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Circulation lines are known to exist in an improper ferroelectric with a two-component order 
parameter, gadolinium molybdate. These lines represent linear intrinsic defects. Following a path 
around such a defect causes a point in the order parameter plane to traverse a closed contour an 
integral number of times. Such lines appear at contacts between domain walls and also at walls 
rotated 180" out of phase, where they represent subdomain boundaries with different directions of 
rotation in the order parameter plane. Shear deformation associated with the induced Lifshitz 
invariant in the free energy creates a force which displaces a circulation line. A study is reported of 
the motion of a contact between 90" polarization and 180" antiphase boundaries as a result of the 
action of such a force together with the coercive force. An analysis is made of the phase diagram of 
an antiphase wall in the case when the bulk transition in an improper ferroelectric is a second- 
order phase transition far from the tricritical point. This phase diagram includes a region where a 
stable antiphase rotation wall exists in which circulation lines can appear. 

1. INTRODUCTION 

The domain structure of improper ferroelectrics is cur- 
rently the subject of active theoretical and experimental 
studies (see Refs. 1-7 and the bibliography cited there). We 
shall consider the specific features of the structure of domain 
walls in a classical improper ferroelectric and ferroelastic, of 
gadolinium molybdate (GMO). A bulk phase transition in 
this crystal takes place from the D :, symmetry (paraelectric 
phase) to the C!, symmetry (ordered phase), and the order- 
ing is accompanied by doubling of the unit cell volume and 
appearance of a two-component order parameter governing 
the amplitudes of the lattice distortions of the paraelectric 
phase which appear at this t rans i t i~n .~  At the same time the 
energy attains a minimum at four points in the order param- 
eter plane, which transform into one another under 90" rota- 
tions. The points correspond to four types of domain and a 
domain wall accompanied by 90" rotation corresponds to a 
change in the sign of the spontaneous polarization along the 
fourfold axis of the paraelectric phase and to a change in the 
sign of the shear spontaneous deformation (strain) in the 
basal plane. We shall call these the 90" or polarization walls. 
The domains differing in respect of rotation of the order 
parameter by 180" are identical in all their physical proper- 
ties including polarization, but after a passage across such a 
180" wall (called an antiphase wall) the structure is shifted 
by half the spatial period of the ferroelectric phase. 

In a system with a two-component order parameter we 
can expect not only domain walls, i.e., plane arrays of singu- 
larities in the distribution of the order parameter (intrinsic 
defects), but also linear intrinsic defects. These linear de- 
fects will be called circulation (C)  lines and they appear at 
contacts and intersections of domain walls or inside them if 
their symmetry allows the existence of different structures 
which are degenerate with respect to the energy, which splits 
these walls into subdomains. The walls which separate such 
subdomains are the C lines. The analog ofthese lines in ferro- 
magnetism are the Bloch lines separating subdomains of 
Bloch ~a1l . s .~  

Here we present a qualitative and quantitative analysis 
of the structure of antiphase walls and C lines. We propose a 
method for creation of a concentrated force acting on a C 

line. The Lifshitz invariant in the free energy, induced by 
shear deformation, is responsible for this force. We show 
that the force applied to a C line at the contact between po- 
larization and antiphase walls can displace the latter. 

The range ofexistence of C lines in an antiphase wall are 
determined by investigating also the possible types of struc- 
tures of an antiphase wall and phase transitions between 
them. 

In Sec. 2 we describe a qualitative analysis of possible 
inhomogeneous structures in GMO, predicted on the basis 
of the properties of mapping of such structures onto the 
plane of a two-component order parameter. The force acting 
on a C line due to shear deformation is determined in Sec. 3. 
The next section (4)  deals with an analysis of the structure 
of an antiphase wall and possible phase transitions in the 
wall. The motion of an antiphase wall under the action of the 
force defined in Sec. 3 and of the coercive force is discussed 
in Sec. 5. 

2. DOMAIN WALLS AND CLINES IN GADOLINIUM 
MOLYBDATE 

In this section we shall report a qualitative analysis of 
possible inhomogeneous distributions of the two-component 
order parameter of GMO using the properties of mapping of 
such structures onto the order parameter space. This quali- 
tative analysis method is used widely in topological classifi- 
cation of inhomogeneous structures in systems with a com- 
plex order parameter'' (the application specifically to 
improper ferroelectrics was made in Ref. 4, where relevant 
references are given). 

