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A possible mechanism for the generation of large-scale vortices by helical turbulence is analyzed. 
At certain values of the helical-turbulence parameter, a new type of instability occurs in the 
liquid. It results in the generation of a large vortex with a nontrivial topology. 

1. INTRODUCTION 

Various structures in turbulence are presently the sub- 
ject of active research (Refs. 1 and 2, for example). In this 
regard, the type of turbulence richest in structures is one in 
which symmetries of some sort have been broken. Well de- 
veloped turbulence, however, is known to exhibit a tendency 
toward restoration of broken ~ymmetries.~ For example, a 
large-scale disruption of homogeneity or isotropy is general- 
ly reversed at a smaller scale. This is the basis of the local 
Kolmogorov-Obukhov t h e ~ r ~ . ~ . ~  The interaction of a large- 
scale perturbation with turbulence takes the form of damp- 
ing of this perturbation because of the turbulent viscosity 
and transfer of the energy of the perturbation to small-scale 
turbulent fluctuations. In such a situation, the existence of 
long-lived structures with a scale L )A ( A  is the scale of the 
turbulence) would seem improbable. 

This situation is different if the symmetry broken by the 
turbulence is not restored. One example of a symmetry 
breaking of this type, and one which is compatible with the 
theory of the local structure of turbulence, is the breaking of 
reflection invariance (parity ). Such turbulence is of course 
called "helical" and is characterized by a nonzero pseudo- 
scalar (vTcurlvT) (the helicity). From the physical stand- 
point, this turbulence arises in a force field having pseudo- 
vector properties (a magnetic field, the Coriolis force, etc. ). 
The anomalous properties of helical turbulence were first 
discovered in MHD.6s7 It is found that a helical turbulence 
generates and sustains large-scale magnetic fields (the a ef- 
fect6). Although the equation for curl vT is analogous to the 
equation for a magnetic field, the a effect does not occur for 
the vorticity in a homogeneous and isotropic helical turbu- 
lence of an incompressible fluid.' This result is easy to under- 
stand if we expand the Reynolds stress tensor in a series in 
the average velocity and assume that the gradients of this 
velocity are small: 

In the initial stage of the evolution we can asume 
(v) 4 v T -  ( ( v ~ ) ~ ) " ~ ,  and we can ignore the effect of the 
average field on the turbulence. A necessary condition for 
the existence of a large-scale instability which generates vor- 
tex structures is that the tensor a,,, be nonzero. In nonhelical 
turbulence, there is simply no possibility of constructing 
such a tensor. In helical, homogeneous, and isotropic turbu- 
lence we would have a,,, -const (E,, is the Levi-Civith den- 
sity ), but the symmetry ofthe tensor T, means that the pseu- 
doscalar coefficient in a,, must vanish. As a result, we are 
left with only terms corresponding to turbulent viscosity in 
T,,. The first example of the a effect in hydrodynamics was 

found in Refs. 9 and 10 for the case of a compressible fluid 
and homogeneous and isotropic helical turbulence. In this 
case the nonlinear term containing the Reynolds stress is not 
a symmetry tensor. It is clear from the discussion above that 
in an incompressible fluid the helicity alone would not suf- 
fice for the occurrence of an a effect. We would also need 
some additional symmetry-breaking factors which would 
make it possible to construct a nonvanishing tensor a,,, . The 
first example of this type was proposed in Refs. 11-13; we 
will study it in detail in the present paper. In this example the 
additional factors which break the symmetry are the gravita- 
tional force and a temperature gradient. 

