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The energy levels of a double-junction dc interferometer are calculated for conditions under 
which macroscopic quantum effects are important. The spectrum in a system of this sort, without 
damping and with a Josephson coupling energy comparable to the Coulomb energy e2/2C, is 
noticeably different from the spectrum of a harmonic oscillator. 

Macroscopic quantum effects are important in Joseph- 
son tunnel junctions of small dimensions. These effects arise 
because the phase-difference operator p does not commute 
with the variable which is its canonical conjugate: the num- 
ber of electron pairs. The quantum properties, in particular, 
the energy spectrum, of such a system depend on the ratio of 
the Josephson coupling energy Ej = I, /2e to the Coulomb 
energy EQ = e2/2C, where Cis the capacitance of the junc- 
tion, I,  is its critical current, and we are using a system of 
units with f i  = c = 1. If E, $- EQ, the spectrum is similar to 
an oscillator spectrum, even for remote levels n. In the oppo- 
site case, deviations from the spectrum of a harmonic oscilla- 
tor should be taken into consideration. 

Let us examine a double-junction quantum interferom- 
eter which is described by an action containing two vari- 
ables, p, and p,, which correspond to two coupled Joseph- 
son junctions. Specifically, we consider a dc SQUID. A 
system of this sort has been studied previously14 for several 
purposes. Macroscopic quantum tunneling in a system of 
this sort from a metastable potential minimum was studied 
in some recent paper.53" 

In the present paper we use the semiclassical approxi- 
mation to calculate the energy spectrum of a SQUID of this 
sort. An important point is that even under the condition 
EQ 5 EJ anharmonic effects are important, and the spec- 
trum becomes noticeably different from an oscillator spec- 
trum. We consider a symmetric SQUID with I,, = Ic, = I, 
and C, = C2 = C, and we assume that the external magnetic 
flux is zero: cP, = 0. We introduce linear combinations (Y,  

8) of Josephson phases p, and p2: 

The total Lagrangian in terms of the variables v, 8 then 
takes the 

Here L is the total inductance of the interferometer ring, Zis 
the total current, and a, is the quantum of magnetic flux. 

To write an expression for the action S, it is convenient 
to switch to an integration over a dimensionless time 
t + (@,/2?7) ( c / ~ j  ) "'T: 

The Bohr-Sommerfeld quantization conditions can be 
extracted conveniently from the Green's function 

where we have used the notation r = {v,8) in the functional 
integral (41, and where the path integration is carried out 
under the boundary condition 

r (0) =r (T) =ro. (5) 

We will not reproduce the intermediate calculations, 
which are given in detail in the literature (e.g., Ref. 7), but 
we do wish to point out a way of constructing the basic quan- 
tization equations, and to emphasize some particular fea- 
tures of this system. In the semiclassical approximation, the 
integrals in (4)  and ( 3 )  can be evaluated by the stationary- 
phase method. In this case the action S ( r ( r )  ) should be 
expanded in a series around a nontrivial extremum. In our 
case, the necessary condition for the existence of such an 
extremum, SS /Sr(r) = 0, reduces to a system of Euler-Lan- 
grange equations: 

';+sin Y cos O=j/2,  &-sin 0 cos v + ~ o / P ~ = o .  (6) 

Time-dependent solutions r,,(r) = {v0(r), Bo(r)}  follow 
from (6).  In order to write them explicitly, we note that the 
functional integration in (4)  under condition (5) has the 
result of selecting closed classical trajectories from among 
the solutions (6) .  A subsequent integration over r, singles 
out periodic orbits. The Green's function G( T) receives con- 
tributions not only from trajectories which have a period T 
but also from those which have a cycle T/n, where n is a 
measure of the number of crossings of the main orbit. We 
thus need periodic solutions of Eqs. (6 ) ,  r,,(r), on which 
S(r , , ( r )  ) has an extremum. As a result we find for G ( T )  

Here A, (T) is a quantity which is found by expanding 
the action S around an extremum in the small deviation 
p ( r )  = r ( r )  - r,(r),  equal to [det(d2/dr2+ v " ) ] - " ~ .  
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An important point in the calculation of A, is whether there 
are singular points on the periodic orbits. We thus first con- 
sider periodic solutions of (6).  They are of the form 

where vo(r)  and the basic period of the motion are deter- 
mined from the relations 

v d z )  v . ( P , )  

j dvD- '=r ,  T ( e , )  = 2 j dv D-', 
0 v- (E%)  