The homogeneous state of the ferroelectric phase of 
GMO is quadruply degenerate and the four types of ground 
state correspond to four points in the (q, q, ) plane of the 
order parameter, located on a circle (Fig. l a ) .  Introducing 
normal coordinates in this plane, we can say that these 
ground states correspond to the same modulus of the order 
parameter and four different angles (phases) : q, = 0, a/2, a ,  
and 3 ~ / 2 . "  The structures with domain walls correspond to 
mapping of the real space onto lines connecting these points 
in the (q, q, ) plane. Mapping of a structure with a polariza- 
tion 90" wall is demonstrated in Fig. lb. Clearly, when the 
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FIG. 1. Ground state and domain walls in gadolinium molybdate. Maps in 
the order parameter plane are shown. 

anisotropy energy, i.e., the part of the energy dependent on 
the phase of the order parameter, tends to zero, a map of a 
domain wall tends to an arc of a circle (shown dashed in Fig. 
Ib). Such a domain wall is an analog of a rotation domain 
wall (Landau-Lifshitz wall) in magnetic materials where 
the anisotropy energy includes a relativistically small term. 

Possible maps of a structure with an antiphase wall are 
shown in Figs. lc-le (see also Ref. 4) .  In the limit of strong 
anisotropy we can expect mapping of the structure of an 
antiphase wall onto the diameter of a circle (Fig. lc).  Such 
an antiphase wall will be called linear since inside this wall 
only one component of the order parameter differs from 
zero. Its analog in magnetism is a Bulaevskii-Ginzburg do- 
main wall." Lowering of the anisotropy energy may give rise 
to an antiphase wall of lower symmetry, when the corre- 
sponding map onto the (q, q, ) plane encloses the point q = 0 
(Fig. Id).  We shall call this a rotation wall. Since there are 
two ways of circumventing this point, which are energy-de- 
generate, it is possible to split an antiphase wall into subdo- 
mains with difierent circumnavigation paths. Linear walls 
between these subdomains represent circulation (C) lines 
discussed below. 

In the limit of vanishing anisotropy a map of a 180" wall 
or of a 90" wall should approach an arc of a circle, but be- 
cause of the fourfold rotation symmetry of the Hamiltonian, 
the 180" wall itself should become unstable against splitting 
into two 90" walls. The domain which appears between them 
is mapped onto point a in Fig. le. 

Figure 2a shows the spatial structure of an antiphase 
rotation wall with a C line (constant-phase lines are shown), 
whereas Fig. 2b demonstrates mapping of this structure onto 
the order parameter plane. Then the domains with q, = 0 
and a are mapped, as before, in the form of two points, 
whereas subdomains of a domain wall with q, varying from 0 
to a and from a to 2 a  are represented by the thick lines 
passing to the left and right of the center of the plane and the 
core of a C line (surrounded by a dashed curve in Fig. 2a) is 
mapped to form the shaded region in Fig. 2b. Therefore, the 
map of the C line covers a finite area in the (q ,  q, ) plane. The 
closed contour surrounding the C line in real space (shown 
in Fig. 2a dashed with an arrow indicating the direction of 
circumnavigation) is mapped to form a closed line sur- 
rounding the map and the direction of enclosure can be 
clockwise or anticlockwise (in Fig. 2b it is clockwise). These 
two directions of enclosure in the order parameter plane can 
be distinguished by attributing the C lines different circula- 

FIG. 2. Circulation line in an antiphase rotation wall. Figure 2a shows 
constant-phase lines (thin continuous lines) in real space as well as the 
line at which the phase changes by 277 (dashed curve). Figure 2b gives the 
map of the C line in the order parameter plane (shown shaded). The 
direction in which the map is traced is shown and it corresponds to the 
direction followed around the C line in real space, identified by the arrow 
in Fig. 2a. 

tions f 1 of the phase of the order parameter (this was the 
reason why we introduced the term "circulation line"). 
However, this circulation differs fundamentally from the 
circulation of superfluid or magnetic vortices (Bloch lines). 
In our case its sign does not change when time is reversed, 
whereas in the case of superfluid and magnetic vortices the 
sign changes. Therefore, when a C line travels at a constant 
velocity, there is no gyrotropic force perpendicular to the 
velocity, which plays a very important role in the dynamics 
of superfluid and magnetic vortices (for an account of the 
gyrotropic force in ferromagnetic materials see Refs. 9 and 
12 and the references cited there). 

