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An investigation is made of the solutions of the time-dependent Ginzburg-Landau equations near 
the boundary between a superconductor and a normal metal under current flow conditions. The 
current-voltage characteristics of SNand SINjunctions subjected to high-frequency illumination 
are derived. The results are compared with experimental data. 

1. INTRODUCTION the order parameters at the superconducting edges is gov- 

Siyuan Han et al.' reported recently their discovery of 
an anomalous Josephson effect at a point contact between 
niobium and a superconductor containing heavy fermions. 
The effect was unusual because it persisted up to tempera- 
tures - 8 K, although the heavy-fermion compounds inves- 
tigated were characterized by Tc 5 1 K. The observed effect 
consisted of the presence of kinks in the current-voltage 
characteristics, resembling the Shapiro steps. The distance 
between the kinks satisfy the usual Josephson relationship 
& = 2 eV. In the absence of illumination the current-vol- 
tage characteristics were nonlinear and exhibited a critical 
current Jc (the differential resistance in the range J <  J, was 
low). The temperature dependence of J, resembled the tem- 
perature dependence of the critical current of Josephson 
junctions. 

A similar effect was observed later2 for a Ta-Mo con- 
tact at T-3.5 K, which was considerably higher than TcM, 
-0.9 K. This led to the hypothesis that the anomalous effect 
is not due to exotic properties of heavy-fermion compounds, 
but is common to all conductors. The effect was observed in 
Refs. I and 2 at temperatures much higher than the super- 
conducting transition temperatures of Mo and UBe,,, so 
that the properties of the superconducting state of these sub- 
stances were unimportant. Therefore, we shall consider a 
contact between a superconductor and a normal metal char- 
acterized by T, = 0. 

The anomalous Josephson effect had been observed also 
As pointed out, this effect can be due to the forma- 

tion of a conventional Josephson weak link inside a super- 
conducting point due to a reduction of its thickness or to 
chipping. The authors of Refs. 1 and 2 were of the opinion 
that this was avoided in their experiments. Consequently, we 
shall ignore this possibility, although it can explain the ex- 
perimental results. 

The phenomenon in question is clearly associated with 
the proximity effect since the superconducting order param- 
eter is induced in a normal metal near its interface with the 
superconductor. The authors of Refs. 1 and 2 are of the opin- 
ion that the application of a potential to a contact creates a 
transient Josephson effect between the superconductor and 
that part of the normal metal where the superconducting 
order parameter is induced. However, this interpretation of 
the effect seems to us too simplistic. In the case of the con- 
ventional transient Josephson effect the time dependence of 

erned only by their potential: $,,, -exp( - i,u,,,t). The dif- 
ference between the phases $, and 11, is a linear function of 
time which necessarily leads to a time-dependent voltage 
across the contact. In the case of the proximity effect the 
phase of the order parameter induced in a normal metal is 
governed by its phase in the superconductor. The voltage 
across a contact may then be independent of time. 

We shall try to account for the experimental results of 
Refs. 1 and 2 using the time-dependent Ginzburg-Landau 
equations. We shall consider the cases of superconductor- 
insulating layer-normal metal (SIN) and superconductor- 
normal metal (SN) contacts. We shall obtain the solutions 
of the equations and also the current-voltage characteristics 
of the contacts in the presence of a constant current and 
high-frequency illumination. 

2. MODEL 

Since the microscopic system of transport equations for 
a superconductor is extremely complicated the task of inves- 
tigating the superconducting state near an interface between 
a superconductor and a normal metal by means of this sys- 
tem is very difficult, and quite possibly insuperable. We are 
thus faced with the selection of a model which describes sat- 
isfactorily the physical phenomena which occur at the S N  
interface. We shall use the time-dependent Ginzburg-Lan- 
dau equations. These equations were first derived in Ref. 5 
for superconducting alloys with a high concentration of 
paramagnetic impurities when there is no superconducting 
gap. In this case the equations are valid at any temperature. 

