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The spectrum of edge magnetoplasmons ( EMPs) in a bounded, charged 2 0  system above helium 
is analyzed. The actual profile of the equilibrium electron density, no(x), near the edge of the 
electron disk is taken into account. An approximate analytic expression is derived for the EMP 
spectrum for weak magnetic fields, corresponding to small values of the parameter y = d  /d ,  ( d  
is the screening length, and d ,  = sw, I, wheresis the sound velocity in the unbounded, screened 
2Dplasma, and w, is the cyclotron frequency). Since the no(x) profile is not flat, additional 
acoustic branches appear in the EMP spectrum. These branches are not seen in the limiting case in 
which no(x) is described by a 8-function. In addition, a numerical solution of the problem of the 
EMP spectrum for arbitrary values of y and for a semi-infinite geometry is reported. At values 
y < 1, this solution leads to results which agree qualitatively with the analytic predictions. In the 
region y 2 1, thenumerical data on the EMP spectrum agree well with the experimental data 
available. 

A recent advance in research on the dynamics of 
charged 2 0  systems was the discovery of edge magnetoplas- 
mons (EMPs), whose spectrum has several specific features 
which make it simple to identify oscillations of this sort. A 
theory of EMPs which has developed in parallel with the 
experimental research (e.g., Refs. 1-9) has succeeded in de- 
riving many interesting results on the properties of EMPs in 
a variety of limiting cases. On the other hand, the various 
existing versions of the theory use several assumptions 
which hinder the interpretation of experimental data'.2.s.9 on 
the behavior of EMPs in an electron system at the surface of 
liquid helium. For example, Volkov and M i k h a g o ~ ~ . ~  and 
also Fetter6.' postulate a 8-function (stepped) behavior of 
the equilibrium electron density profile no(x) at the bound- 
ary of a bounded, charged two-dimensional ( 20 )  system. A 
hypothesis of this sort simplifies the calculations consider- 
ably, making possible some special mathematical ap- 
proaches. The ultimate result is the derivation of some fairly 
general expressions for the EMP spectrum over broad 
ranges of the parameter values. The 8-function approxima- 
tion for the no(x) profile, however, is unacceptably crude 
when applied to a situation with electrons above helium. In a 
weak magnetic field H directed normal to the surface, the 
length scale for the damping of an edge plasmon with dis- 
tance into the electron system is d, = sw, I, where w, is the 
cyclotron frequency, and s is the velocity of a 2 0  plasmon in 
the screened plasma in the absence of a magnetic field. Fall- 
ing off rapidly with increasing magnetic field, dH becomes 
comparable to the length scale d  over which there is a sub- 
stantial variation in the profile of the equilibrium electron 
density, no(x). In actual experiments we would have d -- 1 
mm, and the relation dH = d  would hold at H values as low 
as a few tens of oersteds. Under the condition dH < d ,  the 
EMP theory must naturally incorporate the actual behavior 
of the function no(x). 

An alternative method for describing the dynamics of 
EMPs was proposed by Glattli2s9 who took the actual no(x) 
profile into account to some extent. That method, however, 
is applicable only if the magnetic field is not too strong, and 

even under this restriction it does not cover all the qualita- 
tive features of the EMP spectrum, as we will see below. 

There is accordingly a need for a systematic account of 
the effect of the real no(x) profile on the EMP spectrum in 
both weak and strong magnetic fields. The solution of this 
problem in the long-wavelength approximation is the con- 
tent of the present paper. The paper is organized in the fol- 
lowing way. In Sec. 1 we write the basic equations and briefly 
discuss the impedance approximation, in which the effect of 
the boundary and the profile can be dealt with by introduc- 
ing some effective boundary condition on the logarithmic 
derivative of the electric potential of a plasmon. Far from the 
boundary, it is described by an ordinary wave equation. In 
Sec. 2 we take up the case of weak magnetic fields, in which 
the presence of the small parameter y, proportional to H, 
makes it possible to find an approximate analytic solution of 
the system of equations describing EMPs [see (8a) for the 
definition of y ]  . In Sec. 3 we report the results of a numerical 
solution of the problem of the EMP spectrum in the long- 
wavelength approximation for arbitrary values of the pa- 
rameter y. Finally, in Sec. 4 we discuss the results and com- 
pare them with experimental data. 

