 
which has for the [Z jp' ] models the value 

where k =p (mod n ) ; the operator algebra of these models is 
invariant with respect to the transformation 

7. CONCLUSION 

In the preceding sections we have constructed an infi- 
nite series of exactly solvable models in two-dimensional 
conformal quantum field theory, exhibiting explicit Z, sym- 
metry (the [ZF'] models). An important problem which 
has remained essentially unresolved, consist in the descrip- 
tion of a class of statistical systems which exhibit the critical 
behavior of [Z ? ' I .  We note that (for a given n)  the sim- 
plest models, namely [Z p ' "1, are characterized by the 
value of the central charge c = 2 (n - 1 ) / (n  + 2) and agree 
with the models [Z, ] constructed earlier in Ref. 4. These 
models describe, in particular, the Z, -generalizations of the 
ising model. In this case there is the following correspon- 
dence between the spin fields u,, the parafermions $, , and 
the thermal operators of the [Z, ] model and the fields 
@ ( I  11 ' )  of the model [Z + "1 (up to the identifications 
(6 .2)) :  

(7. l b )  

, , 1 1  { I  iti, n-i, 1i=1.-,=2 (7 .  l c )  
lif=1, i=l , .  . . , n-1 

The fields a,, $, , and E' j' have, respectively, the dimensions 

We also note that the integral representation for the [Z z'] 
models, described in Sec. 5, may be useful for the investiga- 
tion of the many-point correlation functions in an 
su (2 )  X su (2 )  invariant Wess-Zumino model, '2.20 since the 
correlation functions of this theory are simply related to the 
correlators in the [Z, ] = [Z  + "1 models4 

In conclusion the authors use this occasion to express 
their gratitude to A. A. Belavin, V. G. Drinfel'd, A. B. Za- 
molodchikov, B. L. FeIgin, and T. G. Khovanova for useful 
remarks and discussions. 

APPENDIX 

In this Appendix we list some of the simplest four-point 
functions in the [Z y' ] models. We denote by a, (z,I) and 
$, (z,Z) the fields @ ( I  I I ' )  where the arraysofnumbers ( I  / I  ' ) 
are given by Eqs. (7.la,b). It follows from Eq. (1.3) that the 
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fields uk and $, have the dimensions 

Making use of the projective invariance of the theory we set 

and consider the correlation function 

The constant C' in (A.5a) is chosen in such a way that the 
fields should be normalized by the condition 

where a,+ =a, - , . To such a set of fields one can associate 
the following value of the vectors P( i )  in Eq. (5. lb) :  

p ( I )  =-a+w, 8 ( 2 )  =-a+~, - , ,  

p (3)  =-a+ol, 8 ( 4 )  =2a0+a+w. 
(A.2) 

The corresponding correlators for the fields Jtk can be ob- 
tained from Eqs. (A.5) by means of the substitution 
p-+ - p  - 1, dk  - + A k .  

The correlation function Then the equation (5.2) takes on the form 

for k >  1 cannot be expressed in terms of hypergeometric 
functions, however it can be expressed in terms of multiple 
contour integrals introduced and investigated in Ref. 14. In 
this case we can express the parameters pi in Eq. (5.lb) in 
the form 

and its simplest solutions can be defined by the formulas 

In order to obtain the correlation function for the local fields 
@ ( I  Ill;z,F), one must follow Refs. 14, replace the integrand 
in Eq. (5. lb )  by the square of its absolute value, and replace 
the contour integrals in (5. lb )  by integrals over the whole 
two-dimensional plane: 

The equation (5.2) can then be written as follows: 

Then the function G, (z,Z) is represented by the integral 
n-1 

The simplest solution of Eq. (A.9) has the form 

We define the functions 

wherep=2a2+ = p / ( p +  1) .  
With the help of the relation 

Then the correlator G F(z,z) can be represented by the fol- 
lowing integral: the integral (A.4) can be reduced to the form 

(A.5a) 
where f, and f, are hypergeometric functions: 

(A.12) 

By means of the relation 
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and the change of variables {-z({- I)/({ - z)  the inte- 
gral (A.  12) can be reduced to the form 

(A.  14) 

where 

Integrals of the type (A. 14) have been investigated in detail 
in Ref. 14. The results of these papers allow, in particular, to 
determine all the structure constants C::) where the super- 
script denotes an arbitrary principal field which appears in 
the operator expansion of the product of the fields a, and a,. 
Thus, e.g., 

(c::') '=P (n -k f  1)  P ( I )  P ( k )  P ( n )  / P  (k+l) P (n-1) P (n-k) ,  

(A.15) 

where 

We note that in the limit when the numbers p, n ,  k, I- cc 

such thatp  - n = const, k /n = p, l /n  = v, the correlation 
function G :(z,Z) is expressed in terms of the density p (z,?) 
in a system of k particles interacting according to the law 
- lnl{i --{,I2 and being situated at a temperature 
(kT)  - ' = 2/(p + 1 ) ; there are additional sources placed at 
the points 0, 1, and cc in the system. In the limit k -  CC, 

p-  cc the density of particles in this system can be expressed 
by means of the mean field method in terms of solutions of 
the Liouville equation with fixed singularities (determined 
by the exponents y ,  and y, in (A.14) at the points 0, 1, and 
m ). The solutions of the Liouville equation with such singu- 
larities can be expressed in terms of hypergeometric func- 
tions (see Ref. 24). Simple calculations lead to the following 
result: 

G:(z, f ) = c o n ~ t { l ~ ~ Y ~ v ~  i - ~ I ~ ~ ~ ( ~ - ~ ) [ p ( z ,  Z ) ] ' ~ ~ ) ( ~ - " ) S O ( ~ - ' ) ,  

(A. 16) 
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