We shall assume that near the S N  interface the concen- 
tration of paramagnetic impurities is high both in the super- 
conductor and in the normal metal. In the case of such a 
contact the time-dependent Ginzburg-Landau equations 
are undoubtedly valid. In the experiments reports in Refs. 1 
and 2 there were no paramagnetic impurities. The effect was 
observed at temperatures well below the critical value and at 
voltages V 4  A, when there are no quasiparticle excitations in 
the superconductor and the phenomena associated with the 
proximity effect occur in the normal metal. The order pa- 
rameter of the normal metal decreases rapidly away from the 
interface, so that the situation is effectively of the zero-gap 
type. Therefore, the use of the equations for zero-gap super- 
conductors seems to be physically justified. 

The time-dependent Ginzburg-Landau equations for a 
high concentration of paramagnetic impurities are5 
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(the notation is taken from the original paper). For simpli- 
city, we shall assume that the situation is one-dimensional. 
Since a consistent description of the experimental results re- 
quires three-dimensional equations, qualitative results can 
be obtained by solving the one-dimensional problem. The 
relationship between the measured experimental quantities 
and the one-dimensional problem will be discussed later. 

We shall rewrite the system ( 1 ) in the following dimen- 
sionless form: 

where 

1, x < 0 (in the superconductor) 
0 (x) = - ~ 2 ,  x > 0 (in the normal metal) 

andr2 = T2/(T: - T2) .  In writing down the system (2)  it 
is assumed that the critical temperature is Tc for the super- 
conductor and zero for the normal metal, but all the other 
parameters of both are the same. In the presence of a high 
concentration of paramagnetic impurities, we have u = 12 
(Ref. 5).  In our system of units, the critical current in the 
superconductor is jc = 2/33/2~0.385.  

The system of equations (2 ) should be supplemented by 
a boundary condition at x = 0. If between the superconduc- 
tor and the normal metal there is no insulating spacer (i.e., if 
we are dealing with an SN contact), then the boundary con- 
ditions specify continuity of $, $', and p at x = 0. The 
boundary conditions in the case of an SIN contact will be 
derived in Sec. 4. 

3. SUPERCONDUCTOR-NORMAL METAL CONTACT 

It is known that when the current flows through a nar- 
row superconducting channel, a resistive state in the form of 
a phase-slip center may exist. A phase-slip center appears in 
a certain range of currents j, < j < j, and for u = 12, we have 
j, ~ 0 . 2 8 4  andj, ~ 0 . 2 9 1  (Ref. 6).  We shall now consider the 
possibility that a similar time-dependent solution exists near 
a superconductor-normal metal (SN) interface. 

We shall assume that near the SN interface the critical 
temperature varies slowly with distance. Then a phase-slip 
center exists for an arbitrary current j< j , .  In fact, 
j1,2 (6)  K 6 'I2, so that in the case of a slow variation of 6(x) ,  
there is always a fairly wide range where j , ( 6 )  < j< j2 (6 ) .  
However, in the case when T, changes abruptly at the inter- 
face, it is difficult to determine a priori whether a time-de- 
pendent solution exists. Time-dependent solutions can exist 
only in that range where the nonlinear terms of the system 
(2)  are large. Hence, it seems justified to seek time-depen- 
dent solutions in the case of an SN contact also at T = 0 

when the order parameter penetrates deepest into the nor- 
mal metal. 

We carried out numerical integration of the system (2) 
for u = 12 in order to find the transient solutions near the 
boundary. It was found that the static solution was stable 
right up to the current j = j, (u) .  No periodic time-depen- 
dent solutions near the contact were found. Arbitrary initial 
perturbations reduced to a single steady-state solution al- 
though in the case of a similar calculation for a pure super- 
conducting channel it was found that there were phase-slip 
centers in the range of currents j, < j < j, .6 We recall that the 
experimental situation corresponded to the case o f j g  j,. 