1. BASIC EQUATIONS 

We consider a 2 0  electron system which occupies the 
half-plane x>O, z = 0 of a Cartesian coordinate system. 
Screening electrodes are positioned symmetrically in the 
z = + d  planes. A guard electrode with a potential W, 
which keeps the edge of the 2 0  electron system in an equilib- 
rium state, is in the planex = - 6, away from the edge of the 
electron system (Fig. 1 ). As was shown in Ref. 9, the equilib- 
rium electron density no(x) is described by the expression 

no (r) =Nn (z) , n ($1 - {th 2 [th 
2d 2d 

HereN=n,(co),sowehaven(x)-linthelimitx- + co. 
We assume that the conductivity of the electron layer is de- 
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Lo ( x )  =2nL (2)  , 1 44 
L ( x )  = - In cth -- 

n 4d ' 
The function L (x )  has a logarithmic singularity as x-0, 
and it falls off exponentially at infinity (at x 2 d).  

We now introduce the dimensionless parameter x/d 
(which we will denote by the same letter, x )  and the new 
function v(x)  = - 2.rrdeSn (x)  . In the long-wavelength ap- 

--- proximation, corresponding to the limit q-0, w-0, q/ 
w = const, the system ( 3  ), (4)  then takes the form 

FIG. 1. Semi-infinite geometry. The electrons fill the half-plane z = 0, 
x > 0. 1, 2-Screening electrodes 3-guard electrode; &profile of the 
equilibrium electron density. 

scribed in the dissipationless one-electron approximation; 
i.e., 

ioe2no (x) oc 
(Jui = r (Jry =- 0x.r 

m ( 0 2 - 0 , ' )  i o  (2)  

where e and m are respectively the charge and mass of the 
electron, and w is the EMP frequency. 

The system of equations determining the EMP dynam- 
ics relates a perturbation of the electrostatic potential in the 
z = 0 plane, 

to a deviation of the electron density from its equilibrium 
value no (x)  : 

where q is the wave vector of the plasmon along they axis. To 
first order in Sn and p, the continuity equation takes the 
form 

An electrostatic equation containing Sn and p is 

In this form, the equation ignores the effect of the guard 
electrode, which can be kept quite small by choosing an ap- 
propriate potential W for the guard ring-corresponding to 
a distance f which is large in comparison with d. In (5) the 
quantity K(k, ,k, ) is the Fourier transform to the Green's 
function of the Laplace equation describing the field of a 
point charge in the space between the screening electrodes 
under the assumption that the dielectric constant is unity 
everywhere. 

Going over to the long-wavelength approximation, we 
can quite accurately replace L, by 

(ncp')'+n'kycp=y2v ( x )  , (8 

9 ( x )  = j L ( I - D t ) Y  ( X I )  ax1.  
0 

Heres = (2.nNe2d /m ) ' I 2  is the plasmon velocity in the 
screened 2 0  plasma in the absence of a magnetic field. The 
parameter y plays a significant role in the EMP theory for 
screened systems, determining the regions of weak ( y g  1 ) 
and strong ( y 3  1 ) magnetic fields for the given problem. 
The quantity R serves as a spectral parameter in (8). The 
requirements q + 0, w - 0 acutally mean that the inequalities 
qdg1,qdH41,  andw<w, hold. 