Figure 3a shows the structure after an antiphase wall 
near a C line breaks up into two polarization walls, whereas 
Fig. 3b shows a map of this structure. This structure is topo- 
logically indistinguishable from that in Fig. 2, but in real 
space inside an antiphase wall the domains which appear to 
the left and right of the line are characterized by q, = a/2 
and 3a/2 and they differ in the sign of polarization from the 
domains characterized by q, = 0 and T. However, an in- 
crease in the volume of the new domains that are formed as a 
result of breakup of an antiphase wall is limited by the finite 
density of the C lines in the original antiphase wall. More- 
over, the structure with nodes (constrictions) shown in Fig. 
4 is now observed. 

We shall now consider contacts between polarization 
and antiphase walls which can be also identified with the C 
lines. The structure of such contacts and the corresponding 
maps on the order parameter plane are shown in Figs. 5 and 
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FIG. 3. Circulation line at the intersection between two polarization 
walls. The information given is the same as in Fig. 2. 
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FIG. 4. Structure after splitting of an antiphase wall with C lines. The 
continuous lines are polarization walls; the points are the C lines. The 
signs ( + , - ) of the polarization in the domains are shown. 

FIG. 6. Circulation line at a contact between polarization and rotation 
6. We shall consider what happens if we try to transform antiphase walls. The information given is the same as in Fig. 2, but there is 
these contacts into one antiphase wall by selecting several no abrupt change in the phase, because the C line is characterized by zero 

circulation. rotations of two polarization walls emerging from a contact 
(the direction of rotation is shown by arrows in Figs. 5a and 
6a) and a subsequent continuous transformation (homo- 

(Fig. lc) .  However, in the problem under discussion these 
topy) of two polarization walls into one antiphase wall. In- 

simple topological arguments cannot always have the same 
troduction of circulation as a topological invariant or charge 

decisive role as in the case of other ordered condensed media, 
means that in the course of this transformation we cannot 

particularly in the case of ferromagnets when the anisotropy 
change the number of times we traverse the boundary of the 

is usually weak and the maps of domain walls are always 
map of the structure around the center of the plane (q ,  q, ) 

close to arcs of a circle. In the case of a ferroelectric charac- 
corresponding to zero order parameter. The physical reason 

terized by a strong anisotropy the energies of antiphase rota- 
for this is forbidden in that the boundary of the map abc in 

tion walls, mapped to form the contours adc in Figs. 5b and 
Figs. 5b and 6b is the map of a volume of polarization walls 

6b, may hardly differ from the energy of a linear antiphase 
and vanishing of the order parameter inside a polarization 

wall mapped along the diameter. This may mean that the 
wall requires a major increase in the energy proportional to 

topological barrier is no longer as high. On the other hand, 
the wall area. This increase in the energy is an activation 

there may be a barrier of nontopological origin preventing 
barrier of topological origin and the structures which trans- 

the merging of two polarization walls into one antiphase 
form continuously into one another without overcoming this 

wall. For example, this is possible in that part of the phase 
topological barrier, i.e., the structures with the same topo- 

diagram where a linear antiphase wall and two polarization 
logical charge, are topologically equivalent or, in other 

walls are stable (see Sec. 4) ,  although then one structure is 
words, they belong to the same homotopic class.1° In the 

absolutely stable and the other is only metastable. Moreover, 
light of this discussion it is clear that the contact shown in 

there are forces of elastic origin which can orient polariza- 
Fig. 5 is topologically equivalent to an antiphase wall Qith a 

tion walls along the axes of the paraelectric phase13 and pre- 
C line shown in Fig. 2 and the contact demonstrated in Fig. 6 vent rotation, i.e., prevent merging into an antiphase wall. 
is topologically equivalent to a homogeneous antiphase rota- 

