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The exact solutions of a differential equation for the order parameter are obtained for an 
incommensurate phase which forms because the coefficient of the square of the derivative in the 
thermodynamic potential is negative. These solutions describe an equilibrium state characterized 
by a certain ratio of the coefficients of the thermodynamic potential. Three types of solution are 
obtained, depending on the values of these coefficients. The first solution describes the properties 
of an incommensurate phase which are essentially the same as the incommensurate phase which 
appears in the presence of the Lifshitz invariant. In particular, a domain-like structure appears 
near the transition to the commensurate phase; this transition is of the second order and has some 
special properties. In the case of the second type of solution the transition to the commensurate 
phase gives clear indications that it is of the first order. The incommensurate phase described by 
the third type of solution has very unusual properties. In addition to a periodic part, the order 
parameter has a constant component. The influence of temperature on this phase seems to be the 
opposite to that on familiar types of incommensurate phase. It forms from the original phase as a 
result of a strongly nonlinear mechanism and near the transition its properties are those of a 
known incommensurate phase near the transition to a commensurate phase. The exact solutions 
are also obtained in the presence of an external stimulus coupled to the order parameter, which 
makes it possible to plot stimulus-temperature phase diagrams. Generalization of the method to 
the case of a thermodynamic potential of more complex nature is discussed. 

In discussions of an incommensurate phase on the basis 
of the Landau theory of phase transitions, we need to distin- 
guish two cases: those in which the symmetry of the system is 
such that the Lifshitz invariant can exist, and those in which 
the invariant is absent. Following Ref. 1, we shall call these 
incommensurate phases type I and 11. The majority of theo- 
retical treatments have been concerned with type I phases, 
although there have been several investigations of the type I1 
phase, to which attention was drawn in Ref. 2. We shall 
consider a type I1 incommensurate phase. Such a phase ap- 
pears in a number of substances, particularly in magnetic 
materials,24 ferroele~trics,"~ and liquid crystah6 

Reverting to type I incommensurate phases, we note 
that they have certain characteristics near the transition to a 
commensurate phase. In this case an important role is played 
by higher harmonics of the Fourier expansion of the order 
parameter and the structure represents a regular sequence of 
domains of comparable size.'.' The order parameter for the 
incommensurate-commensurate phase transition is unu- 
sual: the parameter is represented by the density of domain 
walls (solitons), which gives rise to special characteristics of 
the transition differing from those that follow from the con- 
ventional Landau theory of second-order phase transi- 
tion~.'. '- '~ This type of transition has stimulated a major 
discussion (see Refs. 1 and 11-13 as well as the literature 
cited there). The exact solution of complex differential equa- 
tions for the order parameter was obtained in Ref. 12 for a 
special case, allowing unambiguous answers to some of the 
questions that have given rise to controversy. 

The situation is quite different in the case of the theory 
of a type I1 incommensurate phase. Estimates of the first 
several harmonics of the order parameter were used in Ref. 3 
to conclude that higher harmonics play a minor role in the 

whole range of existence of a type I1 incommensurate phase 
and its structure remains practically sinusoidal all the time. 
Hence the transition to a commensurate phase is clearly of 
the first order. These conclusions have been repeated many 
times by other a ~ t h o r s ' , ~ , ~ , ' ~ - ' ~  without providing a rigorous 
proof. A similar difference between incommensurate phases 
of types I and I1 was stressed specially in Refs. 1 and 18. 

We shall find exact solutions of the equations for the 
order parameter describing a type I1 incommensurate phase 
under certain special conditions. From the first solution it 
follows that a type I1 incommensurate phase can undergo a 
second-order phase transition to a commensurate phase, and 
that such a transition has certain characteristics of a type I 
incommensurate phase. For certain values of the coefficients 
in the thermodynamic potential there is no qualitative differ- 
ence between the effects of temperature on incommensurate 
phases of types I and 11. There is also a second solution 
which gives rise to a first-order transition to a commensurate 
phase, which follows clearly from the structure of the solu- 
tion. On the other hand, a new mechanism is revealed which 
gives rise to an incommensurate phase of different nature 
(third solution) in the phases known so far. In particular, 
the influence of temperature on such an incommensurate 
phase seems to be opposite to that on a type I incommensu- 
rate phase. 

The first of these three solutions was obtained in Refs. 
19-21 by a different method, and the thermodynamic poten- 
tial typical of type I1 incommensurate phases was considered 
there. However, the question of whether the solution corre- 
sponds to an equilibrium state of an incommensurate phase 
(we shall show that this is only rarely true) is not answered 
in Refs. 19 and 20 and without considering this aspect it is 
incorrect to use the results in an analysis of incommensurate 
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phases. The same question is tackled in Ref. 21 but only in 
the special case of the coefficients with the values s = 5 and 
y = 3/50 (see below). 