Two other examples in which a vortex a effect is possi- 
ble have also been identified. In the first of these examples, 
one considers a homogeneous and isotropic helical turbu- 
lence superposed on a given large-scale f l o ~ . ' ~ , ' ~  In the sec- 
ond, one finds an anisotropic a effect in a reflection-invar- 
iant flow. l6 Essentially all of the additional factors are of the 
nature of a release mechanism which makes it possible to 
pump some of the energy of the helical turbulence into large- 
scale vortex structures. This energy pumping is naturally 
associated with the suppression of the flow at small scales in 
the helical turbulence. "-I9 As a result, the helical turbulence 
must seek an additional channel for shedding deviations 
from equilibrium; this additional channel turns out to be the 
generation of large-scale structures. This process results in a 
transfer of some of the turbulence energy to larger scales. 
Such a process can naturally be interpreted as a vortex dyna- 
mo. In the present paper we examine a homogeneous and 
isotropic small-scale helical turbulence created by a helical 
external force. This system is in a gravitational force field g 
with a small vertical temperature gradient. In this situation, 
the rule that the tensor a,,, in ( 1 ) cannot vanish is removed. 
As a result, the equations of motion averaged over the turbu- 
lence do indeed contain terms representing an anisotropic a 
effect. This effect differs substantially in structure from an 
ordinary turbulent viscosity. One might say that the result- 
ing equations of motion describe the effect of a small-scale 
helical turbulence on the ordinary convection process. From 
the standpoint of convection, this effect reduces to the fol- 
lowing: If the helicity is zero, the convective instability be- 
gins at Rayleigh numbers Ra > Ra,,, as we know,20 and it 
has a horizontal length scale k,  - ' - h,  where h is the thick- 
ness of the liquid layer. As the helicity parameter increases, 
the parameter Ra,, decreases, and the horizontal length 
scale of the instability increases. When the helicity reaches a 
certain critical value the horizontal length scale formally 
becomes infinite. This event means that the convection has 
undergone a complete change in structure: In place of the 
large number of convective cells the system finds it prefera- 
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ble to form a single large cell (a vortex), whose horizontal 
dimension is now determined by the horizontal variations in 
the problem. The large vortex which has appeared has a to- 
roidal field, coupled with a weaker poloidal field (horizontal 
and vertical circulations). It has a nontrivial streamline to- 
pology, as we will see below. This property is common to all 
large-scale vortices which are generated in a helical turbu- 
lence. Since the atmospheric turbulence is a helical turbu- 
l e n ~ e , ~ '  this effect may also be pertinent to certain natural 
vortices, e.g., tropical  cyclone^.^^^^^ 

2. EQUATIONS OF MOTION OF A VORTEX DYNAMO 

The type of convection simplest to treat theoretically is 
that which occurs in a plane-parallel layer of an incompress- 
ible liquid which is being heated from below. This problem is 
described by a Navier-Stokes equation, an entropy equation, 
and the condition that the liquid be incompressible. This 
system of equations is supplemented with an equation of 
state, which ignores the pressure dependence of the density: 
p = pa( 1 - pT) , wherep = - pa- ' (dp/dT) is the thermal 
expansion coefficient. We will analyze this situation for in- 
stabilities for perturbations of the velocity v, the tempera- 
ture @, and the pressure p,  against the background of a 
ground state To(z), po(z). This ground state is a conse- 
quence of the heating and is specified by a constant tempera- 
ture gradient To(z) = - Ae, where A is a positive constant, 
and e is a unit vector directed vertically upward. The system 
of equations for the perturbations can be written in the Bous- 
sinesq approximation as f o l l o ~ s ~ ~ ~ ~ ~ :  

Here Y is the kinematic viscosity, and x is the thermal diffu- 
sivity. Thesimplest boundary conditions on system (2)-(4) 
turn out to be the so-called free boundary conditions (r  is 
the upper or lower boundary of the layer) 

In the Navier-Stokes equation we introduce a random exter- 
nal force F;, which creates a small-scale helical turbulence; 
we assume (c ) = 0. For simplicity we assume that this 
small-scale turbulence is homogeneous, isotropic, and 
steady-state. The correlation function for a random velocity 
field of this sort in the Fourier coordinate representation is 
known: 

QijT(t,-t2,  k)=B(t i - t2 .  k )  (6ii-kikj/kZ)+iG(ti-t2,  k)e i jLk, ,  
r 

(v  rot v> - k2G (tl-t,, k )  d k ,  
( 6 )  

where I (v rot v)dn = I, is a topological invariant in the 

inviscid case.25 
The most interesting part of the correlation function 

( 6 )  is the term which contains the pseudotensor E ~ ,  and the 
pseudoscalar G. It is the presence of this term which is re- 
sponsible for the appearance of nontrivial physical effects. 

Our problem is to derive a closed average equation from 

system (2)-(4). In this paper we consider the simplest case, 
of small Reynolds numbers, in which we can calculate the 
Reynolds stress tensor exclusively. In other words, we are 
actually examining the effect of a small-scale helical turbu- 
lent noise on a convection process. Even in this simplified 
formulation of the problem, we can see all the basic physical 
effects which arise. 

