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The mechanism for magnetic ordering near the surface of a 3d metal is analyzed in the periodic 
Anderson model. A simple criterion for the occurrence of antiferromagnetic order in a bulk 
sample is given. A numerical solution of the self-consistent equations (in the approximation of a 
very simple Fermi-liquid closure) shows that there may be either a surface magnetism or "dead 
layers" at the surface of a metal, depending on the parameter values. A criterion for choosing 
between the two situations is given. When the jump parameter is relatively large, an 
antiferromagnetic order with hyperstructures of a fold type may occur. The onset of magnetic 
order in thin films is analyzed (assuming a constant Fermi energy). 

1. INTRODUCTION 

Advances in experimental capabilities have recently at- 
tracted much more research interest to situations in which a 
surface and surface layers play a decisive role in determining 
the properties of a sample. Of particular interest here are 
thin films and other stratified systems. Two approaches are 
ordinarily taken in the theoretical work on the electron 
structures of metal surfaces and other stratified systems. The 
first approach is based on a density-functional method and 
requires lengthy numerical  calculation^.'-^ The second ap- 
proach presupposes the use of model Hami l ton ian~ ,~-~  in the 
construction of which one focuses on only some small frac- 
tion of the interactions which play the most important role in 
the description of phenomena of the given class. The calcula- 
tions are greatly simplified in this second approach, and the 
qualitative picture of the phenomenon is still conveyed cor- 
rectly. 

Foremost among the models which successfully de- 
scribe the magnetic properties of 3d transition metals and 
their compounds are the Hubbard model and the periodic 
Anderson model. The Hubbard Hamiltonian incorporates 
only direct transitions between d states in the absence of an s- 
type conduction band, so the width of the d level tends to- 
ward zero with decreasing value of the jump parameter.' 
The periodic Anderson model is based on the idea of hybrid- 
izing pure s- and d-type bands, so the renormalized param- 
eters which are found for the quasilocalized d electrons con- 
tain contributions determined by the interaction with s 
electrons. In particular, an intrinsic width of the d level, 
which does not depend on the jump parameter, appears. The 
Anderson model thus presupposes that the coupling of the d 
and s electrons at a site is comparatively strong, while the 
coupling between d electrons in different sites due to the 
d-s-d interaction is relatively weak. A situation of this sort 
arises with decreasing distance between impurities in the or- 
dinary Anderson model.%ne should first const- L uct reso- 
nant d states having a finite width (as in Anderson's model 
of an isolated impurity) and the consider the interaction 
between different atoms. A characteristic parameter useful 
for assessing the plausibility of a model is the ratio V/T, of 
thejump integral V to the width of the d level, r. A relation 
V/T 5 1 is assumed. More precisely, this theory has a solid 
basis under the conditions lE,, - I/r> V / r  and U/ 
r> V/T, where U is the Coulomb repulsion of the d elec- 

trons which are localized at a site, E, is the energy of the 
unperturbed d level, and E, is the Fermi energy. This cir- 
cumstance constitutes an important distinction between the 
periodic Anderson model and the Hubbard model, which 
was used in Ref. 6, where it was pointed out that the surface 
influences the magnetic properties of the layers near the sur- 
face by virtue of the decrease in the number of geometric 
neighbors. Borman et al. made some definite assumptions, 
which limit the application of that study to weakly magne- 
tized samples. In real 3d metals, the parameters of the An- 
derson model are given in order of magnitude by U, 
JE, - E,I -6-10 eV, V, and r- 1 eV (Refs. 9and lo) .  It is 
thus natural to assume U> Vand IE, - E,/ > V, as we do in 
the present paper, in contrast with the approach taken by 
Borman et al.' who studied the behavior of systems which 
are approximately paramagnetic, with small values of U. 