1. GENERAL ANALYSIS OF EQUATIONS 

We shall consider phase transitions described by a sin- 
gle-component order parameter 77 and label as x the axis 
along which the incommensurate nature of the phase is man- 
ifested. The thermodynamic potential @ per unit length 
alongx has the following form in the case of a type I1 incom- 
mensurate phase: 

where d is the period of ~ ( x )  and a prime denotes a deriva- 
tive with respect to x .  The exact solutions are obtained only 
if the last term in Eq. (1)  is included, and this term can 
always be deduced from symmetry  consideration^.^ It 
should be noted that in Refs. 17 and 22 this term is replaced 
with ( T ' ) ~ ,  but the latter is of higher order than 7*(7')'. The 
lower limit to the thermodynamic potential is set by assum- 
ing that y>O and /Z > 0. If x < 0, we can show that an addi- 
tional condition must be satisfied: 

In the case of the original (symmetric) phase we have 
7 = 0 and @ = 0. For a commensurate phase, when 
d ~ / d x  = 0, we have 77 = ~,7, and @ = @, , where 

In the case of an incommensurate phase the equation for the 
function ~ ( x ) ,  which should ensure a minimum of @, can be 
obtained from the Euler equation 

This equation may have periodic solutions with a different 
period d. The equilibrium period is defined by the condition 
d@ = dd = 0, which in our case (compare with Ref. 12) be- 
comes 

The left-hand side of Eq. (5)  is the first integral of Eq. (4),  
and Eq. (5 )  can be used instead of Eq. (4)  to find ~ ( x ) .  The 
equilibrium condition set by Eq. (5)  can be modified if it is 
integrated (with respect to x )  from zero to d and if @ is 
substituted from Eq. ( 1 ) : 

Near the transition from the original phase, where 
7-0, Eq. (4 )  can be solved by means of standard expan- 
s i o n ~ . ~ - ~  In the first approximation, we obtain 

q=po COS qx, p: = 
4 ( c r o - a )  
3b+2xq,2 ' 

This phase transition occurs also for S < 0 when a = a,. 
It is convenient to introduce dimensionless coefficients 

Z,S, and y, defined as follows: 

We shall now consider whether the results obtained be- 
low can be applied to real physical systems. We can ignore 
further terms with derivatives in the potential ( 1 ) if the 
changes in ~ ( x )  are sufficiently slow, i.e., ifq = 2 r d  is small. 
The exact solutions found below are valid mainly for 181, 
which is not small. If we take q, from Eq. (7) as q, we find 
that the ratio Jp I / I x I  should be small. 

2. METHOD USED TO OBTAIN EXACT SOLUTIONS 

We shall replace 7 with a new function Z = (7')'. US- 
ing Eq. (5) ,  we find that Z is described by 

If the solution of this equation is known, the dependence 
~ , 7 =  ~ ( x )  is then found from the relationship 

J [z(q) I - ~ ~ ~ ~ = X - X , ,  (10) 

where x, is an arbitrary constant. For simplicity, we shall 
assume that x, = 0. 

We shall try to find the solution of Eq. (9)  in the form of 
a polynomial in 77. Substitution in Eq. (9)  shows that the 
degree of this polynomial is at most four; therefore, we shall 
seek the solution in the form 

where the unknown coefficients c, g,,  and go are made di- 
mensionless (the odd powers of 7 will be discussed below). 
Substituting Eq. ( 1 1 ) into Eq. (9) ,  we obtain 

The first three relationships define c, g , ,  and go, and the last 
one yields @ (if the condition d@/dd = 0 is satisfied). Since 
?>o, it follows from the first relationship that O(c< 1 and 
the real solutions for c exist only if ?<3/32. For x < 0, we 
have to satisfy the inequality (2) ,  i.e., y > 1/12, and, there- 
fore, we have 

The relationship (10) yields real solutions only for 
Z > 0. Moreover, the range of values of 77 where Z >  0 should 
be limited because otherwise 77 becomes infinite. Conse- 
quently, depending on the sign of x and the number of real 
roots of the equation Z ( 7 )  = 0, we can have three cases of 
interest: 1 ) x > 0 with four roots; 2 )  ?t < 0 with two roots; 3) 
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x < 0 with four roots. Each case yields its own form of solu- 
tion q = ~ ( x )  which will be discussed in turn below. 

The solutions of Eq. (4)  obtained in this way are not 
general because there is only one trivial constant x, (the 
cases c = 4/5 and 2/3 are special-see Secs. 3 and 5).  There- 
fore, the relationship (6) does not give the period d, but it 
links the coefficients of @ for which the solution represents 
an equilibrium situation, which corresponds to a certain 
curve in the phase diagram. The following comment should 
be made in this connection. Numerical  calculation^^^ show 
that @ considered as a function ofd has a number of minima. 
Naturally, thermodynamic equilibrium corresponds to the 
absolute minimum of @. It is not possible to say whether the 
solutions obtained below subject to Eq. (6)  represent an ab- 
solute minimum or some other extremum of @. However, if 
the curve described by Eq. (6)  begins at a = a, and near this 
value of a the exact solution is identical with Eq. (7), it 
corresponds to an equilibrium right up to the phase transi- 
tion point. 

It should be added that if y = 3/50and 1/12 (ifc = 4/5 
or 2/3) then Eq. (9)  has a solution in the form of a polyno- 
mial which in contrast to Eq. ( 1 1 ) contains odd powers of v. 
However, the expressions which are then obtained do not 
reduce to Eq. (7)  and, in accordance with the comment 
made above, we shall not consider this case. 