Accordingly, we assume that the nonlinear terms in 
Eqs. (2 )  and (3)  are small, i.e., that the Reynolds number 
satisfies Re = uA / ~ g  1, where u is the velocity scale of the 
turbulent fluctuations, and A is the external scale of the tur- 
bulence. We can then solve the equation for the temperature 
perturbation iterative and find a single equation for the ve- 
locity: 

Here Lij is a linear operator which figures in convection the- 
ory: 

Lij=D.D,Gij-pAgP,,e,ej, (8) 
D,=d/dt-vA, Dx=d/dt-%A, 

and Pi, = Sim - ViVm/A is a projection operator which 
eliminates the potential part of the velocity field. We under- 
stand the differential operators in the denominator as inte- 
gral operators with corresponding Green's functions. 

To carry out the procedure of averaging Eq. (7 ) ,  we 
write the velocity field ui as the sum of an average part ( (ui) 
and a fluctuating part u! ( ( v j )  = 0) : 

If (u;) is zero, the random part of the velocity is caused 
by the external force F;. This part of the velocity field is 
denoted as uiT. This is a uniform, isotropic, and helical ran- 
dom field. We are now interested in the evolution of the 
small average field (u, ), under the assumption 

In this case the random part of the velocity acquires a small 
nonuniform increment Ci , 

and can be written in the form 

As a result, the total velocity field can be written in the form 

Here Ci is a functional of vT and (v) : i = t(vr, (v) 1. 
Taking the average of Eq. (7),  and subtracting the aver- 

age equation from the complete equation (7),  we find the 
following system of equations, in lowest order: 

Equation ( 10) for the average velocity contains averages of 
quadratic combinations (Reynolds stresses). They can be 
expressed in terms of the mean field (u;) and the correlation 
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function of the turbulence by making use of the functional 
dependence of the field Bi on the turbulent field v;, given by 
the Furutsu-Novikov formula 

In order to use (12) we need to assume that the turbulent 
noise is Gaussian. In problems involving the interaction of a 
large-scale field with a small-scale turbulence, this assump- 
tion is legitimate even at large Reynolds numbers. The rea- 
son is that the interaction of large-scale motions with turbu- 
lent fluctuations is dominated by the vortices which contain 
the most energy, whose length scale is A. At the same time, it 
is well known that the Gaussian approximation is quite ap- 
plicable for the energy scale of t~rbulence.~ 

The generation of a large-scale mean velocity field is 
related to the first derivatives with respect to the coordi- 
nates. The terms with second derivatives give rise to a turbu- 
lent viscosity, which is dominated by the nonhelical part of 
the turbulence. Calculations of this process were carried out 
by Krause and Riidiger.8 The additional turbulent viscosity 
due to the helical turbulence can be ignored. Since the right 
side of Eq. ( 10) for the mean field contains the first deriva- 
tives with respect to the coordinates, we need to consider in 
Eq. ( 11 ) only the terms which do not contain gradients of 
the mean fields. 

For the variational derivative we then find 

where the inverse operator is 

We restrict (13) to the linear dependence on the tem- 
perature gradient, and we substitute the variational deriva- 
tive into the Furutsu-Novikov formula (12), in which we 
take Fourier transforms in the variables x and x ,  and inte- 
grate over dy. We find the following expression for a qua- 
dratic combination: 

(the 1 in parentheses means that the corresponding opera- 
tors depend on t,, k, ). 

Since we are assuming that the length scale ( v i )  is much 
greater than the length scale of the turbulence, A, and since 
we are ignoring the gradient of (u, ), we can integrate over 
d (k  + k) :  

Cc 

Integrating over the angles d f l ,  we find the following 
expression for a symmetric combination which appears in 
the equation for the mean velocity: 

16n 
(vkT5,,,) +(RumT)= - - PAg (eme,.+ekemd e. lim J b 

15 1,-t  

+ 
byz ( I )  b, ( 1 )  bv ( I )  D: ( I )  

In order to calculate the inverse operators in ( 16), we need 
to know the Green's function, i.e., the fundamental solution 
of the corresponding operator. 

A Tke fundamental solution ~ ( t , )  for the operator 
~ , , ( i ) ~ ~ ~ ( i )  = (slat, + ~ k ~ ) ( a / a t ,  + x k 2 ) 2  is 

Using the fundamental solution ( 17), we find the following 
expression for a symmetric combination: 

t-s (e-vk l ( f - s ) -e -xk2( t - s )  
)G( t - s , k )<va(s , x ) ) .  

