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A semiclassical theory of the penetrability of asymmetric tunnel microjunctions is developed in 
the one-electron approximation. A general expression is obtained for the penetrability of an 
asymmetric potential barrier that simulates a microjunction. Various particular cases are 
investigated, viz., a barrier with rectangular profile, one with a slope that depends on only one 
coordinate, and one with axial symmetry. Explicit analytic expressions for the transparency, 
obtained in the free-electron approximation, are used to consider a simple method of 
reconstructing the surface of a metallic sample from its image obtained with the aid of a scanning 
tunnel microscope (STM). The influence of localized electron states in the region ahead of the 
barrier on the penetrability of the microjunction and on the STM image is investigated. The result 
is compared with the free-electron approximation. An expression is obtained for the penetrability 
in the presence of the sample of a point defect close to its surface. It is shown that interference 
phenomena are possible in this case. The location of the tip above the defect can correspond both 
to a dipole maximum and to a minimum of the transparency. Also considered is emission of 
electrons from a two-dimensional localized state (quantum well) located on the ground 
transverse quantum level. 

INTRODUCTION 

The development of the scanning tunnel microscope 
(STM) by Binnig and Rohrer' has renewed the interest in 
the penetrability of three-dimensional asymmetric micro- 
junctions having generally speaking an arbitrary 
 calculation^^-^ have shown that in many cases the angle be- 
tween the electron-tunneling direction and the normal to the 
surfaces of the STM tip and of the investigated sample is 
small, and the electron beam in the below-barrier region can 
be regarded as localized near the most probable tunneling 
path (MPTP).  

Good microscope resolution can be obtained just when 
the width of the tube in which the current is localized is less 
than the characteristic curvature radius of the invesigated 
surface. This condition, which is equivalent as a rule to the 
existence of an MPTP, states that the surface must be semi- 
classical and large-scale. It is the main premise of the present 
paper. 

The theory of penetrability of multidimensional asym- 
metric potential barriers, based on the existence of an 
MPTP, was founded in the papers of Kapur and P e i e r l ~ , ~  
and of Banks, Bender, and Wu. "' It was further developed in 
Refs. 11-13. It will be shown below that the methods of this 
theory lead to significant progress towards the derivation of 
analytic expressions for the transparency of asymmetric tun- 
nel microjunctions. 

We start with the single-particle approximation for 
electrons and assume that the potential in the below-barrier 
region is semiclassical and executes an abrupt jump on the 
surface, as shown in Fig. 1 below. We consider also the possi- 
bility of existence of caustics in lieu of the potential jumps. 

The value of the current flowing through a microjunc- 
tion is governed by two interrelated factors: the shape of the 
potential barrier near the MPTP and the density of the inci- 
dent electron. In Sec. 2 of this paper we consider the effect of 
the barrier shape on its penetrability under the assumption 

that the electrons outside the barrier are free. The questions 
considered in Sec. 3 are related to allowance for the possible 
localization of the electron wave function near the surface 
outside the barriers. 

The first chapter of the paper is devoted to derivation of 
a general equation for the penetrability of an asymmetric 
barrier. The explicit analytic equations derived in Chap. 2 
are subject to additional assumptions concerning the form of 
the potential surface in the region below the barrier. It is 
assumed that the MPTP is a straight line, as is always the 
case for a rectangular potential barrier, and is valid in a num- 
ber of other important cases. 

Numerical experiments performed in the free-electron 
approximation by Garcia, Ocal, and Flores2 for a potential 
barrier with a rectangular profile, have yielded a simple 
semi-empirical dependence of the transparency on the cur- 
vature radii of the surfaces and on the points of their inter- 
section with the MPTP. The equally simple and quite rigor- 
ous analytic expressions obtained in Chaps. 2 and 3 for the 
transparency indicate a limited validity of the results of Ref. 
3. The expressions obtained in Sec. 2.4 are used to analyze a 
simple method of reconstructing the surface of the investi- 
gated solid from its image obtained by STM. To this end it is 
possible to neglect, in the zeroth approximation, the pre- 
exponential factor in the expression for the barrier penetra- 
bility, and to consider only the increase of the action along 
the MPTP. Allowance for the pre-exponential factor will be 
shown to increase the slopes of the surface outlines or, in 
other words, to make the image sharper. 