3. FIRST SOLUTION 

We shall consider the case when x > 0 and the polyno- 
mial of Eq. ( 11) has four real roots, which implies that the 
conditionpg, < 0 holds. Of the three ranges of the value of 7, 
where Z > 0, we have to take (see Sec. 2) the region between 
two inner roots. Substituting Eq. ( 11) into Eq. ( 10) and 
calculating the integral, we obtain the first solution of Eq. 
(4):  

Relationships similar to Eq. ( 13) of Ref. 12 yield 

In an analysis of the results obtained it is convenient to 
proceed as follows. First from Eq. ( 12), we find 8 and i5 
expressing go in terms of k: 

Specifying c (i.e., in fact y )  and taking different values of k, 
we obtain from Eq. ( 15) the valueg, subject to the condition 
pg, < 0. Then, Eq. ( 18) is used to calculate values of i5 and 8 
for which the solution ( 14) corresponds to an equilibrium 
state. 

If p>O, g,  <O must hold, which is possible only if 
c > 22/23. The curves corresponding to Eq. ( 15 ) are shown 
dashed in Fig. 1. In agreement with the comments made at 
the end of Sec. 2, we shall not discuss these curves because 
they do not begin on the initial-incommensurate transition 
line, although they are characterized by @GO and, according 
to Eq. ( 16), even by @ < @, and the solution ( 14) may cor- 
respond to an equilibrium state of the incommensurate 
phase. 

If f i  < 0, g ,  > 0 must hold and it is then meaningful to 
consider only the values of c>2/3 when @GO, in accordance 
with Eq. ( 16). It should be noted that i f p  < 0, the transition 
from the initial to the commensurate phase is of the first 
order and, according to Eq. (3),  it occurs when 
a = a ,  -3b2/16y. In the limit k-0, Eqs. (14)-(16) re- 
duce to Eq. (7);  therefore, if B<O, Eq. ( 14) for the curves 
satisfying Eq. (15) should correspond to an equilibrium 
state of the incommensurate phase. In the limit k- 1 these 
curves terminate on the line BC in Fig. 1; if c > 22/23, the 
curves go to infinity. We can use Eqs. ( 16), ( 17), and (3) to 
show that @-@, , d@/da-a@, /da, and @<@, when k- 1 

where sn(z, k )  is a Jacobi elliptic function with modulus k. 
The conditions O<k( 1 and pg, < 0 define the range of 

values of the coefficients of the potential @ where the solu- 
tion (14) exists. We shall determine when this condition 
represents an equilibrium state of an incommensurate phase. 
Substituting Eq. ( 14) into Eq. (6)  and using Eq. ( 12), we 
can represent the condition (6) in the form 

where K and E are complete elliptic integrals with the modu- 
lus k and the condition 10<u ,< 11.5 is satisfied. Equation 
( 15) subject to Eq. ( 12) with k from Eq. ( 14) yields the 
relationship between 5, 8, and y for which the solution de- 
scribed by Eq. ( 14) corresponds to an equilibrium. 

The corresponding value of @ is found from Eq. ( 12) : 

FIG. 1. Curves in the (Z, 6 )  plane where the solution (14) obtained for 
f l < 0  corresponds to an equilibrium state of an incommensurate phase. 
The curve denoted by CA is theline of the original-incommensurate phase 
transition, whereas at the points on the curve BC the transition to a com- 
mensurate phase takes place (for different values of y ) .  The vertical 
straight lines represent the boundary between fhe original and commen- 
surate phases. 1 )  y = 0.03; 2 )  y = 0.04; 3)  y = 0.05; 4) y = 0.06; 5 )  
y = 0.07; 6)  j = _1/12. The inset shows the phase diagram calculated for 
fl = 0, x > 0, and y = 33/21 16; here, I denotes an incommensurate phase, 
0 is the original phase, and Cis  a commensurate phase. 
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(and this is true even if b >  0); therefore, if k = 1, there is a 
second-order transition to the commensurate phase. If 
c-2/3, the curves contract to a point characterized by 
E = 9/4 and 8 = 3, which is a triple point where the incom- 
mensurate, initial, and commensurate phases meet. At the 
triple point the incommensurate phase is degenerate (Q, = 0 
is independent of k),  which can be observed also in the case 
of a type I incommensurate phase." 

According to Eq. ( 14), in the limit k- 1 an incommen- 
surate phase has a domain-like structure with a period 
d- (In( 1 - k 2, ( - co . The specific heat of the incomnensur- 
ate phase near the point a = a, of the transition to the com- 
mensurate phase diverges proportionally to 1/ 
( a  - aj ) [ ln(a  - a, ) ] 2. All this is analogous to the proper- 
ties of a type I incommensurate phase.I2 