For the sake of completeness, we shall give numerical 
results for currents of the order of the critical value. It was 
found that forj-0.1-0.2 the electric field penetrates into the 
superconductor. I f j  = j, (u) ,  the domain wall separating the 
superconducting and normal phases becomes detached from 
the contact. If j >  j, (u) ,  the wall moves into the supercon- 
ductor at a constant velocity leaving behind a region charac- 
terized by tC, = 0 (Ref. 7 ) .  In other words, the superconduc- 
tivity is destroyed also in the region where z < 0. 

In the case of an SN contact the chemical potential is 
continuous at the boundary and its absolute value increases 
without limit inside the normal metal. Therefore, we shall 
define here the voltage at a contact to be 

V=- lim [jx3-p ( x )  I .  
x-+- 

Figure 1 shows a numerically calculated dc current-voltage 
characteristic. The negative values of the voltage V corre- 
spond to penetration of the electric field into the supercon- 
ductor at currents of the order of the critical value. It is 
found that the current-voltage characteristic of an SN con- 
tact subjected to illumination (when the current oscillates at 
a constant frequency near its average value jO) does not have 
kinks. 

We shall consider the situation when jg 1 and T = 0. In 
this case a dc current-voltage characteristic can be found 
analytically. For j  = 0 the solution of the system ( 2 )  is of the 
form 

th (ln (13-2'") -x/2"), x<O 
$= {  2'"/ (x+2), x>o ' (4)  

When a small current flows across the contact, the solution 
changes significantly only in the range of positive values 

FIG. 1. Current-voltage characteristics of an SNcontact under constant- 
current conditions ( u  = 12) .  
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x >  1 [$(x) is small]. Therefore, Eq. (4 )  remains valid near 
the interface. 

We shall transform the variables in Eq. (2)  as follows: 

The system ( 2 )  expressed in terms of the new variables is 

We can see that ifx > 0 (x ,  > 2j1/3), there is no curt'ent in the 
system (6) .  At low values 2j1I3 < x , <  1, the solution of Eq. 
( 6 )  should reduce asymptotically to Eq. ( 4 ) ,  which can be 
rewritten in the form 

$1=21h/~1, pl=O for 2j'"<xt. ( 7 )  

In the case of high values of x ,  < 1, the solution has the 
asymptotic form 

At distances x ,  - 1 there is a change from the asymptotic 
form of Eq. ( 7 )  to Eq. (8 )  and the superconducting current 
is transformed into the normal current. In terms of the old 
variables this corresponds to distancesx -j'/3. The results of 
a numerical solution of the system (6 )  subject to Eq. (7)  are 
plotted in Fig. 2. At large values of x , ,  we find that p ,  
Z C  - x, . If u = 12, then C z  1.46. Going back to the old 
variables, we find that p is described by 

The voltage across the contact is 

We recall that the voltage V is understood here to be the 
quantity defined by Eq. ( 3 ) .  A comparison of Eq. ( 10) with 
the results of numerical calculations shows that the above 
expression is quite accurate right up to currents j-0.1-0.2. 

4. SUPERCONDUCTOR-INSULATOR-NORMAL METAL 
CONTACT 

The experiments reported in Refs. 1 and 2 were carried 
out on a point contact when the coupling between the nor- 
mal metal and the superconductor was weak. We can distin- 
guish then two cases: an insulating (oxide) spacer or the 

FIG. 2. Solution of the system of equations (6)  together with Eq. (7 )  
obtained for u = 12. 

presence of a certain number of microcircuits of size small 
compared with f .  Qualitatively, these two cases yield the 
same results. We shall consider specifically the case with an 
insulating spacer (representing a region with a low conduc- 
tivity). 