In the present paper we study the magnetic properties of 
surfaces and films in the stratified approximation on the ba- 
sis of the periodic Anderson model. As in Ref. 6,  we use the 
linear approximation in the exact self-consistent equations. 
We derive a condition for an instability of the paramagnetic 
state with respect to ferromagnetic and antiferromagnetic 
ordering. In the linear regime we study the transition from 
the surface to the interior of a sample for an arbitrary type of 
magnetic order. We use the initial nonlinear equations to 
carry out an exact numerical calculation. The results of this 
calculation show that near a surface the magnetic moment 
may either decrease (to the point of the formation of "dead 
layers") or increase (a  surface magnetism). We derive a first 
simple semiempirical condition for the occurrence of one 
situation or another. We compare the results of the numeri- 
cal solution with the results found in the linear approxima- 
tion. We show that the linear approximation corresponds to 
the numerical solution at small values of Vin the interior of 
the sample. At large values of V( V/T - 1.5), the equations 
have many solutions, mostly antiferromagnetic, including 
some with magnetic hyperstructures of a fold type (a  break- 
down of antiferromagnetic order in a single layer). 

2. EQUATIONS FOR THE GREEN'S FUNCTIONS; THE LINEAR 
APPROXIMATION 

In the transition metals of the iron group, the energy 
spectrum can be approximated well by a model of two bands 
corresponding to 3d and 4s atomic electrons. In describing 
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stratified structures in 3d metals, we thus start from the 
equations for the matrix elements of the Green's function of 
the periodic Anderson model": 

where the index i specifies the site in the crystal lattice, and k 
is the quasimomentum of the electron in the s band. The 
diagonal elements Eii are interpreted as the energies of d 
electrons which are localized at site i; the nondiagonal ele- 
ments, E,,, describe jumps of d electrons from one lattice site 
to another. The quantities V,  and V,, are treated as seed- 
band hybridization potentials. All the quantities which ap- 
pear in the equations are diagonal in the spin indices; to 
streamline the notation, we will omit these indices. For the 
matrix elements g,,, we find the closed equation 

l@--Ei(O) lk!ii. ( O )  - ~ ' ~ ~ ( Y ) 8 . , i . ( @ )  = * i t , .  (1)  
i l  

The energy of a d electron, E,, and the transition integrals 
Ci, contain contributions from an s-d interaction: 

The energy levels E, have an intrinsic width J?, which is 
determined by s-d hybridization effects: 

An iterative solution of system of equations ( 1 ) leads to 
the following expression for the function g, : 

For a metal with a bcc lattice, and with a d-d interac- 
tion within a single coordination sphere, the series for the 
mass operator ui is cut off at the first term. For homogen- 
eously ordered ferromagnetic and antiferromagnetic sam- 
ples we find 

Here V is the integral representing jumps between nearest 
neighbors, which is assumed to be independent of the spin a 
and the frequency w.  Similar expressions for ucan be written 
for other types of lattices, e.g., an fcc lattice, but they are 
considerably more complicated even when the interaction of 
d electrons within the first coordination sphere is taken into 
account. 

The energy of a d  electron with a spin projection a must 

be determined self-consistently in the spirit of the Fermi- 
liquid the~ry ," , '~  along with the occupation numbers of the 
electron states, na. In a case in which the kernel of the Fermi- 
liquid approximation is approximated by a single constant 
U, the self-consistency condition becomes 

The parameter U is phenomenological and is not associated 
with the restrictions imposed by the Hartree-Fock approxi- 
mation.I3 This approximation is the simplest one; it does not 
describe effects such as the Kondo effect.14 Finding a de- 
scription of such effects in a stratified sample is an indepen- 
dent and significant problem. 

The density of d states with a definite spin projection is 
expressed in terms of the imaginary part of the Green's func- 
tion. It is the sum of two Lorentzian functions centered at 
E a  +_ 2"'K In the case of a ferromagnetic order, the two 
lines have the same amplitude. States with different spin pro- 
jections are displaced an amount UM with respect to each 
other, where M is the magnitude of the magnetic moment. 
For an antiferromagnetic material, the positions of the Lor- 
entzian lines corresponding to different values of a are the 
same, but their amplitudes are different (Fig. 1). 