These results make it possible to consider also the case 
whenp = 0. The coefficients in Eq. ( 1 1 ) become finite in the 
limit 0 -0  if g, and go tend to infinity. We can see from Eq. 
( 15) that this occurs when the denominator of g, vanishes, 
i.e., when c = ( 10 + 2u,)/3ul. Such a relationship, defining 
the value of k for a given c, is in this case fixed and can be 
satisfied only if 22/23<c< 1. It follows from the first rela- 
tionship in the system (18), subject to Eq. (8)  in the limit 
fl-0, that Dg, = 6xc/2il(5c - 4). The second relationship 
in the system (18) defines curves (parabolas a a S 2 )  on 
which the solution obtained corresponds to an equilibrium. 
Such curves begin at the Lifshitz point a = S = 0 (Ref. 2)  
and go to infinity in the limit 6- - W .  If c =  1 (k=O) ,  
such a curve coincides with the original-incommensurate 
phase transition line a = S2/4il and the equation for the 
curve in the case when c = 22/23 (k  = 1 ) is a = - 1 la2/ 
108il. This equation describes the whole incommensurate- 
commensurate phase boundary for the specific case when 
7 = 33/21 16. In this case the phase diagram is known com- 
pletely (Fig. 1 ). 

The value c = 4/5 when y  = 3/50 is worth special at- 
tention. We can see from Eq. ( 12) that in this case g, can 

FIG. 2. Dependences on a of the thermodynamic potentials of an incom- 
mensurate phase (@) and of a commensurate phase (a, ), of the param- 
gers  k and p, of the wave vector q = 27r/d, of the reduced specific heat 
C =  - (0 / d 2 @ / J a 2  and of the susceptibility ,y of an incommensurate 
p h a ~  in the case when y = 0.06 (c = 4 / 5 ) ,  6 = 5, P <  0 ,  x  > 0 .  The scales 
for C and x are given on the left. Here, Z, = 6.25, 2, = 125/54, p; 
= 125(Pj/ lL9x2.1)@x4/jB 1 3 / 1 2 ; 2 ) @ c x 4 / ( 8  I 3 / l 2 ; 3 ) k ; 4 ) p / p f ; 5 ) q c /  p,; 

6 )  q/q,,; 7 )  C; 8 )  1 0 , y ~ 2 A / x 2 .  

have any value and we also have 6 = 5. Therefore, in this 
case the solution ( 14) contains a nontrivial arbitrary con- 
stant g,, i.e., the period d is arbitrary. The relationship ( 15) 
now describes g, [it is equivalent to the condition a@/ 
dp = 0 of Ref. 21; if c#4/5, this condition cannot be used 
because p is fixed in accordance with Eq. ( 14) 1. It follows 
from Eq. ( 15) that in this case we have g, > 0, i.e., we should 
have f l< 0. All these quantities depend only on the coeffi- 
cient Z which, as usual, can be regarded as a linear function 
of temperature. The temperature dependences of the various 
quantities are plotted in Fig. 2, where for the sake of com- 
parison we have included also @, ( a )  and v, ( a )  of Eq. (3). 

Since for c = 4/5 the solution ( 14) allows us to find the 
dependence of the potential Q, on the period d, the incom- 
mensurate-commensurate phase transition can be consid- 
ered from the soliton density point of view. For each period 
of sn(z, k)  there are two solitons, so that the soliton density 
is n = 2/d =p/2K. Substituting Eq. ( 14) into Eq. ( 1 ) and 
going to the limit k -  1, we obtain in the case when a -af the 
expression 

This expression is again fully analogous to that obtained in 
the theory of a type I incommensurate It can be 
used to find the equililbrium value of n. 

It should be noted that the valuec = 2/3 ( y  = 1/12) is 
also singular because, according to Eq. ( 12), go is arbitrary. 
However, when c = 2/3, solution (14) can represent an 
equilibrium state only at the triple point (as discussed above 
and shown in Fig. 1 ) . 

4. SECOND SOLUTION 

We shall consider the second of the cases discussed in 2: 
we shall assume that ?t < 0 and that the polynomial of Eq. 
( 11 ) has only two real roots, which is true if go < 0. There is 
one region where Z > 0 and instead of Eq. ( 14), we then have 

whereg, = g l / (  1 - 2k 2, and thesign fork 'should beoppo- 
site to the sign offlg,. It is clear from Eq. (20) that we should 
also have fig, > 0. 

The condition for an equilibrium in the case of Eq. (6) 
now yields the relationship 

It should be noted that 10>u,> - 16. Instead of Eq. ( 16), 
we find that Q, is now described by 

Since u,  - 10(1 - 2k2)<0,  it follows that @GO when 
c < 2/3, which corresponds to the interval (13) which 
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should be regarded as the condition ?c <O. Instead of Eq. 
( 18), we now obtain 

0 

These expressions can be analyzed in the same way as in 
3. If p> 0, we should then have g, > 0. This inequality is 
obeyed for all values of c of Eq. (13) if O<k<k,, where k, is 
the root of the denominator in 2, of Eq. (21 ). In the limit 
k-0, the curves obtained from Eq. (23) begin at the origi- 
nal-incommensurate phase boundary (Fig. 3) and Eqs. 
(20)-(22) reduce to Eq. (7);  therefore, the solution of Eq. 
(20) for these curves describes an equilibrium incommensu- 
rate phase. This y, apart from the limit y = 3/32, corre- 
sponds to two curves for different values of c. If c >  0.538, 
then we always have @ < @, for the curves; this is true right 
up to E -  - W .  If c <0.538, then at some points of these 
curves we obtain @ = @, (curve MNin Fig. 3) and we then 
have @>a,, indicating a transition to a commensurate 
phase. 