All this makes it desirable to consider not only topologically 
tion wall. This is due to the fact that a topological charge, 

stable lines with a specific nonzero circulation, but also 
i.e., a circulation governed by the number and direction of special lines with zero or indeterminate circulation, because 
enclosures along the boundary of a map around the point q, they may be stable although not in the usual topological 
= q, = 0 is equal to + 1 and 0 for the contacts in Figs. 5a sense. 

and 6a, respectively. There may be also a contact which is A common property of all the C lines is that they corre- 
intermediate between the cases shown in Figs. 5a and 6a: in spond to a map with a finite area in the order parameter 
this case the boundary of a map is identical with the diame- plane. The boundary of this map is a map of a closed contour 
t e r y  i.e., it passes through the point where the order param- in real space surrounding a C line at a large distance from it, 
eter has zero value (center of the circle). The circulation in i.e., a line which does not pass through its core. Then, if the 
the case of such a contact is an indeterminate quantity. This spatial contour is traversed in a selected direction, the 
contact is topologically equivalent to a linear rotation wall boundary of a map in (q, q, ) may be circumvented clock- 

wise or anticlockwise. As shown below, the properties of the 
C lines differing with respect to the direction in which the 

I map is traversed defined in this way are different. Therefore, 
I 

2n I 0 in order to distinguish such lines we have to generalize the 
7 - h  

./8\ 
concept of circulation defining it as the number and direc- 

6;; 13lr/B - ~ y : ~ / ~  3n/8 b tion internal of circumventions point of this map, of which a map now of a need C line not coincide (around with any 
the point q, = q, = 0).  In terms of this generalized defini- 
tion of circulation the C lines in Figs. 5 and 6 have the same 
circulation of + 1. 

Our analysis may also be extended to more complex 
a b linear and planar singularities of the order parameter of an 

&z !PC improper ferroelectric (for example, 270" or even 360" do- 
'I 4 main walls or intersections of more than two domain walls), 

FIG. 5. Circulation line at the contact between polarization and rotation but for the purpose of the present it is sufficient 
antiphase walls. The information given is the same as in Fig. 2. to consider only the simplest situations. 
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3. FORCE ACTING ON A C LINE 

A circulation line divides subdomains of a domain wall 
with different directions of rotation in the order parameter 
plane. Therefore, the force acting on a C line can be created 
only if there is an interaction which makes these subdomains 
inequivalent. This interaction may be the Lifshitz invariant 
induced by shear deformation and permitted by the transfor- 
mation properties of the order parameter of gadolinium mo- 
lybdate8: 

where x, y, and z are selected along the axes of the paraelec- 
tric phase (here, z is the fourfold axis). Going over to the 
modulus q and the phase g, of the order parameter, we obtain 

In the absence of the Lifshitz invariant the subdomains men- 
tioned above are eq~ivalent .~ 

We shall begin with the case of a C line in a planar 
antiphase wall. The resultant force F per unit length of a C 
line is equal to the difference between the integrals along a 
coordinate normal to an antiphase wall to the left and right 
of a C line. If we consider an antiphase wall in the yz plane, 
we obtain 

where q, (x) ,  p, (x) and q, (x) ,  pr (XI are the order param- 
eters in terms of polar variables to the left and right of a C 
line. We can readily rewrite Eq. ( 3 )  in the following form: 

where the contour I? along which the integral is calculated 
represents the boundary of a map for a C line (Fig. 2b). The 
integral is equal to twice the map area. Clearly, this force 
should be directed along an antiphase wall. 

In the more complicated case of a C line at a contact 
(Figs. 5 and 6) there should again be forces along all the 
walls, but the forces should now be added vectorially. For 
each domain wall emerging from a contact the expression for 
the force acting parallel to this wall may be written in a form 
similar to Eq. (4), but the contour r along which the inte- 
gral is taken is a map of this domain wall (i.e., an open con- 
tour) and its magnitude is twice the area of the sector begin- 
ning from the point q = 0 and bounded by the map in 
question. In the cases shown in Figs. 5 and 6 the forces acting 
on two parts of a polarization wall (contours ab and bc) are 
the same and they tend to shift the C line horizontally. How- 
ever, the vertical force exerted by an antiphase wall is in such 
cases opposite in sign. However, if a linear antiphase wall 
emerges from a contact, it generally makes no contribution 
to the force acting on the C line. 