- m  (x-v) kZ 

The integration over dk and ds can be carried out explicitly if 
the specific correlation function G(t - s,k) is given. For 
simplicity, we take this function to be 

Assuming the time dependence of the mean field to be 
slow, i.e., ignoring the time derivatives of the mean field, we 
find 

h 3+3 ( ( T V )  '"+ ( T X )  I") / A t 7  (v+x+ ( V T )  'k) lh2 

( T V )  %+ ( T X )  ( I f  ( T V ) ' " ~ ) ~  ( I +  ( a X )  '" /A)  
(19) 

To calculate the second quadratic combination in expression 
( 10) for the mean field, we again use the Furutsu-Novikov 
formula: 

MM ( t ,  X) =(Bk ( t ,  X )  DX-'vjT ( t ,  X) ) +( ukT (t, X) DX-'5, ( t ,  X )  ) 

[the operator D, ( 1 ) acts on variables with subscript 1 1. 
Proceeding as in the calculation of the first quadratic combi- 
nation, we find 
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dk &hFqikqPjp 
M,(t,x)= -lim i d s  J m G ( t - S ,  k ) [  

t ~ + t  D x ( l ) D v ( l )  
e,.ikqPki ] 

4- - -  (-ik,) (u ,  (t , ,  x) >6 ( t i - s ) .  
DXDV ( 1 )  

To pursue the integration we use tke fund%m~tal solutions 
E,  ( t )  and E , ~  ( t )  of the operators D, and D,D,: 

e-vkzt-e-~kzt  

E" ( t )  =q ( t )  e-vkz', eVx  ( t )  =r ( t )  

The expression for the tensor Mk, ( t , x )  becomes 

4n k b  dk  e-vk2(t-s)-e-xhl(t-8) 

--- - & M a ( ~ a )  J-{ J ds G (t-s, k) 
3 (an)" -m (x -v )  k 2  

Using the explicit expression for the correlation function, 
( 18 ) , we finally find 

As we have already mentioned, the nonhelical part of 
the correlation function gives rise to a turbulent viscosity v, 
and a turbulent thermal diffusivity x,. In the approxima- 
tions of this paper, these properties are much smaller than 
the corresponding laminar coefficients. We can write equa- 
tions for the large-scale convection, ( lo), in dimensionless 
form, introducing as a length scale the thickness of the liquid 
layer, h; we divide times by T = h '/v and velocities by h /T. 
The average equation takes the form 

a 
= Ra SP,.V, [ p i  ( ~r - - ~)(e,e,,+e,&~..) -p2emckra e.(v.). 

d t  I 
(21) 

Here Ra = PAgh 4 / v ~  is the Rayleigh number, Pr  = v/x is 
the Prandtl number, s = (Go/30.rr)Re(A /h) is the param- 
eter of the helical turbulence, and 

h2 Pr-I 3h/ ( a v )  "+3 ( 1  + Pr-'$) + A-I ( V T )  ".(I + Pr-'-  + Pr-I) 
pi =- 

Tv I i- Pr-'" ( l + h  (TV)  -'") (Pr-"'+A ( t v )  - ' I 2 )  

and 

5 h 2 / t v  I+Pr-'"+2h ( T V )  -'Iz Pr-'> 
p2 = 7 - - (l+Pr-'") ( 1 S P r - ' )  ( l+h/  ( T V )  I") (Pr-'"+XI ( a ~ ) ' ~ )  

3. LARGE-SCALE INSTABILITY AND RESTRUCTURING OF 
THE CONVECTION 

The equations found for the mean field differ from the 
equations of ordinary convection in that they contain terms 
with the tensor E,, . These terms lead to a positive feedback 
between the toroidal and poloidal components of the veloc- 
ity and thus to a large-scale instability. In order to study this 
effect, we write the velocity field in the form 

Here (v,) and (v,) are respectively the toroidal and poloi- 
dal components of the solenoidal field of the velocity (v), 
and $ and p are respectively pseudoscalar and scalar func- 
tions. For $ and p we find the following system of equations 
from (21): 

where A,  is the Laplacian in the horizontal coordinates. It 
can be seen from this system that the toroidal and poloidal 

fields are coupled exclusively through the helicity parameter 
s. Eliminating the field t,b (for example) from the system of 
equations, we find a single equation for p: 

Boundary conditions on the function e, are found from (5)  : 

A solution of Eq. (25) under the conditions (26) can be 
sought in the following form, as in the case of ordinary con- 
vection: 

( ~ ( 2 ,  rLr t )  - e l t e t k l r ~  sin nz, (27) 

where r, is the horizontal radius vector. 
Substituting (27) into (25) and setting y = 0, we find 

the following expression for the neutral-stability curve: 

297 Sov. Phys. JETP 67 (2), February 1988 Moiseev eta/. 297 



It is easy to see that if the helicity parameters tends toward 
zero, the neutral-stability curve becomes the known curve 
for ordinary c o n v e ~ t i o n ~ ~ . ~ ~ :  

This curve has a minimum at Ram, = 271r4/4; it is reached 
at k kin = ?/2. AS a result, we find the well-known convec- 
tion cells with a horizontal dimension on the order of the 
vertical dimension. 