I f p  < 0, the curves deduced from Eq. (23) do not begin 
at the original-incommensurate phase boundary. We shall 
not consider this case, especially as initially we would then 
have @>a, (although for some of these curves we have 
@<@, inthelimitz- - C O ) .  

If 0 = 0, we can proceed as in Sec. 3 and assume that 
g, + w . Equating the denominator ofg, to zero, we find that 
c = [ 10( 1 - 2k 2, + 2u2]/3u,, which defines the value of k 
for a given c such that 0.454 < k < 0.5 subject to the condi- 
tion ( 13). The curves (parabolas a a S2), where the solution 
corresponds to an equilibriun, begin at the Lifshitz point 
a = S = 0 and go to infinity for 6- + W .  However, for 
these curves we have @ < @, only if c > 0.538. If c = 0.538, 
so that k * = 0.473, then the whole curve corresponds to 

FIG. 3. Curves in the ( E ,  6 )  plane where the solution (20)  obtained for 
B> 0 corresponds to an equilibrium state of an incommensurate phase. 
The dashed curves extend the continuous curves to the range of metastabi- 
lity of an incommensurate phase. The MNcurve corresponds to the transi- 
tion to a commensurate ~ h a s e  and the OA curve revresents the transition 
from the original to incdmrpensurate phase. 1) y 0.084, c = 0.661; 2) 
y=O.O84, c=O.339; 3 )  y=O.O9, c=O.6; 4 )  y=O.O9, c=O.4; 5 )  

y = 3/32, c = 0.5, The inset shows the phase diagram calculated for 
p= 0, x <0, and y = 0.0932. 

@ = @, and such a curve together with a = - 10.63S2//2 
defines the incommensurate-commensurate phase transi- 
tion line for the appropriate value y = 0.0932. In this case 
the phase diagram can be determined completely (inset in 
Fig. 3). 

In the case of the solution (20), when x < 0, an incom- 
mensurate phase exists also at 6 > 0, and cooling may result 
in a consecutive series of transitions from the original to a 
commensurate and then an incommensurate phase, which 
differs from the usual form. The incommensurate-commen- 
surate phase transition is of the first order, which follows 
directly from the structure of the solution (20). This is be- 
cause the function cn(z, k )  differs from sn(z, k )  since its 
value is zero for a major part of the period in the limit k - 1. 
Therefore, in the case of the solution described by Eq. (20) 
there are no domains with a commensurate structure char- 
acterized by 7 = 77, # 0 even in the form of nuclei and a con- 
tinuous transition to a commensurate phase is impossible. 

It should be noted that it is pointless to consider the 
special values c = 4/5 and 2/3 in the case of the solution 
(20) because of the limitations imposed by Eq. ( 13). 

5. THIRD SOLUTION 

We shall now consider the case when x < 0 and the poly- 
nomial of Eq. ( 1 1 ) has four real roots. As in Sec. 3, we must 
havepg, < 0. Both ranges of values of v where Z >  0 give the 
same results because of the symmetry of Z ( v ) ,  and instead 
of Eq. ( 14) we now have the third solution: 

8Bhgl 
11 =p dn (px, k) , p2 = - 7-- Bgl 

xc(2-kZ) '  ~ ~ = ' x ( 2 - k ' ) '  

This solution differs qualitatively from those given by Eqs. 
( 14) and (20) because dn z > 0, whereas sn z and cn z exhibit 
periodic variation of the sign with z. The incommensurate 
phase corresponding to the solution (24) can be called an 
incommensurate phase with a constant component. For ex- 
ample, in the case of ferroelectrics, when 7 represents the 
polarization, such an incommensurate phase will be polar. 
In Refs. 17 and 22 such an incommensurate phase is called a 
rippled commensurate phase. 

The condition ( 6 )  assumes the following form after the 
substitution of the solution (24): 

15 
g ~ =  10 + (2 -3c )  U, ' 

Wenotethat 17.5>u3>16. InsteadofEqs. (16) and (17), we 
obtain 

Hence, if we allow for Eq. ( 13), we find that @>O and, there- 
fore, in this case the solution (24) cannot correspond to an 
equilibrium state. Negative values of @ are obtained for 
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c > 2/3 when Eq. (24) can give only a relative minimum of 
the functional ( 1 ), because the absolute minimum does not 
exist. Inclusion of further terms in Eq. ( 1 ) may convert the 
relative minimum into an absolute minimum, but the quali- 
tative nature of the solution should not change. Bearing in 
mind that very little is known about incommensurate phases 
with a constant component, it would be of interest to analyze 
the solution described by Eq. (24) in the case when c > 2/3 
in order to find any special features of the phase described by 
this solution. 