If it is assumed that the emission from the STM tip 
comes mainly from one atom, the natural mode for the tip is 
that of a localized state.',4 Tersoff and Hamman2 proposed 
for the tip a spherically-symmetrics-state model. This model 
is refined in Chap. 3 on the basis of the theory of resonant 
tunneling of electrons.'"he penetrability of an asymmetric 
barrier is obtained within the framework of this theory. The 
result is compared with the free-electron approximation. 
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This is followed by a determination of the influence exerted 
on the penetrability by a point defect located in the region 
ahead of the barrier. It is shown that interference phenome- 
na are possible in this case. We investigate also the behavior 
of the penetrability in the presence of a two-dimensional lo- 
calized electron state in the sample. 

1. MATRIX OF TUNNEL TRANSITIONS 

We obtain in this chapter a general expression for the 
operator of tunneling through a barrier, in a plane-wave ba- 
sis. If the wave functions of the STM tip and of the sample 
have a more complicated structure, they can always be ex- 
panded, in close vicinities of the points s,  and s, (Fig. 1 ), in 
terms of a set of plane waves, and the corresponding transi- 
tion amplitudes are easily expressed in terms of the transi- 
tion amplitude for plane waves. The designations "STM tip" 
and "sample" for regions I and I11 of Fig. 1 respectively are 
arbitrary and it will be occasionally convenient later to inter- 
change them. 

1.1. Most probable tunneling path (MPTP) 

Let a wave be incident from the interior of the tip (re- 
gion I of Fig. lb)  on the tip surface r , ,  and let this wave, 
together with the wave reflected after moving through the 
tip boundary into the subbarrier region, induce a semiclassi- 
cal wave function that decays exponentially inside the bar- 
rier, and hence also a complex action S = S, + is, that satis- 
fies the Hamilton-Jacobi equation. In the semiclassical 
approximation and in the absence of additional symmetry, 
the tunnel current will be concentrated in a narrow tube 
around the MPTP that connects the tip and sample surfaces. 
This path can be obtained in the following manner. Drawing 
in succession the level surfaces (wave fronts) for S, in the 
classically forbidden region, we construct ultimately a sur- 
face which is either tangent to the surface of the solid at some 
point (Fig. lb), or on which (at a high applied voltage) VS, 
first vanishes at some point. We determine the trajectory s 
drawn from the initial point and perpendicular to each of the 
constructed planes at the points of intersection with the lat- 
ter. By varying the initial properties of the incident wave on 
the equal-energy surface, we obtain a family of such trajec- 
tories. The one on which the integral J / VS, I ds is a minimum 
is in fact the MPTP. We assume that the main contribution 
to the current is made by electrons incident on the surface at 

FIG. 1. a )  Section through potential relief of STM of the "tip" (1)- 
vacuum, (11)-sample surface, (111)-structure. b) Illustration of the 
constuction of the MPTP. The arcs represent the wave fronts of the imagi- 
nary part of the action S,. The curve perpendicular to them, joining the 
regions I and 11, is the MPTP for a suitably chosen boundary condition. 

an angle close to the direction of the MPTP. To find the 
MPTP in the classically forbidden region I1 we can then put 
S, = 0 and substitute the boundary condition S2(, = 0 for 
the imaginary part of the action. In this case the action S2 
satisfies the Hamilton-Jacobi equation and the MPTP is a 
complex classical trajectory. It can be shown that this path is 
independent of the boundary from which its construction 
was initiated. 

1.2. Semiclassical solution of the Schrodinger equation in the 
vicinity of the MPTP 

We use the fact that in the semiclassical approximation 
the decisive contribution to the barrier penetrability is made 
by the wave function in the vicinity s of the MPTP. We de- 
fine, following Ref. 15, in the vicinity of the paths an orthog- 
onal reference frame, x , ,  x,, in which the radius vector r (M) 
of the point M is of the form r (M)  = r ( s )  
+ x,e, (s) + x,e,(s), and the unit vectors e,(s) and e,(s) 

are obtained from the principal normal n(s) and the binor- 
mal b(s) to the MPTP at the point s by rotation through an 
angle S(s )  : 

e,=ncos6 -bs in6 ,  s 

e, = n sin 19 + b cos 6, 8 (s) = 6 (I) + I, S T (3 ds. 

Here T(s) is the torsion of the MPTP. 
In accordance with the foregoing, the paths is perpen- 

dicular to the surfaces r, and T, at the intersection points s,  
and s, (Fig. lb ) .  The equation for the surface rj in a small 
vicinity of the point s, is therefore 

2 

where x is a two-dimensional vector and a, = \IIRkJ,! \I is a 
symmetric matrix. 