We now consider the simplest inhomogeneous state: a 
stratified state in which the magnetic moments of the atoms 
are identical in the same layer and change from one layer to 
another. An inhomogeneity of this type arises, for example, 
because of an absolutely smooth boundary of a sample. In 
this case the energy of a d electron in layer i differs from the 
energies in the preceding and succeeding layers, so that mass 
operator o, changes: 

Assuming that the deviations from homogeneity (para- 
metric, ferromagnetic, or antiferromagnetic) are slight, we 
restrict the analysis to the approximation linear in An in the 
equations for the occupation numbers. Denoting by A, the 

FIG. 1. State densities of d electrons localized at a site of interest. a,& 
For the ferromagnetic state; c-the antiferromagnetic state. 
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energy shift for a d electron with respect to the energy in a 
homogeneously ordered sample, we find the following sys- 
tem of equations for the linear approximation: 

The upper sign in this expression corresponds to a ferromag- 
netic ground state, and the lower sign to an antiferromagnet- 
ic ground state. The coefficients A and B are given by 

in the case of ferromagnetism and 

where W =  [ ( E a  - E - a ) 2  + 32V2] 'I2, for an antiferro- 
magnetic state. 

Equation (2) has a simple physical meaning: A pertur- 
bation of the occupation numbers of the electron states of a 
selected atom results from both a change in the state of the 
electrons which are localized at the same atom and which 
have the opposite spin [the first term on the right side of Eq. 
(2)  1 and the electrons which are localized at neighboring 
atoms (the second term). In the linear approximation, the 
state density is again written as the sum of two Lorentzian 
functions, although the positions of the centers of these func- 
tions and their amplitudes are not the same as the corre- 
sponding quantities in the homogeneous case. 

We seek a solution of Eq. (2)  in the form 

A,"=C,q'. 

For the quantities q we then find 

where 

in the ferromagnetic case and 

in the antiferromagnetic case. 
For real values ofz such that JzJ > 2, there exist two real 

roots q which correspond to an exponential growth and an 
exponential decay of the magnetic moment with distance 
into the sample (with increasing j). The increasing solution 
must be discarded if there is only a single surface. For values 
1.~1 < 2 there are two complex roots, which correspond to an 
oscillatory profile of the magnetic moment in the layer with 
distance to the surface of the sample. In this case we can 
speak of the formation of a long-range order in the layered 
structure. Complex values of z describe oscillations of the 
magnetic moment which decay with distance into the sam- 
ple. 

If the homogeneous state is paramagnetic, the quanti- 
ties A g, A :, and B $, B 2 are identical and do not depend on 
the spin projection a. The value q = 1 corresponds to an 
instability of the paramagnetic state with respect to ferro- 
magnetic ordering. In this case we have 

Substituting expressions (3)  into ( S ) ,  we find the usual 
Stoner condition. 

wherep(~,) is the state density at the Fermi level. An insta- 
bility with respect to a transition to an antiferromagnetic 
state arises at q = - 1. In this case we have 

Using the explicit expressions [ (3)  and (4)  ] for A and B, we 
find 

where AN is the difference between the occupation numbers 
of the sublevels into which the d level splits because of the d- 
d interaction. The denominator in (6)  contains the energy 
separation of the two split sublevels. 

The conditions which have been found for a ferromag- 
netic ordering, ( 5 ) ,  and for an antiferromagnetic ordering, 
(6),  become clear when we examine the energy spectrum of 
the d electrons. In the case of a paramagnet-ferromagnet 
transition, two mechanisms acting to perturb the amplitude 
of the Lorentzian profiles of the state density of the d elec- 
trons localized at a site of interest cancel out. These mecha- 
nisms are that caused by the effect of d electrons localized at 
the same site and that caused by the effect of d electrons 
localized at neighboring atoms. With increasing interaction 
U, a state in which the state-density curves corresponding to 
opposite values of the spin projection are shifted with respect 
to one another becomes preferred from the energy stand- 
point. At the transition from the paramagnetic order to an 
antiferromagnetic order, on the other hand, the shifts in the 
positions of the state-density peaks cancel out, while the en- 
ergy benefit is achieved thanks to a transition of electrons 
from one sublevel of the d level to the other. 

The linear approximation makes possible a correct de- 
scription of the behavior of the magnetic moment in the case 
in which the system is not far from any homogeneous state 
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TABLE I. The magnetic moment M, and the number of d electrons, No, in a homogeneous 
sample and deviations from the homogeneous state in the surface layer and in the following 
layers [x = (E,, - E,)/T, y = U/T]. 