0 = { 2 [ & k - V ( 8 = 0 ,  V )  ] ) l h .  (9)  

Here Y+ (E, ), Y -  (E, ) are the turning points for the energy 
of the classical motion; the E, are defined as the roots of the 
equation 

This solution determines orbits which lie entirely on the 
axis and which have two singular points: turning points. The 
presence of two singular points leads to a factor of ( - 1 )" in 
A,,  in a manner reminiscent of the appearance of an addi- 
tional phase in a wave function because of the presence of a 
turning point in the ordinary WKB m e t h ~ d . ~  We can thus 
write 

x -[ 2i sin 
n n t c E h )  I -I 

The last factor in this expression stems from the null modes 
of the operator in the exponential function in (8). The corre- 

h 

sponding equation for the eigenvectors Qj (T)  is the same as 
the linear stability equation of a periodic trajectory: 

0 
2/pL + COS v0 ( T )  

(11) 
The periodicity of the potential in ( 11 ) gives rise to Bloch 
solutions: 

The quantities cj (E, ) depend on the energy of the classical 
motion and are called "stability angles." For the two inde- 
pendent solutions of ( 1 I ) ,  ose of the angles cj is zero and 
corresponds to the solution Qj = dr,(r)/dr; the second is 
nonzero and appears in ( 10). 

We write the last factor on the right side of (10) as the 
sum 

We then substitute A, into (7)  and calculate G(E) in 
(3).  The stationary-phase approximation in the integration 
over the time T leads to a condition which must be satisfied 
by the classical orbit for the given E,, and p: 

Summing over n, we then find the complete Green's function 
G(E). Its poles determine the Bohr-Sommerfeld quantiza- 
tion condition: 

V,(C.) 

2 j dvD+ ( e , - s )  T ( s k )  -yC (e.) (p+'/ , )  =ny ( 2 m f l ) .  
V-(@I,) 

(13) 

Let us calculate the stability angle for the case j = 0. We find 
the energy levels E,, (E,, and E, are normalized to 2E, ) for 
a potential V(Y, 6)  with a relief which has minimum at the 
point 6 = Y = 0 ( j  = 0) .  Equation (12) remains un- 
changed, while Eq. ( 13) reduces to 

For a classical periodic solution Y,,(T) and a period T(E, ) 
we find from (9)  

YO ( T )  =2 arcsin [ x  sin (am T )  1 ,  T ( E , )  = 4 K ( x ) .  

Here am r is the amplitude of the (Jacobi) elliptic f ~ n c t i o n , ~  
and K(x )  and E ( x )  are elliptic integrals of respectively the 
first and second kinds. 

The stability equation follows from ( 1 1 ): 

To determine C(E, ) we need to examine the solutions of 
this equation which satisfy the condition 

0 (2+1') =eitB ( r )  . (16) 

If ~ ~ 0 . 9 ,  we can make use of the circumstance that the 
coefficients in the trigonometric series for the elliptic sine 
sn(x, r) are numerically small9 and replace the latter by the 
ordinary sine. We then find from ( 15) a Mathieu equation 
(x; = 1 - x2)  

The value of C(E, ) can be found easily by examining the 
semiclassical solutions of ( 17). The applicability of the se- 
miclassical approximation requiresX satisfaction of the in- 
equality 

nT la", 1. (18) I / K  ( x )  [a'-8n2f sin2-- 2K ( x )  

This condition can be satisfied even at 8, < 1/2. The change 
of variables T-+ 2 K ( x ) x / ~  reduces Eq. ( 17) to a standard 
form with coefficients having a period of rr: 

where 

n-a(o'-4n'f),  2b=-4anzfl  a= [ 2 K ( x ) / n ]  '. 

The angles <(E ,  ) are found by using some fundamental 
solution of ( 19). It is convenient to choose a solution which 
is determined by the initial conditions: 

By virtue of the periodicity of the potential, we can 
write B,(x) as a sum of Bloch solutions of the type 
exp(ipx)P(x), where P(x)  is periodic: P (x  + T) = P(x) .  
As a result we find 

386 Sov. Phys. JETP 67 (2), February 1988 A. A. Golub and 0. V. Grirnal'skil 386 



0.5 l. 0 I. 5 

FIG. 1. 

cos pn=Ot (n).  (20) 

Using the semiclassical approximation ( 19) as the Bloch 
solutions, we can determine a stability angle and its deriva- 
tive with respect to the period in the case x(0.9, working 
from Eqs. (16) and (20): 