Let the potential V(r) have a semiclassical behavior in 
the subbarrier region outside the boundaries r, and 7,. We 
are interested only in those solutions of the Schrodinger 
equation1' 

'/,AY + [E- V (r)] Y=O, (1.3) 

which are localized near the MPTP and have transverse mo- 
menta that are small compared with the longitudinal one. It 
is then that Eq. (1.3) has in the MPTP vicinity 
the following semiclassical solution: 

Y+ (c, r) = [p det Q (s) ] -'" 

Here c is a two-dimensional vector with arbitrary constants, 

p(s)=[2(E-V(0, 0, s))]'" (1.5) 

(it is assumed that in the classically forbidden region 
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p = ilpl), and the matrix function Q(s)  satisfies the linear 
homogeneous differential equation 

1.3. Tunneling operator in a plane-wave basis 

Let a wave be incident at a small angle in region I on the 
boundary 7, and let the wave take in a small vicinity of the 
point s,  the form of a plane wave normalized to a unit flux 
density: 

{ .  [ ] ( s - s l ) +  ip ,x} .  YI+ = (p , - ) - ' / I  exp L pi- - 
~ P I -  

The modulus of the momentump(s) at the potential discon- 
tinuities is designated here by 

pj* = lim I p ( s )  1. 
s - r s  1 0  

(1.8) 
J - 

The wave function in region I should be a sum of an 
incident wave and a reflected one: Y, = Y: + Y;. The re- 
flected wave Y; can be sought in the form A Y ( c ,  r ) ,  and 
the corresponding wave function Y,t in the subbarrier re- 
gion, which decreases with increasing distance from s,, can 
be designated BY + (c', r )  . We join together the asymptotes 
VI, and VI,t by equating, in the quasiclassical approxima- 
tion, these functions and their derivatives on the boundary 
7,. As a result we get 

where the matrix function Q(s)  is uniquely determined by 
Eq. ( 1.6) together with the boundary condition 

In region 111, in a small vicinity of s,, we represent the 
outgoing wave in the form 

Xexp { i [ p,+ - - Xy ] CS-S,) + i p l x  I 
To find Y:, it suffices now to match similarly the sums 
Y,t + ZY- (c,r) and Y,t, on the boundary r,.   ere I Y  is a 
solution that increases in the direction of s and is exponen- 
tially small near 7,. As a result we get 

T (p, ,  p ' )  = h,h, (det 8) -'" 

where we use the notation 

The expression obtained is valid only under the condition 
that the matrix Re Z remains positive-definite. 

Note that if the boundary rj were to correspond not to 
an abrupt discontinuity of the potential V(r) but to a caustic 
[in this case p(s, ) = 01, it could be shown that Eq. ( 1.12) 
remains valid if one puts 

Thus, after finding the MPTP and solving the linear 
matrix equation ( 1.6) with the boundary condition ( 1. lo) ,  
Eq. ( 1.12) is the solution of the problem of calculating the 
tunneling matrix. 

2. PENETRABILITY OF ASYMMETRIC TUNNEL 
MICROJUNCTION IN THE FREE-ELECTRON 
APPROXIMATION 

If the potential V(r) outside the barrier is nonreflecting 
(semiclassical), the current through the microjunction can 
be obtained in analogy with Ref. 17, in the free-electron ap- 
proximation, from the equation 

where f is the electron Fermi distribution function and U is 
the applied voltage. At low temperature and small U this 
expression takes the form [ f (E) = B(Ef - E )  ] 

The penetrability D(E)  in (2.1) and (2.2) is defined as 

1 =---I d p o d ~ ' / T ( p 0 , ~ ' )  1'. 
f 2 n ) '  

Substituting ( 1.12) in (2.3) we get 

The matrix Q(x )  can be regarded here as real and as satisfy- 
ing the equation ( 1.6) with the boundary condition 

The barrier penetrability, as expected, does not depend 
on the behavior of the potential in the classically allowed 
region. Expression (2.4) is the product of a pre-exponential 
factor and an exponentially growing action along the MPTP. 
The pre-exponential factor accounts for the geometric singu- 
larities of the surface and of the potential as a whole. The 
condition that it vanish at infinity determines the boundary 
of the region in which the considered complex classical tra- 
jectory is indeed the MPTP and in which the employed ap- 
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proximation is valid. This region, in which the matrix 
Q, (s2)Q-'(s2) + 2 a 2  is positive-definite, can be naturally 
called the region of tunneling stability of the paths, in analo- 
gy with the concept of the stability of the trajectories corre- 
sponding to classically allowed motion.I5 

We consider in the present chapter the simplest forms of 
a potential barrier. The potential below the barrier will be 
regarded in Sec. 2.1 as independent of the coordinates, in 2.2 
as dependent on one of the coordinates, and in 2.3 as having 
axial symmetry. In Sec. 2.4 we consider a simple method of 
reconstituting the sample surface from its image with the aid 
of STM. 