Incorporating a nonzero helicity s#  0 changes the phys- 
ical picture of the instability substantially. To avoid obscur- 
ing the essential features of the situation, we examine in de- 
tail the simplest case, p2 <p, .  This case is reached at small 
Prandtl numbers, Pr 4 1. 

As the parameters is increased,Ramin (s)  decreases, and 
the minimum shifts toward smaller wave numbers k,. In 
other words, the horizontal dimension of the cells increases. 
When the helicity parameter reaches the value 

the minimum reaches the value kmin = 0 (Fig. 1 ). Formally, 
this result means that the horizontal dimension of the insta- 
bility is infinite. This result in turn means a complete re- 
structuring of the convection, with the result that the forma- 
tion of one large cell (or vortex) is preferable to a set of 
convection cells for the system. The size of this vortex is 
actually set by the horizontal variations in the problem. We 
wish to stress that a vortex which results from an instability 
necessarily couples the toroidal and poloidal velocity fields, 
as can be seen from system (23), (24). As a result, there are 
topologically nontrivial streamline configurations. 

To explicitly find the field configurations and the insta- 
bility growth rate in the case s >  so, we consider Eq. (25) 
slightly above the critical value: SR = Ra - Ra(0,s) 4 1 .  It 
is necessary to introduce a horizontal variation in the prob- 

FIG. 1. 

lem; a very simple example is 

If the extent to which the critical value is exceeded is small 
and if ro$ 1, Eq. (25) can be simplified by ignoring the high- 
est derivatives in it with respect to both the time and the 
transverse coordinates (a /at 4 y )  : 

Equation (32) has the form of a steady-state Schrodinger 
equation with some effective potential well, which in turn 
controls the eigenfunctions and the growth rate of the insta- 
bility. 

With (31) as an explicit horizontal variation, we can 
reduce (32) to a problem with a centrally symmetric poten- 
tial. Setting p(r ,  ) = p(r ,  )elrnQ, where cP is the polar angle, 
we find an ordinary differential equation for p(r,  ): 

A solution of Eq. (33) is constructed with the help of La- 
guerre polynomials: it falls off exponentially at infinity. The 
argument of the cutoff exponential function determines the 
horizontal length scale of the structure which results from 
the instability (expressed in dimensional variables) : 

The eigenvalues of problem (33 ) determine the growth rates 
of the various instability modes. The lowest mode is deter- 
mined by the maximum growth rate: 

From the convection standpoint, helical turbulence can 
thus cause a substantial change in the nature of the instabil- 
ity and a complete restructuring of the convection structure. 

When helicity appears, the minimum heating level re- 
quired to trigger the convection process decreases, and the 
horizontal size of the cells increases, indicating the appear- 
ance of a factor which promotes upwelling of the light and 
warm liquid volume. One such factor is the toroidal velocity 
field in a convection cell, which is generated by the small- 
scale helical turbulence from the poloidal velocity field 
which is a usual features of convection. The toroidal field 
which arises operates through the turbulence itself to am- 
plify the poloidal convection field, thus closing the feedback 
loop. This convection transfers the heat from the warm low- 
er boundary of the layer to the upper layer more efficiently, 
and fewer cells per unit area become preferable from the 
energy standpoint in the liquid. In other words, the horizon- 
tal dimension of the cells increases. 

With increasing value of the helicity parameter, the 
transverse dimensions of the cells become progressively larg- 
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er, and at a certain finite value of the helicitv Darameter a - - 
convection with a single cell becomes preferable from the 
energy standpoint. The size of this single cell, L - (r ,h)  ' I 2 ,  is 
set by the boundaries of the heating region in the transvserse 
direction. The efficiency of the Archimedean forces and the 
suction effect of the toroidal field become comparable in 
competition with the viscous forces. Over a fairly wide heat- 
ing region, the growth rate is given by 

From the standpoint of the helical turbulence, the convec- 
tion removes the rule that the a effect cannot vanish, and it 
permits shedding of some of the turbulence energy into the 
large-scale structures which appear. 
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