To formulate our impedance approximation we need to 
reduce the system of equations (8)-(9) to a single differen- 
tial equation for p. To do this, we first examine the asympto- 
tic behavior of the function p ( x )  at large x > 1. In this region 
we have n = 1 and n' = 0, and an EMP is described by the 
system of equations 

from which it follows that p ( x )  satisfies the equation 
D3 

yep ( x )  = J L (x-x~) cpfl(x~) dxj. (10) 
0 

The asymptotic behavior of p at x > 1 does not depend on the 
detailed form of the kernel L(x) ;  it is determined by the 
qualitative characteristics of this kernel, e.g., its zeroth mo- 
ment and its effective radius. For the problem of seeking the 
behavior of p at infinity we can then replace L by the simple 
kernel 

n nlxl 
E ( x )  = exp (- 

After this replacement, Eq. (10) can be solved exactly (it 
reduces to a differential equation after the left and right sides 
are differentiated twice). We find 

At small values of y, the potential p and also the pertur- 
bation of the electron density, v(x) ,  are therefore propor- 
tional to exp( - yx); i.e., they vary slowly over distances - 1. This result means that at x 2 1 the equality p = v holds 
[since the function Y, which varies slowly over distances on 
the order of the effective radius of the kernel L, can be taken 
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out of the integral], and throughout the region 0  < x  < w we 
can write" 

where V ( x )  is some function which is nonzero at x  5 1 and 
which falls off exponentially at large values ofx. Substituting 
( 1 3 )  in to ( a ) ,  we find the equation which we have been 
seeking for q, and which describes the EMPs: 

After dividing by q,, we can relate ( 14) as 

It is obvious from Eq. ( 14) that for x  k 1 (where n'=: V z O )  
we are left with the following equation for q,: q, " - y2p = 0. 
The solution of this equation is a damped exponential func- 
tion q, = exp( - y x ) .  Now integrating both sides of ( 14a )  
from 0  to some value a k 1 [formally, we can extend the 
integration to the entire interval 0  < x  < W, since the right 
side of ( 14a) falls off exponentially as x -  W ,  and the inte- 
gral over it is insensitive to the choice of the upper limit, if 
the latter is greater than unity 1, we find the following value 
for the logarithmic derivative q, '/p: 

where we have, under the assumption q, ' /q,  -- y  at x  5 1, 

Both of the integrals on the right side of ( 15a )  converge 
exponentially at x  k 1 .  The first leads to a value A # 0  even in 
the case n  ( x )  = B ( x )  . 

The conditions for joining ( 15) with the damped expo- 
nential function lead to the following equation, after a factor 
of y  is cancelled out: 

Hence 

i.e., if A > 0  the EMP velocity falls off with increasing H, in 
qualitative agreement with the experimental results. 

The equation for Ref. 2 for the EMP spectrum reduces 
in our half-plane case to the impedance approximation, pre- 
sented here, with A = 0 .  Consequently, as was pointed out in 
Ref. 2, that equation yields an H-independent EMP velocity. 

2. WEAK FIELDS: APPROXIMATE ANALYTIC SOLUTION 

A. We now consider the system ( 8 ) ,  ( 9 )  under the con- 
dition y <  1, without restricting the analysis to the imped- 
ance approximation. It turns out that to within terms of sec- 
ond order in y  we can replace v ( x )  by n  ( x ) q , ( x )  on the right 
side of ( 8 ) .  Specifically, since q, and v vary slowly at x  k 1 ,  
and we have n ( x )  = 1 ,  it follows from ( 9 )  that we have 
v ( x )  = n ( x ) q , ( x )  in the region x  k 1 .  With regard to the 
region x 5  1 ,  we note that the quantity v ( x )  = n ( x ) q , ( x )  
appears on the right side of ( 8 )  with a small coefficient 

< 1, while the term on the left, proportional to n', does not 
contain this small factor. Accordingly, for 0, x  5 1 the right 

side is totally unimportant, and we can replace v ( x )  here by 
any expression which is correct in order of magnitude. Con- 
sequently, the approximation v ( x )  = n ( x ) q , ( x )  can be re- 
garded as satisfactory over the entire interval 0  < x  < 0 3 .  