It should be pointed out that in the cases under discus- 
sion dealing with C lines at contacts and a C line in an anti- 
phase wall a reversal of the sign of circulation should be 
accompanied by a reversal of the sign of the resultant force, 
but in the case of the contacts shown in Fig. 6 the circulation 

should be regarded in the generalized sense (as defined at the 
end of Sec. 2 ) . 

4. PHASE TRANSITION IN AN ANTIPHASE WALL 

In this section we shall present a quantitative theory of 
the structure of an antiphase wall and possible phase transi- 
tions between different types of such structures. 

We shall describe the ferroelectric phase using the Lan- 
dau expansion in powers of the components of the order pa- 
rameter.'" We shall write this expansion in terms of Carte- 
sian coordinates: 

as well as in terms of polar coordinates: 

where p, =f l  + 0, This Landau expansion can be ob- 
tained, for example, from Eqs. (25) and (27) of Ref. 5 when 
the reference line for measuring the angle e, in the (q,q, ) 
plane is selected suitably. It is also assumed that all the 
changes in the order parameter occur solely along one of the 
axes of the paraelectric phase (x axis). 

This expansion was used in calculations dealing with 
90" polarization walls.5p6 Calculations relating to 180" anti- 
phase walls6,' yielded contradictory results. Fouskova and 
Fousek6 found a solution only for a linear antiphase wall and 
reached the conclusion that antiphase rotation walls cannot 
exist in the present model. In fact, they could not find a 
solution for an antiphase rotation wall because they sought 
an antiphase rotation wall which was nearly ideal in the rota- 
tion sense and exhibited mapping to form a semicircle. On 
the other hand, Ishibashi and Dvoi;ak7 concluded that there 
is always an antiphase wall structure with an energy lower 
than the energy of a linear antiphase wall, i.e., the latter is 
not optimal from the energy point of view and an antiphase 
wall can only be of the rotation type. This is in conflict with 
our analysis given above, which shows that there are regions 
of stability of linear and rotation walls and the existence of a 
rotation wall can be established in principle allowing also for 
small quantities y in the Landau expansion. 

The equilibrium structure of a domain wall should be 
found from the Euler-Lagrange equations obtained by vari- 
ation of the free energy functional. In terms of Cartesian 
components q, and q, , these equations are 

The system of equations (7)  has a solution for a linear anti- 
phase for which q, = 0 and q, varies from - q, to 
q, , where 
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is the equilibrium value of the order parameter in a domain. 
We then have 

where 

The solution simplifies greatly in the special case whenP> 0 
and y = 0, which corresponds to a model of a second-order 
phase transition: 

We shall consider the stability of this solution by a 
method used frequently in the past to investigate phase tran- 
sitions in domain  wall^.'^,'^ We have to expand the energy 
functional to second order in the small deviations q, and 
q = ij, - q, from the solution (9)  and determine the eigen- 
values R of this functional. The problem reduces to the fol- 
lowing two linear differential equations: 5 

A linear antiphase wall is stable if all the eigenvalues R are 
nonnegative. The modes corresponding to qz = 0 and ij#O 
cannot give rise to an instability, because the smallest eigen- 
value R for these modes is 0 (such a mode corresponds to 
translation of a domain wall). An instability of a linear anti- 
phase wall may be related, however, to the appearance of a 
negative eigenvalue A for the mode corresponding to q, #O 
and ij = 0. 