2.1. Potential barrier with rectangular profile 

In this model, used in many the image forces 
are neglected and it is assumed that the slope of the potential 
barrier is small. The latter condition is met, for example, if 
the tip and sample have equal work functions at low applied 
voltage. 

In this case the MPTP is the shortest linear segment 
joining the surfaces r1 and 72. Since the potential in the sub- 
barrier region is independent of the coordinates, we have 
p(s) =p,+ and F(s)  =O. The solution of Eq. (1.6) is there- 
fore a matrix linear in s. With allowance for the boundary 
condition (2.5), we get 

The integral in Eq. (2.4) for A can be easily calculated and 
the expression for the penetration takes the form 

I hlh2 1 exp (--2pl+d) 
D ( E )  = -- 8d det'" (8,-8?+2d$29,) ' 

where d is the MPTP length. The determinant in the de- 
nominator of (2.7) can be easily verified to be invariant to 
interchange of the matrices a, and a,, which are generally 
noncommutative. 

Assume that the misalignment of the principal axes of 
the surfaces 7, and 7 ,  is small and that the matrices a, and 
a, can be regarded as simultaneously diagonal. We intro- 
duce the principal curvature radii of the surface rj at the 
point s, : 

Recognizing that = 0 if k + I ,  we get 

I h,h, l 2  ( R ~ ~ ) R ~ ~ ) R ~ ) R ~ ) ) ' I P  exp (- 2pXtd )  D ( E ) =  
4d (R?' + R?' $. d)'l* (HF) + R f )  + d)'la ' 

Equation (2.9) is always valid, for example, for a spherical 
tip, for which the matrix a, is diagonal in any orthogonal 
coordinate frame. It is therefore always possible to choose 
the unit vectors e l  and e, for which the matrix a, is also 
diagonal. 

Equations (2.7) and (2.9) solve in the semiclassical ap- 
proximation the problem posed in Ref. 3. The singularity of 
(2.7) or (2.9) as d-0 is due to the fact that at p: d 5 1 the 
penetrability begins to receive contributions from incident 
waves having large transverse momenta p,, and for which the 
method employed is no longer valid. In Sec. 3.1 below, in 
which the results are compared with Ref. 3 in greater detail, 

it is shown that this divergence is eliminated in the approxi- 
mation in which the tip is in a localized state. 

2.2. Allowance for change of potential In the sub-barrier 
region In the F 3 0  approxlmatlon 

If d(R :", the MPTP is close, independently of the 
slope of the potential barrier, to the shortest linear segment 
joining the surfaces r1 and 72. In this case the inhomogeneity 
of the potential in the direction transverse to the MPTP is 
small and we can put F = 0. The value of F can be neglected 
also in some other cases (e.g., in the case considered in pre- 
ceding section). The solution of Eq. (1.6) takes now the 
form 

and for the penetrai;ility we obtain the equation 

D ( E )  = 
81 -- 

8% det''2 (p1+Q,-pz-Q2+2plfP22~n26~l) ' 

This result is somewhat more complicated than (2.7) and 
allows us to take the slope of the potential barrier into ac- 
count. Let the applied voltage be so high that the barrier is 
close to triangular (Fig. 2)  and the points, is a simple turn- 
ing point. In the simplest case, putting 
V(O,O,s) = - (s - s ,  ) U/d, as well a, = 0 andA2 = 1 in ac- 
cordance with ( 1.14), we get 

This expression is valid if the ratio ( p: )'/2U is less than 
unity and much less than R L1'/d. It makes it possible, to- 
gether with Eq. (2.1 ), to determine in principle the average 
radius of the surface (R I1)R : I ) )  from the current-voltage 
characteristic j( U) [see also Eq. (3.9) 1 .  The potential of the 
image forces can similarly be taken into account in the 
framework of the above approximation. 

2.3. Potential barrier with axial symmetry 

If the characteristic curvature radii of the surface are of 
the same order as the barrier width, and the barrier profile is 
at the same time far from rectangular, the approximations of 
the preceding sections are incorrect. The MPTP, however, 
can turn out to be linear also in a more general case. Thus, if 
the STM tip is spherical, it can be assumed with good accura- 
cy that the MPTP is part of a perpendicular line drawn from 
the center of the tip to the surface of the sample, and the 

FIG. 2. Profile of potential surface with high applied voltage. 
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symmetry of the potential near the MPTP is the same as the 
symmetry of the surface r,. In this approximation one can 
choose a basis in which Kt,, Kt,, and F are diagonal simulta- 
neously, and Eq. ( 1.6) splits into two independent differen- 
tial equations: 

with boundary conditions 

It is convenient to introduce matrices t, that depend 
only on the potential inside the barrier and are not connected 
formally with the forms ofthe surfaces .T, and r,. To this end, 
we determine the solutions of Eq. (2.13) with the 
boundary conditions 