Substituting v = nq, into ( 8 ) ,  and dividing by n  ( x )  , we find 
the differential equation 

whereg(x) = n l ( x ) / n ( x ) .  
The question of the boundary condition for Eq. ( 1 7 )  

deserves special attention. The natural requirement that the 
normal component of the current vanish at the free bound- 
ary of the bounded system is satisfied automatically in this 
case, since the equilibrium electron density is zero at x  = 0  
[we recall that in the case of electrons above helium we have 
n  ( x )  -x'I2 in the region x  5 d; see ( 1 ) 1 .  On the other hand, 
for any function n ( x )  which vanishes as a power of x  as 
x -  + 0  the coefficients ofq, ' ( x )  and p ( x )  in ( 17) have l / x  
singularities. Accordingly, as conditions for assistance in ex- 
tracting physically meaningful solutions of Eq. ( 17) we 
adopt the requirements that the function ~ ( x )  be regular 
near x  = 0  and that p ( x )  decay exponentially at infinity. 

It is pertinent at this point to take a look at the proce- 
dure used to linearize the initial equations in the EMP theo- 
ry. From the continuity equation ( 3 )  we have 

Imposing on ~ ( x )  the natural requirements of continuous 
differentiability at xe[O; w ) (i.e., that the electric field be 
finite) and infinite differentiability at x e ( 0 ;  cc ), we can for- 
mulate the following conditions on q , ( x ) ,  under which it is 
legitimate to linearize the continuity equation with respect 
to Sn [the inequality S n ( x )  < n  ( x )  holds for all x ~ ( 0 ;  w ) 1 .  
In the case n ( x )  = B ( x ) ,  in which the last term is absent 
from the expression for Sn/n,  we require that q, " ( x )  remain 
finite as x -  + 0 .  If, on the other hand, we haven ( x )  -xP as 
x  - + 0  withp > 0 ,  then n l / n  behaves as x as x  - + 0 ,  and 
q, " ( x )  is O ( x - I )  in any case [since otherwise the integral 
over q, " ( x )  would diverge near the origin, and the derivative 
q, ' ( 0 )  would be infinite]. Consequently, the requirement 
that Sn/n be bounded as x -  + 0  means in this case that 
q, " ( x )  is bounded near the origin, so the following condition 
holds: 

We will let this terminate our discussion of the bound- 
ary conditions on Eq. ( 17) ,  and we will move onto a study of 
this equation 

B. It is not possible to solve Eq. ( 17) for the function g 
with the real n  ( x )  profile. However, for 

Eq. ( 17) can be solved completely. The function g ( x )  from 
( 18) gives a qualitatively correct description of the behavior 
of the function n'/n calculated for the actual equilibrium 
electron density n , ( x ) .  Specifically, it follows from ( 1 ) that 
we have n ( x ) - X I "  as x - + O  and 
n ( x ) -  1 - bexp( - T X ) ,  with b = const, at x  k 1. In other 
words, we have n'/n - X - ' as x  -. + 0 and n'/n - e - ffx at 
x  =; 1 .  Clearly, the function g ( x )  given in ( 18) meets these 
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requirements with p = P, SO the approximation ( 18) will 
presumably lead to results which are correct at least qualita- 
tively. 

The successive substitutions q,(x) = e - " $(XI, 
e - w  =greduceEq. (17), withgfrom (18), toahypergeo- 
metric equation. As a result we find that the solutions of 
interest here (which are regular at the origin and which de- 
cay rapidly at infinity) form a discrete set of functions q,,, 
which we will number with the index M: 

qv ( x )  -e-TsPv 2 e W -  p=y/p, M=O, 1 , 2 ,  . . . , 
(19) 

where P g P ' ( u )  are Jacobi polynominals. These solutions 
correspond to the following values of the constant A in ( 17) : 

It is easy to verify that q,, (x)  from (19) satisfies condition 
( 17a) with A = A, from (20). It is also obvious that q, (0)  
is finite. Consequently, the corresponding value of 6n/n is 
bounded over the entire interval 0 < x < OJ , so the lineariza- 
tion of the initial equations is correct in this case. 