It was found possible to carry out a complete analytic 
investigation of a phase transition in a domain wall associat- 
ed with this instability in the case when a bulk phase transi- 
tion is of the second order and it lies far from the tricritical 
point (P>  0, y small). We shall consider this situation. If 
y = 0, the eigenvalue R for the mode with q, #O passes 
through zero and becomes negative at S = 2P, - < 0. This 
can easily be shown because for y = 0 and P2/P = 1/2 Eq. 
(12) is completely identical to Eq. (1 1) which has zero 
eigenvalue. Therefore, ifP,/P = 1/2 a linear antiphase wall 
is unstable against the appearance of a second component of 
the order parameter which makes the wall r~tational.~'  We 
shall consider the nature of the phase transition in the struc- 
ture of a wall as a result of this instability. We shall do this 
bearing in mind that the nonlinear Euler-Lagrange equa- 
tions of the system (7)  have for 6 = 2& - P = 0 and y = 0 
a class of solutions obtained by Ishibashi and Dvoiak7: 

goo rfD x-D 
q' = J th  d + th-) d , 

A remarkable property of this class of solutions is that the 
energy is independent of D, which thus becomes a degener- 
acy parameter, whereas a state with S = 0 and y = 0 is a 
multicritical point in the phase diagram of a wall. If D = 0 
the solution given by the system ( 13) becomes identical with 

that given by Eq. ( lo ) ,  whereas for D$-d it corresponds to 
two polarization domain walls separated by a distance 20.  
Therefore, a neutral equilibrium with respect to transforma- 
tion of a linear antiphase wall into a rotational wall and 
breakup of the latter into two polarization walls is estab- 
lished at a multicritical point. This degeneracy is lifted if 
6#0  and/or y#O. To first order in these parameters the 
energy of an antiphase wall, measured from the energy of a 
linear antiphase wall at a multicritical point ( D  = 0, y = 0, 
6 = O), can be written in the form 

where q, and q, is given by the solution ( 13 ) of Ishibashi and 
~ v o i a k ,  whereas q, is the solution for a linear wall described 
by the system ( 10). 

After evaluating the simple but messy integrals in Eq. 
(14), we obtain 

where z = tanh(2D/d) increases from 0 to 1 when D is in- 
creased from 0 to W ,  and the following new parameters are 
introduced: 

An analysis of the dependence of AFon D makes it possible 
to plot the phase diagram in the ( 8 , ~ )  plane. At low values of 
D ( d, we can expand Eq. ( 15) in terms of z: 

It follows from this expression that a linear antiphase wall 
(D  = 0)  is stable, i.e., it corresponds to an energy minimum, 
if it lies below the AOB line in Fig. 7, where 

At high values D s d ,  we can expand Eq. ( 15) as a series in 
1 - z, which gives 

It follows from Eq. ( 19) that the energy of an antiphase wall 
is an increasing function of D for D- co in the region below 
the straight line COD (Fig. 7), where 

Therefore, this inequality defines the range of instability of 
two polarization walls against merging in the one antiphase 
wall. The phase diagram can be constructed if we compare 
the absolute values of the energies of antiphase ( D  = 0)  and 
of two polarization (D  = UJ ) walls. According to Eq. ( 19), 
below the line EF (Fig. 7),  where 
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FIG. 7. Phase diagram of an antiphase wall near a multicritical point 
characterized by j = yg&d = 0 and S = Sq&d = 0 [see Eqs. ( 5 )  and 
( 10) 1. The region below AOFis a linear antiphase wall which is absolutely 
stable, the region above COFrepresents two polarization walls which are 
absolutely stable. The sector COA is an antiphase rotation wall which is 
absolutely stable, the sector BOFis a linear antiphase wall which is meta- 
stable, and the sector FOD represents two polarization walls which are 
metastable against merging into a linear antiphase wall. The ray OF is a 
first-order phase transition line and the rays OCand OA are second-order 
phase transition lines. 

the energy of a linear antiphase wall is less. 
Consequently, the 8-7 plane splits into three regions 

separated by three lines emerging from a multicritical point 
6 = 7 = 0 (represented by the heavy lines in Fig. 7 ) .  In the 
region below AOF a linear antiphase wall is absolutely sta- 
ble. This region is separated by the OF line of the first-order 
phase transition from the region above COF, where two po- 
larization walls are preferable from the energy point of view 
to any antiphase wall, and by the A 0  line corresponding to 
the second-order phase transition from the region AOC, 
where a stable rotation wall exists (the energy AFis minimal 
for a finite value of D)  . On the OC line of the second-order 
phase transition a rotation antiphase wall it splits into two 
polarization walls. In the vicinity of the OF line of the first- 
order phase transition a rotation antiphase wall it splits into 
two polarization walls. In the vicinity of the OF line of the 
first-order phase transition there are "supercooling" and 
"superheating" regions where either a linear antiphase wall 
(sector BOF) or two polarization walls (sector FOD) are 
metastable. Clearly, the C lines can appear in an antiphase 
wall in the region AOC where the rotation type of wall is 
stable. 

