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It is shown that polaron motion in the Pekar model is possible only in ionic crystals with a positive 
dispersion f12(k) = fl; + V; k2 and a velocity V< Vo. An expression for the polaron effective 
mass accurate to order Vi is obtained. 

INTRODUCTION 

Pekar polar on^'.^ in ionic crystals are self-localized 
structures arising due to nonlinear interaction of the field of 
an excess electron with the field of the inertial polarization of 
the crystal. Such structures are related to the class of two- 
component solitons. Their motion is possible only with a 
speed less than the lowest of the group velocities allowed in 
each field. The group velocity V, of an excess electron is 
proportional to the conduction band width; it is comparati- 
vely large. The group velocity Vo of a displacement in the 
polarization field is determined by the three-dimensional 
dispersion of the optical phonons. In ionic crystals Vo < V, 
holds; therefore the limiting velocity for polarons is V,. In 
the absence of a positive three-dimensional dispersion, the 
optical phonon field is stationary, and thus the polarons aris- 
ing in such a medium are also immobile (i.e., stationary self- 
localized states). Electron motion is also decoupled from 
displacement of the polarization field for negative disper- 
sion. 

In this article we investigate the Pekar2 model of the 
polaron, in which we include for the first time inertia and the 
three-dimensional dispersion of the optical phonons of the 
polarization field. 

1. GENERALIZATION OFTHE ADIABATIC THEORY OF 
PEKAR POLARONS 

We assume that in the continuum approximation the 
polarization field of an ionic crystal is characterized by a 
dispersion relation 

Here the speed Vo corresponds to the maximum group veloc- 
ity in the phonon subsystem. 

An excess electron (quasiparticle) in an isotropic ionic 
crystal near the conduction band edge (energy 8,) is char- 
acterized by a charge e and an effective mass m*. The inertial 
polarization field of the crystal is characterized by an effec- 
tive dielectric constant .E (Ref. 2) .  

The state of an electron (quasiparticle) interacting with 
the polarization field is described by a functional, subject to 
the normalization condition 

of the wave function *(r,t) of the excess electron and the 
polarization vector P(r , t ) :  

The vector 

d"' 
D=-eV.  S I Y ( r f , t )  1'--- I r-r' I 

determines the induction of the electric field of the electron. 
From ( 1.3) there follow the equations: 

eQ d3r' 
[ + + Q . ' - V . ' V : ] ~ = - ~ ~  .E l y ( r ' , t ) 1 2 -  I r-r' 1 ,( 1.6) 

where p(r , t )  is the potential of the polarization vector 

We determine the polaronic state of constant speed Vas 
the soliton solution of Eqs. ( 1.5), ( 1.6). Since such solitons 
form as a result of the interaction of two fields, they can be 
called two-component solitons. We will search for a soliton 
solution of Eqs. (1.5), (1.6) of the form 

cp ( r ,  t )  = c p  (p) , Y (r, t )  =a-"Q (p) ei(kr-mf), (1.8) 

where p ( p )  and @ ( p )  are smooth, real functions of the di- 
mensionless vector p = (x/a, y/a (z - zo - Vt)/a), rapidly 
decaying in the limit p = (g ,v , f )  + co . In ( 1.8) a is the lat- 
tice constant, Ik( = m* V/fi, and h is the system energy. 
The Green's function G(p) for Eq. (1.6) is given by the 
expression 

in which we have taken 

oO2= Vo2/azQoz,  oZ= V2/a2Q0'. 

The Green's function ( 1.9) takes into account the non- 
local nature of the interaction between the electron and the 
polarization field, due to the phonon dispersion ( a o # O )  and 
the time resulting from electron motion (u#O). When the 
condition 

is fulfilled, the Green's function ( 1.9) takes the form 

For s2 > 1 it has the value 
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if the inequality 

holds, and is equal to zero otherwise. 
The solutions of Eq. ( 1.6) obtained by using G, ( p) de- 

termine a potential e, ( p )  which oscillates with constant am- 
plitude as p- a,. Therefore the solutions satisfying the nor- 
malization condition ( 1.2) can only be expressed in terms of 
GI (p).  In other words, spatially localized solutions are pos- 
sible only for speeds less than or equal to V,. In the absence 
of dispersion in the optical phonons ( V, = 0)  the excitation 
does not move. With the help of the Green's function ( 1.12) 
we can write the solution of Eq. (1.6), using (1.8) in the 
form 

Substituting this into (1.5), we get an integrodifferential 
equation for the envelope function a( p) of ( 1.8): 

ti" Gi (p-p2) Q2(p,) d3pi d"pz 
ae I P Z - P ~  I }Q (P) = 0. 

where A is the electronic energy relative to the conduction 
band edge in the potential well p ( p )  which is moving with 
velocity V. The function ( p in Eq. ( 1.15 ) can be calculat- 
ed by the variational method, minimizing the functional 

where 

In the absence of dispersion and for a stationary polaron 
(a, = a = 0) the Green's function G( p - p, ) reduces to a 
delta function 6 (p  - p,).  In this case the functional ( 1.16) 
transforms into the Pekar functional2 and the zeroth-order 
approximation functional in the work of Bogoliubov and 
T~abl ikov .~-~  

Minimization of the functional ( 1.16) can be carried 
out by a straightforward variational procedure. Since for a 
moving electron the accompanying polarization has cylin- 
drical symmetry, we may use as the trial function the nor- 
malized function 

(D (p) = (2/n)v4a"b exp {-at2-fl (E2+q2)), (1.17) 

which has two variational parameters a and@. Evaluation of 
this function was carried out by the authors in Ref. 6. 