(paramagnetic, ferromagnetic, or antiferromagnetic). 
However, this approximation is not sufficient for describing 
the surface layers, where the perturbation of the magnetic 
moments may be pronounced. A calculation of the magnetic 
moments of the surface requires an exact solution of the self- 
consistent equations. 

3. RESULTS OF AN EXACT CALCULATION FOR A 
NONUNIFORMLY MAGNETIZED METAL 

To solve the problem of the distribution of magnetic 
moments in a stratified magnetic material, we need to deter- 
mine the occupation numbers n: of the electron states in 
each layer. For interior layers, the values of ns can be found 
from the system of equations 

? 

Here thexi''' are determined by the roots of the denominator 
of the Green's function g,, , which in our case is a polynomial 
of third degree in w,  and the Cji' are the coefficients in the 
decomposition of the Green's functions into simple frac- 
tions. The equations for the surface layer is similar to ( 7 ) ,  
but since the atoms of this layer contain only four neighbors 
in the first coordination sphere the quantities x;" are found 
from a quadratic equation. 

In the numerical calculation of the magnetic moments 
in thin metal films and near the surface of a metal, the fol- 
lowing algorithm was used. The first step is to find the occu- 
pation numbers of the electron states corresponding to the 
uniformly ordered sample. These occupation numbers are 
used as an initial approximation for the subsequent calcula- 
tions. The values of the magnetic moment and of the number 
of electrons in the next approximation are then determined 
in succession, beginning with the surface layer. To find the 
occupation numbers in layer i, we need to specify the ener- 
gies in layers i - 1 and i + 1. For Ei- , we use the value 
found immediately before this value, and for Ei + , we use the 
value of the preceding approximation. This procedure is re- 

peated until the magnetic moment and the number of elec- 
trons in each layer stop varying. A method of this sort for 
finding self-consistent solutions does not guarantee the 
uniqueness of the solution, so different magnetic structures 
may be found for given parameter values, depending on the 
initial homogeneous state. 

Table I shows values of the magnetic moment and of the 
number of d electrons [ M = S ( n + - - n p ) ,  N = S ( n f  
+ n-  ) ] in the interior of the sample, along with the ratios of 

the magnetic moments and the numbers of electrons at the 
surface layer and in the next layer in the case of a ferromag- 
netic order, for various values of V / T .  The other parameter 
values were taken to be x = (E, - E ~ ) / T  = - 10, y = U /  
r = 10; 12. The magnetic moment of the surface layer may 
be substantially greater than the value in the interior of the 
sample (the near-surface rnechani~m'.'~), but it may also be 
smaller ("dead layers" at the surface of a metal"), accord- 
ing to the calculations. The decrease and increase in the mag- 
netic moment at the surface are determined by the position 
of the Fermi level with respect to the state-density curve. We 
suggest the following simple criterion: If the Fermi level lies 
between the centers of gravity of the d levels with opposite 
spin projections (Fig. la) ,  the magnetic moment of the sur- 
face atoms increases. The point is that the surface atoms 
have fewer neighbors than the interior atoms, so there is an 
effective decrease in the hopping parameter V. Consequent- 
ly, the distance between the sublevels of the d level of the 
electrons with each of the spin projections decreases. The 
number of electrons with the predominant spin direction be- 
comes even greater, while the number with the opposite spin 
decreases. If the centers of the d levels lie below E ,  (Fig. 1 b), 
the number of electrons will increase in both sublevels with 
decreasing V. However, because of the difference in the den- 
sities of the states with the different spin projections at the 
Fermi level, the resultant moment decreases. This semiem- 
pirical criterion is confirmed by an analysis of all the data 
obtained, in particular, the data shown in Table I. In real 
samples, the parameter V  may also change as a result of a 
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FIG. 2. Formation ofthe magnetic moment near the surface. Transition to 
the linear regime ( i  is the layer number). 

reconstruction of the lattice or under the influence of ad- 
sorbed atoms. In this case the criterion must be reformulat- 
ed. The perturbation of the magnetic moment even in the 
second layer is considerably smaller than that in the first, so 
the effect of the surface usually extends to only a few atomic 
layers. Despite the rapid decay of the quantity AMi 
= Mi - M,,, one can verify that in several cases the linear 
approximation correctly conveys the picture of the pertur- 
bation of the magnetic moments. With x = - 10, y = 10, 
and V / r  = 1.3, for example, we find, in the linear approxi- 
mation of damped oscillations, 

It is this behavior, with a change in the sign of the per- 
turbation after every other layer, that is found in the exact 
solution. 