However, our phase diagram of an antiphase wall near 
the multicritical point y  = S = 0 cannot be used directly to 
describe transitions in the structure of an antiphase wall in 
GMO, because the volume phase transition in GMO is of the 
first order and it is close to the tricritical point, i.e., in the 
case of this compound we have 0 < 0 in the Landau expan- 
sion and in a wide range of temperatures the inequality 
fl 4 yJa 1 is obeyed. We can expect however that the anisot- 
ropy parameterg, /flgoverning the stability of a linear anti- 
phase wall in the analysis given above can be replaced in the 
vicinity of a bulk tricritical point by a temperature-depen- 
dent parameter 

This is confirmed by an analysis of Eq. ( 12) designed to find 
the eigenvalues for the second component q, of the order 
parameter. We can easily show that in the case of sufficiently 

small values of Jp I the only parameter which determines the 
potential (i.e., the factor in front of q,) and, consequently, 
the sign of the smallest eigenvalue is the dimensionless pa- 
rameter 

the smallest value of A is certainly positive if this parameter 
is large (strong anisotropy) and certainly negative if this 
parameter is small (weak anisotropy ) . Therefore, some- 
where at 4fi2/( J a J  y) 'I2 - 1 there should be a phase transi- 
tion in the structure of an antiphase wall. This qualitative 
analysis of the stability shows that the range of existence of a 
stable linear antiphase wall is located near the temperature 
of the bulk phase transition (for small values of ( a  ( ) . How- 
ever, cooling may result in a loss of stability by the wall [if 
the parameter 4g2/( la1 y )  'I2, which decreases as a result of 
cooling, can reach the critical value], but it is not certain 
whether this is accompanied by a transition to a rotation wall 
or by splitting into two polarization walls. A complete solu- 
tion of this problem will require a more thorough quantita- 
tive analysis of the transition of the structure of an antiphase 
wall near a bulk tricritical point and also more information 
on the numerical values of the parameters of the Landau 
expansion for GMO. 

5. FORCED MOTION OF AN ANTIPHASE WALL 

As is known, an antiphase wall separates physically 
equivalent regions, i.e., there is no physical field that can 
make "antiphase domains" inequivalent and can thus create 
pressure on an antiphase wall. This limits greatly the possi- 
bility of creating forced motion of an antiphase wall (this 
wall can be set in motion by interaction of an arriving polar- 
ization wall driven by an electric field'). The proposed 
mechanism of forced motion of an antiphase wall does not 
require radical modification of the domain structure, which 
accompanies the motion of a polarization wall, and it is a 
more selective effect which acts only on an antiphase wall. 
The mechanism involves applying a force to a contact be- 
tween antiphase and polarization walls (Fig. 5). Such a 
force is created under the influence of elastic stresses; it was 
evaluated in Sec. 3 [Eq. (4)  1. This force tends to shift both 
antiphase and polarization walls. However, there are consid- 
erable forces of elastic origin, which orient the polarization 
wall along the axis of the paraelectric phase and prevent 
bending. Such forces are not created by bending of an anti- 
phase wall, because it separates domains with equivalent 
elastic properties. Therefore, we shall assume that the force 
acting on a contact shifts an antiphase wall by displacing its 
end along an immobile rectilinear polarization wall. This 
displacement should be hindered by the coercive forces. Let 
us assume that in the initial position an antiphase wall coin- 
cides with the xz plane, whereas a polarization wall coin- 
cides with the yz plane (i.e., the contact is along the z axis). 
The displacement y(x)  of the antiphase wall then satisfies 
the equation of balance of the force proportional to the sur- 
face tension of the wall a and the coercive force of densityf: 

Equation (22) gives the displacement of an antiphase wall in 
the region 0 < x < x,, where the surface tension force exceeds 
the dry friction (coercive) force. If x > x,, the wall does not 
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move, i.e., y = 0. Equation (22) is solved subject to the 
boundary conditions y = 0 and dy/dx = 0 at x = x, and has 
a solution of the type 