Each of the solutions q;,) can be represented as a linear com- 
bination of solutions q;;, and the coefficients of the combi- 
nation determine in fact the matrix elements t, : 

(j) 0) (j) (j) ( 1 )  (j) q,, (s) = tml qiz (s) + tmz yzz (s) r tj=IIYmn II. (2.15) 

Equation (2.4) for the penetrability takes, in the notation 
introduced, the form 

E 2 

I kihz 1 ' D ( E )  = --------- 
4 ('Il 1Ll*2) 

If the MPTP is a symmetry axis of infinite order, then 
t ,  = t,andR;:' = a:;). ForA, = 1 andRl.k' u = OEq. (2.16) 
coincides then with expression ( 10) of Ref. 18, averaged 
over the transverse m~rnenta.~ '  

Equation (2.16) and elementary nuemrical methods 
yield the penetrability of barriers with potential reliefs of 
quite general form, such as obtained, e.g., for certain surface 
models in Refs. 19 and 20. Note that Eq. (2.13) can always 
be solved analytically if the variables of the potential V(r) in 
the sub-barrier region can be separated. Incidentally, an ana- 
lytic solution can be obtained in this case also for the matrix 
equation ( 1.6). 

2.4.The theory of the STM image 

The trajectory of the STM tip, which traces the dc cur- 
rent level, depicts the surface of a solid with inevitable dis- 
tortions that depend on the distance from the tip to the sur- 
face, and on the forms and internal structures of the tip and 
the sample. In the simplest case of an ideal metal, the theory 
of the STM image can be based on the calculations of the 
present chapter, i.e., in the free-electron approximation. 
This approximation may be useful also in a more general 
case of, say, investigations of solid-surface microrough- 
nesses (microprojections or micropits) with typical dimen- 

sions 1-10 nm.21s22 The surface of a sample can be readily 
determined by method of the present section from its STM 
image. A particular case of the approach presented, based on 
the results of Ref. 3, is contained in Ref. 23. 

We assume for simplicity that the barrier is rectangular, 
as in Sec. 2.1. In the exponential approximation, the condi- 
tion that the current (2.1 ) be constant is then equivalent that 
the length of the linear MPTP be constant. This length, just 
as the tip radius, can be approximately calculated from the 
given current and from the work f ~ n c t i o n . ~  Assume that we 
know the surface traced by the STM tip and the shape of the 
tip (the experimental determination of the tip shape is the 
subject of Ref. 22). We can then construct also the envelope 
the family of tip surfaces traced by the moving tip. The 
sought surface of the solid is none other than the geometric 
locus of the end points of the MPTP determined from each 
point of the envelope. It is shown in Fig. 3 by the dashed line 
A 'B '. 

The condition that the current be constant (at constant 
U) can be found more accurately, with allowance for the 
pre-exponential factor, by substituting Eq. (2.9) [or (2.7) ] 
in (2.1): 

This formula is valid only when Ad is smaller than d. There- 
fore allowance for the pre-exponential factor makes it possi- 
ble only to correct the results of the exponential approxima- 
tion. A typical result of the correction is shown in Fig. 3 (the 
solid curve AB). It was obtained by increasing the lengths d 
of each MPTP reconstructed from the envelope of the family 
of tip surfaces, by an amount Ad. It can be seen that 
allowance for the pre-exponential factor makes it possible to 
make the surface outline more contrasty. The reason is that 
the current-beam width that determines the pre-exponential 
factor, and hence also the value of the current, is larger near 
a concave surface than near a convex one. 

Note that the expression obtained in the next chapter 
for the penetrability of the potential barrier in the approxi- 
mation of a localized state for the tip make it possible to 

FIG. 3. Reconstruction of the surface of a metallic sample from the STM 
image. A,$?,,-STM trace, 00'-STM tip surface, MN--envelope of the 
family of tipsurfaces, A 'B '-sample surface reconstructed in theexponen- 
tial approximation, AB-sample surface reconstructed with allowance for 
the pre-exponential factor. 
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refine Eq. (2.17). It is necessary to use Eq. (3.8) in lieu of 
(2.9). 