We shall first consider the general case of the transition 
from an incommensurate phase with a constant component 
to a commensurate phase in order to compare this with the 
consequences of Eq. (24). If we seek the solution of Eq. (4)  
in the form 7 = 7, + vl,  where v1 is a small correction to 
Eq. (3), we obtain 

The expression for p: is valid to first order in a - a, and 
S - S,, where (a,, S,) is a point on a curve defined by the 
equation 

The transition from an incommensurate phase with a con- 
stant component to a commensurate phase is a conventional 
second-order transition which occurs for a = a, and 6 = S,, 
when p < 0, which is possible only if x < 0. 

We shall now go back to the solution described by Eq. 
(24). If we express go in terms of k ,  we find from Eq. ( 12) 
that 

The inequality @<@, should hold only in the range 
2/3<c<9/1 I .  For these values of c it follows from Eq. (25) 
that g, > 0, i.e., we should have P< 0. 

In the limit k-0 the curves deduced from Eq. (29) 
terminate at points obtained from Eq. (28) with suitable 
values of p, and Eqs. (24)-(26) reduce to Eq. (27). It fol- 
lows that the solution of the (24) type may represent an 
equilibrium state. The inequality p < 0 is satisfied if c < 4/5. 
When c > 4/5 the transition to a commensurate phase is of 
the first order and occurs at the points on the MN curve in 
Fig. 4. This figure shows also parts of the curves correspond- 
ing to Eq. (28) with suitable values of ?, in order to show 
how the curves described by Eq. (29) approach the former 
curves. 

If k = 1, - the - curves of Eq. (29) terminate at points 
2 = Ep  and S = S F ,  where a second-order transition takes 
place in the initial phase since-according to Eq. (26)-we 
then have @ = 0 and d@/da = 0, and the commensurate 

FIG. 4. Curves in the ( 2 , 8 )  plane where the solution (24) obtained for 
P < 0 corresponds to a minimum of the thermodynamic potential. The AB 
curve corresponds to k = 0 and the portion AM represents transition of 
the second order to a commensurate phase. The MN curve represents the 
first-order transition to a commensurate phase. At the points on the AN 
curve the transition is to the original phase. The circles are the points 
where @, = 0. The chain curves are obt_ained from Eq. (28). 1) 
j = 0.075; 2) j = 0.07; 3) y = 0.065; 4) y = 0.06; 5) y = 0.059; 6) 

j = 0.058; 7) y = 0.057. The inset shows schematically the function 17(x) 
of Eq. (24) in the limit k -  1. 

phase is unstable (a, >O, Fig. 4). There are two triple 
points in Fig. 4. The point N is a conventional triple point. 
However, at the point A,  where the curves under discussion 
contract in the limit c-+ 2/3, an incommensurate phase with 
a constant component is degenerate (compare with Sec. 3 1. 

In the limit k-- 1 the structure of an incommensurate 
phase with a constant component is very distinctive: there 
are fairly narrow layers (solitons) where 7 +O, separated by 
wide intermediate layers (where 7 =;0) with the structure of 
the original phase (inset in Fig. 4, d = 2K / p  -+ cc, ). There- 
fore, the solution (24) shows that the incommensurate 
phase state with a soliton structure can form directly from 
the original phase, whereas up to now such an incommensu- 
rate phase structure has been known to occur only close to 
the transition to a commensurate phase. It should be noted 
that the transition from the original phase to an incommen- 
surate phase with a constant component occurs when 6 > 0, 
i.e., when-according to Eq. (7)-a conventional incom- 
mensurate phase cannot form from the original phase. The 
mechanism by which an incommensurate phase with a con- 
stant component forms is nonlinear and is related to those 
terms in Eq. ( 1)  which can be written as follows: 
(S + xT2) (17')'/2. If S > 0 and x < 0, such an expression be- 
comes negative only for high values of 772, but this is still 
insufficient: we obtain @ <O only if the quantity (7'12 is 
large, which gives rise to the structure of an incommensurate 
phase with a constant component described above. More- 
over, it is not trivial that such a mechanism can give rise to a 
second-order phase transition. 

However, we can argue that in this case the transition 
from the original phase should still be of first order. The 
transition is continuous in the case of repulsion between soli- 
tons. However, if in the case of every second soliton (Fig. 4) 
we reverse the sign of q, we obtain a structure with attraction 
between solitons. The transition to this structure occurs ear- 
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lier than to a structure with repulsion. However, a structure 
with alternating signs of 7 [and of cn(px, k)  ] cannot trans- 
form continuously into a commensurate phase (compare 
with Sec. 4).  Therefore, according to Eq. (27), such a transi- 
tion should occur if preceded by a transition to an incom- 
mensurate phase with a constant component described by a 
solution of the type given by Eq. (24). In either case the 
structure of the incommensurate phase should be of the soli- 
ton type sufficiently far from the commensurate phase struc- 
ture. It should be noted that a second-order transition from 
the original phase to an incommensurate phase with a con- 
stant component may occur in a suitable external field (an 
electric field in the case of ferroelectrics), since the field im- 
poses conditions such that solitons with the opposite sign of 
7 are no longer favored by energy considerations. 

It follows from the solution (24) that the specific heat 
of an incommensurate phase with a constant component 
close to the point a = ap of the transition to the original 
phase diverges proportionally to l / (ap  - a)  
X [ln(ap -a)] ' ,  as in the case of the incommensurate- 
commensurate phase transition discussed in Sec. 3. 