The boundary c~ndi t ions  can be derived by going back 
to the dimensional equations of the system ( 1 ) and assuming 
now that the conductivity u is a function of the coordinates. 
The size of the insulating spacer is taken to be a <f .  Outside 
the spacer we have u = uO,  whereas inside it we find that 
u < u o .  We shall use S a n d  N to identify the quantities near 
the spacer but in the superconductor and in the normal met- 
al, respectively. 

Since a < f ,  it follows from the first equation of the sys- 
tem ( 1 ) that 

which gives 

Similarly, integrating the equation for the current, we obtain 

'ha 

~p~-vs=oopn' j E. 
-'ha ' 

The integral in the above equations is simply the total resis- 
tance R of the insulating layer. 

The boundary conditions of Eqs. ( 1 1 ) and ( 12) can be 
rewritten in a dimensionless form as follows: 

The dimensionless constant D is related to the resistance as 
follows: 

We can readily see that the boundary condition for the order 
parameter gives rise to the Josephson expression for the su- 
perconducting current across the contact 
j = j, sin(x,  - x,), where j, depends in the usual way on the 
contact resistance. 

It is found that under certain conditions we can obtain 
an approximate analytic solution of the system ( 2 )  subject to 
the boundary conditions of Eq. ( 13 ) . We shall assume that 
D< 1 (low-transparency barrier). As pointed out above, this 
hypothesis clearly corresponds to the experimental situa- 
tion. Then, in the superconductor near the interface there is 
a practically unperturbed usual superconducting state char- 
acterized by I$l = const. The chemical potential, which is 
zero in the superconductor changes abruptly at the interface 
to the value p ( + 0 )  = V. In the low-transparency case 
when D< 1 the chemical potential does not change signifi- 
cantly over distances x -  1, where the order parameter 
differs from zero. We can therefore assume that p = - Vis 
constant when x > 0. At  a moderately low temperature (all 
the assumptions will be expressed quantitatively below), in 
the case of a normal metal ( x  > 0 )  the term I$/'$ in the 
system ( 2 )  is small compared with rZ$ and can be omitted. 

The condition of validity of the above assumptions is of 
the form 
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In this case the equation for the order parameter can be writ- 
ten as follows: 

The only solution of Eq. ( 15) is time-independent. If V +0, 
then in the normal metal near the contact there are both 
superconducting and normal components of the current. 
The current-voltage characteristic is now nonlinear: 

DZ [ ( I S  ( ~ V / ' / f ~ ) ~ ) " - l ] "  
i O(V\=-. 

z,'Z [ I + ( U V / . ~ ~ ) ~ ] ~ ' ~  (16) 

A similar result for a film of a normal metal was obtained in 
Ref. 8. At low voltages we have j, = VD 2 ~ / 2 ?  and then at 
V, = 3'I2?/u the superconducting current has a maximum 
j, = D 2/2"2~, falling at high values of V proportionally to 
V- This fall is due to suppression of the order parameter 

of the a normal metal at high contact voltages. The current- 
voltage characteristic is strongly nonlinear for 

It should be pointed out that this condition is not related to 
the approximations used to write down the system ( 15), i.e., 
the current-voltage characteristic is significantly nonlinear 
when the condition ( 17) is obeyed irrespective of the valid- 
ity of the condition ( 14). However, in this case it is no longer 
possible to obtain the expression for the current-voltage 
characteristic from the simple system of equations ( 15). 

We can find the current-voltage characteristic of an il- 
luminated contact by assuming in the system ( 15) that Vis a 
function of time: 

V=Vo+A cos rot. (18) 

Then, the order parameter is described by 
+ o;l 

- 1000 - 500 0 500 1000 FIG. 3. Current-voltage characteristics: a)  experi- 
mental results (Fig. la in Ref. I ) ,  UBe,,/Nb, 
v = 25 GHz, T =4.17 K; b) theory, D'= 0.2, 
r = 0.4, A /ro = 14. 
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where J,  is the Bessel function and $,(, + ., (x)is the order 
parameter for a constant voltage across the contact amount- 
ing to V, + nw. Separating the constant component of the 
current. we obtain 

(exactly the same relationship between the current-voltage 
characteristic in the presence of illumination with the char- 
acteristic in the absence of illumination was obtained earlier 
in Ref. 9) .  