3. INFLUENCE OF STATES LOCALIZED OUTSIDE THE 
BARRIER ON THE MICROJUNCTION PENETRABILITY 

The correct electron wave function of a solid, near the 
point sj, is a linear combination of plane waves: 

[C(q, p) -S(q - p) forp, > 0 in the free-electron approxi- 
mation]. In the problems considered in the present chapter 
it is assumed that the free-electron approximation remains 
valid only at the exit from below the barrier. In Sec. 3.1 we 
discuss the localized-states model for the tip, and obtain the 
penetrability of the potential barrier in this model. In Sec. 
3.2 is considered the case when a point defect is present in the 
subsurface of the sample. In Sec. 3.3 we obtain an expression 
for the penetrability for electron emission from a two-dimen- 
sional localized state (quantum well). The penetrability 
D(E)  is defined for all the considered structures in such a 
way that the equations (2.1) and (2.2) for the current re- 
main in force. 

3.1. Model of localized state for the tip 

In Refs. 2 and 4, in contrast to Ref. 3, the tunnel current 
is defined as the current from the bound state of the tip atom 
closest to the sample. This model was investigated in Ref. 7 
in the self-consistent field approximation. It  can be treated 
more lucidly by using the model with resonant tunneling of 
electrons through a bound ~ t a t e . * ~ . * ~ . ' ~  

Let a bound state simulating the tip be located in the 
sub-barrier region near the surface 7, (Fig. 4a). We assume 
that the free-electron approximation is valid in regions I and 
111. The resonant penetrability of the potential barrier can 
then be represented in the Breit-Wigner approximation by 
the e q ~ a t i o n ' ~  

Here E,, is the bound-state level of surface atom, while T+ 
and r- are the probabilities of the decay of this state in the 
sample and in the tip, respectively. We shall assume that 
T- % T,, i.e., that the integral of the atom electron wave 
function overlap with the tip states is substantially larger 
than with the sample states. This is always the case if the 
barrier is wide enough. If we assume furthermore that the 
temperature and the applied voltage are low, so that the en- 
ergy interval AE of the electrons contributing to the current, 
just as jE - E,,l, is smaller than r-, we can put 

Numerical calculations show7 that for real atoms these 
equations are of correct order of magnitude. Assume that the 
wave function of the tip is an s wave specified in a spherically 
symmetric square potential well of radius R, whose outer 
boundary coincides with 7,. This wave function, normalized 
in a sphere of radius R ,  takes in the sub-barrier region the 
form 

FIG. 4. a-Illustrating the calculation of the penetrability in the local- 
ized-state approximation for the tip; b--point defect near the sample sur- 
face; c-two-dimensional localized state (quantum well) in sample. 

(the origin is at the center of the sphere). Since the form of 
the atom bound-state wave function is in fact unknown, this 
expression is valid for a real atom apart from a factor on the 
order of unity.* It  is now easy to show that the wave function 
(3.4) will match the solution (1.4), which is of the form 

if the matrix Q(s )  for it is defined by the boundary condi- 
tions 

The quantity I?- is of the order of the atom level spac- 
ing. For low-lying states we have E , - R  -2,  and we can 
therefore put T- = r2x- 'R  -' , x - 1. As a result, in analogy 
with the preceding chapter, we get 

@I 

D(E)=xlh, lzIzp1-Rerp (-2 i lp lds) l  
I 

p2- det'" Q(s2) det'" [QS(s?)+2Q2Q(s,)]. (3.7) 

We get hence for a barrier with rectangular profile 

D ( E )  = x  (hIh2 ~2p,-R(R2~1)R,~2))" exp (-2pl +d)/  
4p,+(d+R) (d+R+R,(')) ''I (d+R+R,(Z))'". 

(3.8) 

Comparsion of this expression with Eq. (3.9) obtained in the 
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free-electron approximation shows that at d )  R they differ 
only by a factor of order unity. In the oposite case of small d 
Eq. (3.8), in contrast to (3.9) has no singularity. The quan- 
tity R in (3.8) is of the order of the characteristic reciprocal 
momentum. The singularity with respect to d in (2.9) can, in 
accord with the remark following this equation, be smooth- 
ened by adding to d a quantity of the order of ( p,+ ) - ' .  At 
d g R  L j )  the penetrability (2.9),  just as (3.8), turns out to be 
proportional to the effective radius of curvature: 

in full accord with the guess made by the authors of Ref. 3. A 
comparison of expressions (2.9) and (3.8) with the semi- 
empirical formula of Ref. 3 for the penetrability shows, how- 
ever, that the latter cannot be valid if R :'' and d are of the 
same order. 