For the same reasons as in Sec. 3, it is worth considering 
particularly the value c = 4/5. The dependences of the var- 
ious quantities on a are shown for this case in Fig. 5, where 
p, is the value ofp at a = a,, whereas q, has the same mean- 
ing as in Eq. (27). It should be noted that the straight line 
corresponding to c = 4/5 terminates at a singular point M 
(Fig. 4), where there is also a minimum of the S = S ( a )  
curve in Eq. (28) andp = 0 applies in the case of Eq. (27).  It 
follows from the usual Landau thermodynamic potential 
@ = A  ' ( T  - To)v2 + Pv4 + Cv6that thisisthe point where 
A ' = B = 0. Therefore, the behavior of the various quantities 
in the limit a -a, (Fig. 5 )  may be atypical of an incommen- 
surate phase with a constant component. In particular, a 
specific heat discontinuity vanishes on transition to a com- 
mensurate phase. Typical behavior of the quantities in the 
case of this transition follows from Eq. (27). 

Since for c = 4/5 the period of the solution (24) is arbi- 
trary, the transition from an incommensurate phase with a 
constant component to the original phase can be considered 

FIG. 5. Dependences on Z of the parameters k andp, of the wave vector q, 
of the specific heat C, and of the susceptibility x of an incommensurate 
phase with the constant component in the case when y = 0.06 (c = 4/5), 

8 = 5, P < 0, K < 0. The scales for and x are on the left; ap = 125/36, 

5, = - 12.5. 1) k; 2 )  p/p, ;  3 )  q c / p e ;  4 )  q/q, ;  5)  2;; 6 )  ,yf i2/Z/x2. 

from the point of view of the soliton density. Here, the soli- 
ton density (inset in Fig. 4) is n = l /d = p/2K. If we follow 
the same procedure as in the derivation of Eq. ( 19) we find 
that, in the limit k - 1 ( a  -.ap ) , the potential is 

i- (100019) n exp (-51 B l"lnl6xl") I. (30) 

The complete analogy with Eq. (19) is worth noting, al- 
though in the present case the soliton structure of the incom- 
mensuratephase is different and the transition is to the origi- 
nal phase and not to a commensurate phase. 

6. EFFECTS OF AN EXTERNAL FIELD ON AN 
INCOMMENSURATE PHASE 

The exact solutions can be obtained also in the presence 
of an external field E, coupled to the order parameter 7. In 
this case the potential of Eq. ( 1 ) should be supplemented by 
a term - E, 7; it appears on the left in Eqs. (5)  and (9). We 
shall now rewrite the solution of Eq. (9)  in the form 

The first equation in the system ( 12) still applies to the coef- 
ficient c. The equations for the remaining coefficients in Eq. 
(3  1 ) can be solved only if we assume that c = 4/5 or 2/3. We 
shall first consider the case c = 4/5, because if E, = 0, only 
this case is interesting and it is discussed in detail above. We 
then have a, = 0, the value of g, is arbitrary, and as before 
the solution corresponds to 8 = 5. The remaining quantities 
then become 

Out of the three cases discussed in Sec. 2, we shall con- 
sider only two, when the polynomial of Eq. (3 1) has four 
real roots, which occurs if fig, < 0. 

In the integral of Eq. ( 10) if x > 0, we have to take the 
values of 7 between two inner roots of the polynomial of Eq. 
(3  1 ) (compare with Sec. 3 ), whereas for x < 0, we have to 
take values between the two largest roots if for the sake of 
simplicity we shall assume that E, > 0 (the region between 
two other roots yields a solution which is unfavorable from 
the energy point of view). The solution of both x 2 0  cases 
can be written in the form 

The quantities occurring above can be expressed in 
terms of g,, k and 1: 

whereN=2(1 + k 2 ) ( k 2 + 1 4 )  +12 (1  - 1 0 k 2 + k 4 ) . ~ h e  
coefficients a ,  and go can also be expressed in terms of g,, k, 
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and I; instead of a,, we can write down directly E, in accor- 
dance with Eq. ( 3 2 ) :  

5g,Z ( 3 5 )  
go = -[16ks-412(1+k2) (kZ+L4) ( 1 f  6 k 2 f  k') 

2N" 

Here we are allowing for the fact that P < 0.  
The solution of Eq. ( 3 3 )  is bounded for any value of x 

only if 11 I < 1 ,  which corresponds to N)O. The case x > 0  
corresponds to k '21 ', whereas the case x < 0 corresponds to 
I>O and 14<k'<l' (if E, >O) .  For I = 0, Eqs. (33) - (35)  
reduce to Eq. ( 14), whereas for k ' = 1 they reduce to Eq. 
( 2 4 )  if we modify k. 