Substituting (21) into (12) and (14), we find a system of 
algebraic equations, which can easily be solved by numerical 
methods. We introduce the quantities fmp , which measure 
the deviation of the spectrum from that of a harmonic oscil- 
lator: 

f mp=l- ( E ~ ~ S I )  l a m p ,  Wmp=y [ ( ~ + ' / 2 )  m+'/21, 

where amp are the energy levels of the harmonic potential for 
a potential well V(0, v) . Figure 1 showsfmp as a function of y 
for 0' = 6. It can be seen from this figure that with 
m = p = 4 and y = 0.5 the anharmonic effects amount to 
=: 13%. We note, however, that the number of levels, n, is 
usually small," and for y = 0.5 we would have m z 5 ,  as 
follows from expression (29) below. The curves in Fig. 1 
terminate in accordance with the condition ~ 6 0 . 9 .  The 
point at which each curve terminates essentially tells us the 
value of y for which the given level is one of the last possible 
levels in the V(8, v) potential well. 

In the case ~ 2 0 . 9 ,  we can use a perturbation theory in 
the parameter x: = 1 - x2 4 1. From ( 15) we then find 

The potential in this equation, u ( r )  = - (2 - x: )/ch2r, is 
continued periodically from the interval { - T ( E ~  )/4, 
T ( E ~  1/41 (Fig. 2).  

Using the method described above for the Mathieu 
equation, we write the stability angle in terms of those solu- 
tions of this equation which satisfy the boundary conditions 

As a result we find 

cos [ f (Ek) 121 =0i (7'14). (23) 

The solution 8, (7) is given by8 

where the constants A and B are found from the given initial 
conditions, 

and the spherical Legendre functions P: are expressed in 
terms of the hypergeometric function: 

P," (th T) 

(25) 
Near the saddle point of the potential V(0, v) the period 
T(ek is large. Making use of this circumstance, we substi- 
tute expression (25 for T = T/4 and the corresponding 
expression for P: ( - th 7) into (23), and we find the stabil- 
ity angle {(E, ) : 

Retaining small terms on the order of x: lnx,, we find from 
(26) 

where Zi = a2 - 2. 
Equations (26) and (27) also hold for f lL  > 1/2 (but 

0, < 2). The only restriction is the requirement x: <E,. For 
values of f l ,  close to 2, the stability angle decreases, and if 
we formally set f l ,  > 2 this angle becomes imaginary. The 
reason is that the classical periodic trajectory looses its sta- 
bility, and there is a change in the relief of the potential ener- 
gy V(0, v ) .  

Using (26) and (27), we find the following equation 
from our basic quantization equations, ( 12) and ( 14): 

Here 

In deriving (28) we assumed 

E ~ = E ~ ~ + E ~ ' ,  ehr= ( R , ~ / E ~ )  y (ptt12) In (41%) <I. 

The last inequality imposes a restriction on the numbers p. 
From (28) we find that the total number of levels, m, is on 
the order of the greatest integer in m,, (i.e., m z  [m,,]), 
where 

FIG. 2. 

387 Sov. Phys. JETP 67 (2), February 1988 A. A. Golub and 0. V. Grimal'skil 387 



We solve Eq. (28) in the two limiting cases 

a) ( y / 2 ~ ~ )  In ( 4 / ~ , )  e N ~ 1 ,  b)  N < 1 .  (30) 

In case a) we find the following expression for the energy 
levels E,, ,~ : 

ern,- 1% (p+'l,) yeo-'126 (1 -a) [In (816'") ] -', (31) 

where 

S = 2nFolm - mol/(p + 1/2) (1 

(i.e., m is equal to or close to [mo] ), 

a = 2[ln ln (8/S'I2) ] [ln(8/S'I2) 

+ In ln(8/6'12) - 11 - I .  

In limit b) we have ( y  is small) 

&rnp-l= (pf '14 ~ ~ ~ - ' / ~ 6 ~  (I-ao) [ln (64/tj0)] -'. (32) 

Here 

So = 2aylm - mol 4 1, 

a, = [In ln(64/S,)] [1n(64/S0) 

+ In ln(64/S0) - I]- ' .  

The first terms on the right sides of (3 1 ) and (32) corre- 
spond to the energy spectrum of a harmonic oscillator which 

is oscillating around a saddle point of the potential V ( 8 ,  v ) .  
They determine the energies of fluctuations which are trans- 
verse with respect to the classical orbit. 

We wish to thank Yu. N. Ovchinnikov for a discussion 
of this work and for critical comments. 
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