In the localized state approximation for a tip, in analogy 
with the preceding chapter, it is easy to consider also poten- 
tial barriers of other forms. Thus, for a tip in a strong electric 
field (Fig. 2)  we now obtain in lieu of (2.12) 

D ( E )  = 
x 1 A I L  1 p i - R  (3.9) 

pi+ [R+d ( P I + )  '/U] 

from which we see that in contrast to (2.12), in a very strong 
field U$ ( p,+ )'d /R the penetrability ceases to depend on 
R, and in the opposite case U< ( p,+ )2d /R this result coin- 
cides with the free-electron approximation. Under more 
general assumptions, T+ was calculated for axisymmetric 
potentials in Refs. 12. 

3.2. Point defect in the region ahead of the barrier 

Individual point defects in a thin insulator film were 
revealed in Ref. 26 by current oscillations produced by 
successive filling the defects with electrons of a localized 
bound state and then emptying them. A filled defect is cou- 
pled to the electrons by Coulomb repulsion, and an empty 
one can be approximately simulated by a small-radius poten- 
tial. In principle, noise from an individual effect can be ob- 
served also when the defect is in the sub-barrier region. In 
the present section we confine ourselves to the case when a 
small-radius defect is located ahead of the barrier. The prob- 
lem is to find the extent to which STM can react to an empty 
neutral defect as a function of the distance from the defect to 
the sample surface and of other parameters. 

Let, for simplicity, the sample surface r ,  be plane, and 
let it be close to a point defect (Fig. 4b) which we simulate by 
a zero-radius potential.27 The wave function in the region 
ahead of the barrier, where the potential is assumed to be 
constant everywhere around the defect, can be sought in the 
form of a sum of incident and reflected waves: 

pz--ip,+ +-- + exp Lip,- (2n-i) 7- il)s.z+ipl,y] 
p,-+ip, 

where ( p , i ) > =  (p?)'-p: -p:,and ( ~ * ) ~ / 2 i s  theen- 

ergy of the bound state of the defect. We have then in accord 
with the general methods2' 

In the derivation of (3.10) and (3.11 ) we have assumed that 
the distance from the defect to the surface is much larger 
than the electron wavelength: p; a$ 1. The inverse case is 
close to the one considered in the preceding section. 

Following its continuation through the barrier into re- 
gion 111, the sum of the plane and spherical waves (3.10) 
turns in the sum of outgoing waves \V,+ + \V,+ of the form 
( 1.4), the first of which is a continuation of the plane wave 
and the other of the spherical. Accordingly, the flux at the 
exit from under the barrier contains three terms: 

Pz' D ( E ) = - r y j d r d y  d p i ,  % " p t ~ ' + I ' k " . ' ~ '  
(Ln) I P  --PI- 

Here Dp and D, are the barrier penetrabilities for plane and 
spherical waves, respectively, and D,, is an interference 
term. Assume that the STM tip is spherically symmetric 
with radius R,  and that the barrier profile is rectangular. We 
obtain then 

/ h 1 h z  1 K 
D, = esp ( - 2 p l + d ) ,  

4d 

2 1 k l h , 1 2 a ( 0 , 0 )  ( P ~ + ) ' ~ K  
D,, = -1m 

where 

Here b is the displacement of the tip relative to the defect in 
thexy plane. I t  is taken into account in (3.14) that while the 
tunneling electrons are mainly those having small transverse 
momenta directly ahead of the barrier, scattering by the de- 
fect causes a contribution to the penetrability to be made by 
electrons with large initial transverse momenta. The coeffi- 
cient a ( 0 , O )  in (3.15) can vanish when the defect is located 
on a plane-wave node with p, = p, = 0. 

Owing to the decrease of the spherical-wave pre-expo- 
nential factor which is proportional to the distance to the 
defect, D, and D,, are smaller than D p .  I t  is they, however, 
which determine the dependence, in which we are interested, 
of the penetrability on b. Retaining in (3.15) only the explic- 
it dependence on b, we can rewrite this equation in the form 

D,,=A cos (cp,) cos (cp2+qb2) exp ( - o b Z ) ,  (3.16) 

from which it can be seen that with increase of b the penetra- 
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bility is in general oscillatory. Since p,#O in the general 
case, both a local maximum and a minimum of the penetra- 
bility can be reached at b = 0 (this interference effect is simi- 
lar to that noted in Ref. 14). 

If the defect lies deep, a $  up; / p : ,  we get 

A=4 1X1A2 ( Z ( p l - ) Y * R / [  ( p ' )  '+ ( p i - )  ' ] ' " ( p i f ) " ( 2 d + R ) a ,  
cpl=pt-a+arctg (pt+lp1-) , cp2=cpl--arctg (p i - IF*) ,  

o=O, , I= -p l - /2a .  
(3.17) 

It  turns out then that D, gD,, , and the contribution of D, 
can be neglected. Equations (3.17) enable us to trace the 
penetrability oscillations more clearly. It is seen from these 
equations, in particular, that at b = 0 a minimum penetra- 
bility, just as a maximum, can be reached. In the opposite 
limiting case a<dp,/p,+ we have r ] = O  and 
w = p,+ [2(R + d )  1 - ', therefore the penetrability always 
decreases exponentially as a function of b. 