If the condition ( 17) is satisfied, then near V = 0 the dc 
current-voltage characteristic is nonlinear. It is clear from 
Eq. (20) that in this case the current-voltage characteristic 
in the presence of illumination remains nonlinear at VZ nu, 
by analogy with the Shapiro steps. The current-voltage char- 
acteristics obtained from Eq. ( 16) and (20) are compared 
with the experimental results in Fig. 3. We can see that the 
proposed model describes the main features of the current- 
voltage characteristic of a real contact. 

For the sake of completeness, we also carried out a nu- 
merical integration of the system (2)  subject to the bound- 
ary conditions ( 13) in the case of significant transparency of 
the barrier, when the condition (14) is not satisfied. It was 
found that in this case the condition is steady-state and the 
current-voltage characteristic is again close to the experi- 
mental results. 

We shall now summarize briefly the main results. 
In this model there are no time-dependent solutions 

near the boundary between a superconductor and a normal 
metal and the current-voltage characteristic is nonlinear. 

In the presence of illumination there are kinks in the 
current-voltage characteristics only in the case of an SIN 
contact (the current-voltage characteristic of an SIN con- 
tact is understood to be the dependence of the current j 
across the contact on the difference between the potentials at 
a barrier V). The distance between the inflections satisfies 
the usual Josephson relationship V = fiw/2e. In the experi- 
ments reported in Refs. 1 and 2 the critical current was 10- 
100 times less than estimated for such an Nb-Nb contact. 
Hence, the order parameter induced in UBe,, is small. In 
our model the ratio of the critical currents is of the same 
order of D, which gives 0-0.1-0.01. Therefore, our as- 
sumption that D is small is justified. 

We shall now consider the role of the three-dimensional 
nature of a contact. In the experiments of Refs. 1 and 2 the 

potential difference was measured not at the contact itself 
but at macroscopically large distances. Since the contact was 
of the point type, the potential in the normal metal rapidly 
reached a constant value. Clearly, an allowance for the 
three-dimensional nature of the real contact changes all the - 
dependences only slightly, but the results remain qualita- 
tively the same as before. The experimentally determined 
voltage is related to the chemical potential in the one-dimen- 
sional problem at a distance of the order of the contact size a. 

In the case of an S N  junction the chemical potential 
near the contact changes significantly at distances of order 6. 
Therefore, in the presence of several short circuits the scatter 
of their dimensions undoubtedly would flatten out the in- 
flections even if they were to appear in the current-voltage 
characteristic of a one-dimensional SN contact. An estimate 
obtained in Ref. 1 suggests that D <  1, i.e., that the junction 
should be regarded as an SINcontact. In this case the chemi- 
cal potential changes insignificantly in a distance of the or- 
der of 6 and the experimentally determined voltage corre- 
sponds to a discontinuity of the chemical potential at a 
barrier in the one-dimensional problem. 

It therefore follows that the experimental results" re- 
ported in Refs. 1 and 2 on the existence of kinks of the cur- 
rent-voltage characteristic of a point contact subjected to 
illumination can be explained also without assuming the ex- 
istence of time-dependent solutions at a contact. This con- 
clusion on the absence of time-dependent solutions near an 
interface in the one-dimensional case seems to us to apply 
also in the case of a three-dimensional contact. 

We would like to express our deep gratitude to L. P. 
Gor'kov and A. I. Larkin for the formulation of the problem 
and continuous interest, and to B. I. Ivlev, V. R. Kogan, and 
Yu. N. Ovchinnikov for their valuable discussions. 

I )  After writing the present paper we learnt of the experimental results 
reported in Ref. 10, in which an analogous effect was observed for Nb-Ta 
contacts. 
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