2. ENERGY AND WAVE FUNCTION OF ASLOWLY MOVING 
POLARON 

The application of the continuum approximation 
means that the present theory can only be used to investigate 

excitations with a localization region significantly exceeding 
a lattice constant. In this case the optical phonon dispersion 
is small and satisfies the inequality 

OoZK1 (2.1) 

Since spatially localized two-component solitons (polarons) 
can arise in an ionic crystal only at speeds V less than V,, the 
inequality 

02<oo2K1 (2.2) 

is always satisfied. For typical ionic crystals we have 
an,= 2.5 x lo4 cm/s. Consequently the inequality (2.2) is 
well satisfied. Thus in calculating the function ( 1.17) with 
the aid of the functional ( 1.16) we can use the approximate 
Green's function 

In Ref. 6 the present authors show that in this case the square 
of the wave function @(p),  which characterizes the spatial 
distribution of the quasiparticle, is given by the expression 

QZ(p) = (2/n)"apZ exp {-2Pz(p2+12/,aoa~2)} (2.4) 

with the values 
- 

~ = a o + 6 a 0 3 ( 2 / 1 ~ z - ~ 0 2 ) r  a=! [I+t2/,aocs2]'h, ao=y/31'x. 

Therefore, for the case of a stationary polaron ( a  = 0) 
the spatial probability distribution of the quasiparticle has 
spherical symmetry. An increase in polaron velocity is ac- 
companied by stronger localization. An increase in the dis- 
persion a, decreases the range of the localization. For non- 
zero polaron velocities, constant values of @2(p) are 
distributed over a surface having the shape of an oblate ellip- 
soid of revolution, with the axis directed along the polaron 
velocity vector. 

Using ( 1.4), we can now calculate the induction vector 
D(p)  of the polarization field, in terms of which the basic 
quantities characterizing the slowly-moving polaron are ex- 
pressed. Thus, for example, the soliton energy E( V )  is deter- 
mined by the expression 

in which the energy E(0)  of the polaron at rest has the value 

and its effective mass is 

where m is the free-electron mass and E, = me4/ii2 is the 
atomic unit of energy. We note that in the absence of disper- 
sion and for vanishingly small speeds (a- 0)  the expression 
(2.7) coincides with the expression obtained in a very heu- 
ristic way by Landau and Pekar.' 
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The vector of the polarization field, P( p), accompany- 
ing the polaron motion can also be expressed in terms of the 
induction vector: 

For polaron velocities V equal to V,, the radial dependence 
of the potential energy of interaction of the electron with the 
polarization field is determined by the expression 

where 
r 

is the probability integral. The potential well has a depth 
- e2a2v"? /a~f i  and displays spherical symmetry. 

CONCLUSIONS 

Thus, localized two-component solitons (polarons) in 
ionic crystals can move only in the presence of positive dis- 
persion, with speeds less than or equal to V,. In the subse- 
quent calculation of the effective mass of the polaron even in 
the limit of very low velocities it is necessary to take into 
account the small dispersion. In the opposite case the po- 
laron is immobile. 

For quasiparticle motion with speeds V >  V, spatially 
localized solutions of the form ( 1.8) do not exist. With the 
aid of the variational method in Ref. 6,  solutions oscillatory 
to infinity were found. Consequently, for these speeds local- 
ization is only possible on short time scales, as the electron 
breaks away from the polarization field by its own motion. 

Analogous conclusions can be reached in looking at the 
motion of an excess electron in a one-dimensional molecular 
chain, self-localizing due to short-range interaction with op- 
tic phonons. The present authors investigated this problem 
in Ref. 8. We note that the results obtained there for speeds 
V >  Vo describe unstable self-localized states, existing on 
short time scales. Similar results were obtained by numerical 
methods in recently completed work.9 

For speeds V> Vo nonlocalized stationary states, de- 
scribed by plane waves, are possible in a crystal. In this case 
the function cP(p) and the polarization field do not depend 
on p and are uniformly distributed throughout the crystal 
with a negligibly small density. Electron motion in such 
states is described by spreading wave packets. It is accompa- 
nied by a small "coat" of virtual phonons, continuously ex- 
changing with each other. 

The authors are indebted to I. V. Simenog for discus- 
sion and critical comment. 
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