In the general case, puttingp? -p, -p* - 0.3 a.u. and 
a-R - d -  10 A, we obtain D, -Dp, -0.3 D,. The first 
"half-period" of the oscillations in b is then approximately 5 
A, and the corresponding displacement of the STM tip along 
the z axis, at cos p, -0.5, is of the order of 0.3 .&. 

3.3. Emission of electrons from a quantum well 

Assume, as in the preceding section, that the sample 
surface is plane, the barrier profile rectangular, and the tip 
spherically symmetric with radius R. Let a two-dimensional 
localized state of electrons (quantum well) be located in the 
sample perpendicular to the surface (Fig. 4c). We assume 
for simplicity the potential in the quantum well to be approx- 
imately oscillatory, V(r) = w6x2/2, and take into account 
only electrons located on the first transverse quantum level. 
If the barrier is wide enough, only these electrons make the 
main contribution to the penetability. 

The incident wave in the quantum well, normalized to a 
unit flux and to a unit strip along y, is given by 

It is taken into account in (3.18) that the only states consid- 
ered are those for which the longitudinal momentum p, 
exceeds substantially the transverse ones p, and 61:'~. Con- 
tinuing the incident wave (3.18) together with the reflected 
one through the barrier, we obtain in region I11 the outgoing 
wave \y&. Calcultions lead to the following equation for the 
penetrability in the considered structure: 

where b is the displacement of the tip relative to the center of 
the well in the xy plane. Comparing this equation with 
(3.18) we see that, as expected, the penetrability, and with it 
the current (2.2), duplicates the density of the electron wave 

function of the sample, D cc l \V (b)  1 2 ,  if R and d are much 
smaller than the characteristic dimension p: /a, of the lo- 
calized state. Conversely, in the opposite limit d>p'/w, the 
dependence of (3.19) on b at d $  up: /p; is equal, apart 
from a constant, to the b dependence of the penetrability of a 
spherical wave (3.14) from a point defect located close to 
the surface. 

4. CONCLUSION 

The quasiclassical approximation in the sub-barrier re- 
gion, on which the results of the present paper is based, can- 
not take correctly into account the rapid change of the po- 
tential relief over a distance on the order of the electron 
wavelength. Suffering from the same defect is also the STM, 
whose image is roughly speaking a smoothened image of a 
surface of width larger than the electron wavelength. The 
error of the approximation employed seems therefore fre- 
quently to agree with the STM measurement error. Even in 
this approximation, however, reconstruction of a three-di- 
mensional potential from surfaces described by the STM tip 
(this should be in the general case a family of surfaces that 
depend parametrically on the current or on the applied vol- 
tage) is a complicated nonlocal inverse problem for the Pois- 
son equation. 

We disregarded above effects connected with existence 
ofnot one but several MPTP. The current beams in the vicin- 
ities of these paths can be independent, but may also inter- 
sect. The intersection takes place in the vicinity of the 
boundary of the region of the MPTP tunnel stability. The 
bifurcation effects that accompany this phenomenon can be 
investigated by taking into account in the initial Hamilto- 
nian not only the terms quadratic in the coordinates trans- 
verse to the MPTP, but also the terms of higher order. In the 
general case, however, inclusion of the next-order terms 
makes for a more accurate expression for the penetrability of 
the potential barrier. 

The use of the employed method is obviously not limit- 
ed to the examples above. Thus, it is easy to take into account 
the interference, investigated in Ref. 28, of tunneled elec- 
trons reflected (at  a sufficiently high applied voltage) from a 
surface-potential jump. It would be possible to calculate, in 
addition to Sec. 3.2, the penetrab~lity, in the presence of a 
Coulomb center, in the region ahead of the barrier. One can 
determine the images of dislocations and superlattices by 
simulating them by potential jumps and by small-radius po- 
tentials, calculate the penetrability for the charge-density- 
wave model considered in Ref. 29, etc. 
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Editor's note: M .  Yu. Sumetskii, "Penetrability of 
asymmetric tunnel microjunction and quasiclassical theory 
of the scanning tunnel microscope, "Sov. Phys. JETP 67 
( 3 ) ,  p. 438 was listed in the table of content under the head- 
ing "Nuclei, Particles, and Their Interaction" instead of 
"Solids." The editors of the Russian original apologize to the 
author and to the readers for this error. 
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