There are parameter values for which the effect of the 
surface is felt down to 10 or 20 atomic layers. Figure 2 shows 
the quantity q, = A M , / M , - ,  as a function of the layer 
index i for one such case ( x  = - 10, y = 10, and V /  

= 1.6). The dashed line shows the linear approximation. 
Corresponding results could be found for an antiferromag- 
netic ground state. 

With increasing V / r ,  the effect of neighboring atoms 
on the magnetic moment of an atom of interest increases. It 
turns out that the deviations from the homogeneous state are 
not small, so the linear approximation does not describe the 
magnetic order. The nonuniform magnetic structures which 
arise in this case have a typical size ranging from a few atom- 
ic distances to some tens ofatomic distances. In several cases 
the magnetic moment of an atom in layer i is not determined 
unambiguously by the preceding layers, and several magnet- 
ic structures can exist simultaneously in a sample. One of 
these structures-a fold superposed on antiferromagnetic 
order-is shown in Fig. 3. 

The effect of the surface on the magnetic properties 

FIG. 4. Distributions of the magnetic moments and of the number of d 
electrons in films of various thicknesses. Here Zis the number of layers in 
the film; x = - 10, y = 10, V / T  = 1. 

turns out to be particularly strong in thin metal films consist- 
ing of a few atomic layers. In this case, the magnetic mo- 
ments are acted upon by both surfaces simultaneously, and 
they differ greatly from the corresponding values in a bulk 
sample. Figure 4 shows the distributions of the magnetic 
moments and the number of electrons for films of various 
thicknesses. We see that the behavior of the magnetic mo- 
ments near the surface of a thin film is quite different from 
that in the case of a semi-infinite metal. A change in the 
occupation numbers in the electron states may lead to a shift 
of the position of the Fermi level from that in a bulk sample 
and to a change in the very nature of the magnetic order. In 
this case the Fermi level is assumed to be fixed. 

It is interesting to compare the results calculated for 
real materials on the basis of the theory derived here with the 
data found by other approaches, in particular, the density- 
functional method. The density-functional method was used 
in Ref. 1 to study the distribution of magnetic moments in an 
iron film consisting of seven atomic layers. The data from 
that calculation are shown in Table I1 along with results 
found in the present theory on the basis of the periodic An- 
derson model. The parameters describing the d electrons in 
iron correspond to those used in Ref. 9. The behavior of the 
surface layer is the same in the two approaches. There is a 
substantial increase in the magnetic moment. This result 
agrees well with experimental results on the photoelectric 
effect of polarized electrons. '79'8 The second layer has a mag- 
netic moment M, smaller than that of the first or third. In 
Ref. 1, however, the value ofM, was larger than the moment 
in the interior of the sample, while in our case it turns out to 
be smaller. On the whole, there is a fairly good agreement 
between the two calculations. 

TABLE 11. Results calculated for the magnetic mo- 
ments in an a-Fe film consisting of seven layers 
( X  = - 11, Y = 13, V/T = 0.9). 

Mi. PB Mi! Irg 

(present theory) 

FIG. 3. Fold superposed on antiferromagnetic order for the case 
x = - 10, y = 12, and V / r  = 1.2. The plus and minus signs correspond 
to different directions of the spin projection. 
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We have not taken up the temperature dependence of 
the properties of stratified systems. Such an analysis would 
present some further difficulties since it would be necessary 
to deal with the temperature-induced shift of the Fermi lev- 
el. The position of the Fermi level is determined by the re- 
quirement that the total number of electrons remain con- 
stant. It can be dealt with accurately only for a metal with a 
relatively small number of s electrons. 

We are sincerely indebted to V. P. Silin for a discussion 
of these questions. 
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