The condition dy/dx = 0 at x = xo ensures the absence of a 
kink of the wall at this point, which may appear only in the 
presence of a concentrated force. Such a concentrated force 
Facts at a contact; it is governed by Eq. (4)  and it is equal to 
the flux of the momentum along the wall: 

After elimination of x, from Eqs. (23) and (24), we obtain 
the relationship between the force F a t  a contact and the 
displacement of a contact y, = y(0):  

The length C is given by 

In the absence of sufficient information on the constants of 
the theory, we can obtain only an order-of-magnitude esti- 
mate of the length C in the temperature interval character- 
ized by ( la1 y) ' I2  $P. Then, because 

we find the following order-of-magnitude relationship 

Using the standard dimensional estimates for A, y, and tt, we 
obtain 

where E,, - 10"- loi3 erg/cm3 is the characteristic density of 
the atomic energy and a - 10 - cm is the characteristic in- 
teratomic distance. The coercive force depends on the scale 
and amplitude of inhomogeneities of a sample and it is not 
known for an antiphase wall. However, in a rough estimate 
we can use its typical values for a polarization wall found in 
Ref. 16: 

Using the values given above, we thus find that C-0.2-20 
cm. Therefore, a strain of 10 - gives rise to a displacement of - 20-2000 A. 

6. CONCLUSIONS 

A qualitative analysis of the structure of circulation 
lines in an improper ferroelectric is given above. These lines 
represent linear singularities of an antiphase wall or contacts 
of antiphase and polarization walls, and they correspond to a 
finite area of a map in the plane of a two-component order 
parameter. It is shown that C lines can be influenced, i.e., 
that it is possible to create concentrated forces acting on 
these lines. A force of this kind is created by a deformation 

coupled to a phase gradient, i.e., which occurs in the free 
energy in the form of the Lifshitz invariant induced by defor- 
mation. This force can also be used to act on an antiphase 
wall via a C line at a contact between antiphase and polariza- 
tion walls. The estimates obtained, which allow for the exis- 
tence of the coercivity, suggest that it should be possible to 
observe experimentally this effect. 

Phase transitions in the structure of an antiphase wall 
were also considered. The phase diagram of this wall was 
constructed near a multicritical point where there is a neu- 
tral equilibrium in the state of the wall. It was found that 
there is a region in this diagram where a stable antiphase 
rotation wall exists and C lines can form. In the case of gado- 
linium molybdate, in which a bulk phase transition is close to 
the tricritical point, the state of an antiphase wall is governed 
by the effective anisotropy parameter &/( (a(  y)  'I2, which 
depends on temperature. When temperature is lowered (and 
la1 is increased), this parameter becomes smaller and can 
reach a critical value at which a linear antiphase wall be- 
comes unstable. If P2/(laly) '" is sufficiently small, this 
wall can become unstable against breakup into two polariza- 
tion walls, but this instability occurs either in the form of one 
first-order phase transition directly to a state with two polar- 
ization walls or in the form of two second-order phase transi- 
tions passing through an intermediate state in the form of an 
antiphase rotation wall (separated by C lines into subdo- 
mains). The transition from an antiphase wall to two polar- 
ization walls should be accompanied by the appearance of a 
chain structure with nodes of intersection of polarization 
walls ( C  lines), of the kind shown in Fig. 4. It should be 
possible to observe experimentally a structure of this type. A 
detailed determination of the phase diagram of an antiphase 
wall in gadolinium molybdate will require further quantita- 
tive analysis of phase transitions in this wall in the case of 
values of IaI y/P ', which are not small; moreover, more reli- 
able information is needed on the parameters of the Landau 
expansion for the free energy in gallium molybdate. 

"In contrast to the treatments in Refs. 4-8, we selected the line from 
which the phase was measured in such a way that g, = 0 corresponded to 
one of the ground states. 

"According to Ref. 7, a linearized phase wall is unstable and in the case of 
astrong anisotropy we havep, /P> 1/2. This followsfrom the inequali- 
ty (34) in Ref. 7. However, according to our calculations this inequality 
should have the opposite sign, which corresponds to a stable linear anti- 
phase wall. 
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