The values of g, corresponding to an equilibrium state 
can be found from the condition ( 6 ) ,  the form of which does 
not change even for E, #O: 

where II (n, k )  is the complete elliptic integral of the third 
kind in the notation of Ref. 23. It follows from Eq. ( 3 6 )  that 
g, > 0 ,  so that P < 0 .  The phase diagrams obtained for this 
case are plotted in Fig. 6. The transition from a commensur- 
ate phase to the original phase in the case when x > 0  and 
from an incommensurate phase with a constant component 
to a commensurate phase when x <O occurs in the limit 
k - 0 , l - 0 .  When k '- 1 and 1 '+ 1 ,  a transition takes place 
from an incommensurate to a commensurate phase for x > 0  

FIG. 6. Phase diagra-ms in terms of the variables iE and Bv plotted for 
y = 0 . 0 6  ( c = 4 / 5 ) , 6 = 5 , p < O ; a )  x > O ; b )  x<O.Thedashedcurves 
show the incommensurate-commensurate boundary in the absence of the 
incommensurate phase (it terminates at the point K). 

and from an incommensurate phase with a constant compo- 
nent to the original phase for x < 0.  In weak fields the shift of 
the location of the transitions from an incommensurate to a 
commensurate phase and from an incommensurate phase 
with a constant component to the original phase is respec- 
tively, 

It should be noted that the shift of the point of the transition 
from an incommensurate phase with a constant component 
to the original phase is linear in the field. All the transitions 
are second-order even when E, # 0 .  

We shall' now consider the spatial average value of the 
order parameter i j .  Integrating the solution (33 ), we obtain 

- 1 2 (1-12) (k2-12) n: (-12, k )  
q=- J q ( x ) a ; , = ~ [ l r  

0 
I (2k2-LZ-k2L2) K ( k )  1 ' 

We can now calculate the linear susceptibility x = d.Tj/dE,. 
This is easily done in the case when x > 0, when we have to go 
to the limit 1-0 in Eqs. ( 3 5 )  and ( 3 8 ) :  

This expression, together with those in Sec. 3, describes the 
dependence ~ ( a )  of Fig. 2. The susceptibility has a kink at 
the transition from the original phase to an incommensurate 
phase and diverges proportionally to 1/2(a  - aj ) on ap- 
proach to the transition to a commensurate phase. The be- 
havior of the susceptibility is the same as in the case of an 
incommensurate type I phase. l o  

If x < 0 ,  much more complicated calculations yield 

where u; = du,/dk ' and the value of k is the same as in Sec. 
5. Together with the expressions in Sec. 5, Eq. ( 4 0 )  gives the 
dependence ~ ( a )  of Fig. 5. The divergence of x in the limit 
a-a ,  is untypical and is associated with the singularity of 
the point a = a,  when c = 4/5 (see Sec. 5 ) .  In general, the 
susceptibility exhibits a discontinuity at the transition from 
an incommensurate phase with a constant component to a 
commensurate phase. On approach to the transition to the 
original phase the susceptibility diverges proportionally to 
d / ( a p  - a )  [ l n ( a p  - a)] ' .  Note that there is some 
difference between the nature of the divergence of the sus- 
ceptibility at the incommensurate-commensurate and in- 
commensurate-with-constant-component-original phase 
transitions. 

/ 

7. GENERALIZATION OFTHE METHOD 

The method discussed above can be used to find the 
exact solutions also in the case of a thermodynamic potential 
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of more general nature than that described by Eq. ( 1 ) .  By 
way of example, we shall consider 

Proceeding as before, instead of Eq. (9)  we now obtain 

The solution of this equation may be sought in the form 

Substituting Eq. ( 4 3 )  into Eq. ( 4 2 ) ,  we obtain 2n algebraic 
equations for n + 2 quantities a ,  and cP. The additional 
equation represents generalization of the equilibrium condi- 
tion of Eq. ( 6 ) .  We thus find that between 3n coefficients of 
Eq. (41 ) there should be n - 1 relationships which make it 
possible to obtain the exact solutions. Equation (41 ) may be 
supplemented also by terms of other types, such as ( T ' ) ~ .  

The presence in the thermodynamic potential of terms 
containing high powers of the order parameter should not 
affect significantly the results and this may be useful. If we 
assume the desired values for the important terms in Eq. 
( 4 1 )  and these values correspond to specific physical sys- 
tems, we can select the high-order terms so as to obtain the 
solution of the type given by Eq. ( 4 3 )  in the case of Z. The 
relationships between the coefficients of high-order terms 
which are then needed do not have a significant effect on the 
physical results if the terms are selected successfully, but 
nevertheless the exact mathematical solutions can be ob- 
tained. 

Such a method can be used also in a study of the influ- 
ence of an external field on an incommensurate phase. In 
particular, the exact solutions corresponding to E, # O  can 

be obtained not only for c  = 4/5 or 2/3 ,  as in Sec. 6, but for 
any value of c  if the potential cP of Eq. ( 1 ) is supplemented 
not only by the term - E, r ] ,  but also by - CE, v3, where 

f  = x2(5c - 4)/4P/2(gl  - 61 ,  whereas Z still has the form 
given by Eq. ( 3  1 ) with a, = 0. The term fE, 77, is permissi- 
ble from the point of symmetry and its presence should not 
affect significantly the physical results (in fact the quantity 
which is linked to E, is not r ]  and r ]  + f q 3 ) .  

The authors are grateful to A. P. Levanyuk, D. G. San- 
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results. 
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