The EMP spectrum for electrons above helium corre- 
sponds to the valuep = P. Returning to the definition of A in 
(8a), we find the long-wavelength asymptotic behavior of 
w (q) with p = P, based on (20) : 

In weak magnetic fields, we thus have not a single 
branch but many "acoustic" branches in the EMP spectrum 
in the region qd( 1. One of these branches has a velocity 
which is the same as the plasmon velocity in an unbounded 
2 0  plasma [the approximation which we are using here is 
insufficient for determining the H dependence ofs,; as can be 
seen from ( 16), this dependence appears only in the next 
order in y]. For all the other branches, the velocities are 
found to be proportional to the magnetic field. The fact that 
the relation A, > 0 holds for all M means that the EMPs 
propagate in only one direction along the plasma boundary. 

The approximation used here allows us to answer the 
qualitative question of the role played by the profile n,(x) in 
shaping the EMP spectrum in a nonzero magnetic field. Spe- 
cifically, the function g(x)  from (18) corresponds to 
n = 1 - e-Px; i.e., the parameter p determines the rate at 
which the model function n (x)  reaches the n = 1 plateau as 
x varies from 0 (where we have n = 0) to infinity. In this 
case the limit p+ w corresponds to a transition to 
n(x)  = B(x). The EMP spectrum for arbitrary p is given by 
(21 ), in which P is replaced by p in the expression for s, . It 
follows that all the branches other than the zeroth degener- 
ate to w, = O  when we go to a stepped distribution of the 
equilibrium electron density. In other words, the 8 approxi- 
mation for n,(x) reveals only one of the branches of the 
EMP spectrum. 

3. ARBITRARY MAGNETIC FIELDS: NUMERICAL SOLUTION 

At this point we lift the restriction on the strength of the 
magnetic field. Substituting v(x) from (8)  into (9) ,  we find 
the equation 

In other words, the problem of the long-wavelength asymp- 
totic behavior of the EMP spectrum leads to a generalized 
eigenvalue problem for A = qs/w. In order to reduce the in- 
tegral equation (22) to a matrix equation, we need to choose 
some complete system of functions which is orthogonal on 
the interval (0; w ), and we need'to expand p ( x )  in this 
system, retaining the first 1 terms in the expansion. Making 
use of the results of Sec. 2, we naturally choose the following 
set of functions as this complete system: - 

Ok ( x )  = rn (1  + B + 2 k ) ] " 2 e - E x ~ ~ 0 ' 8 )  (2e-"" - 1),  (23) 

These functions are orthogonal on the interval 0 < x  < co 
with a weight 

Note of the functions Qk (x) satisfies the requirement 
( 17a). However, there is the hope that a linear combination 

1 

which solves Eq. (22) approximately, will have this proper- 
ty for corresponding values ofil, as in the derivation of solu- 
tions (19) and (20). The matrix problem was solved for 
I = 4,6, and 8 with the help of two different expressions for 
the equilibrium electron density: n (x)  from (1)  and 
n,(x) = 1 - e c n X  , which leads to the function g given by 
( 18). The results found confirm the conchlsion, reached in 
Sec. 2, that the EMP spectrum contains some additional 
acoustic branches, whose velocity is proportional to y - H at 
y 4 1. A calculation with the profile n, ( x )  makes it possible 
to compare the numerical data with the analytic results, 
(21 ) for the EMP spectrum in the region y 9 1. It turns out 
that the behavior of the velocity of the zeroth branch is de- 
scribed by s,(y) z 1 - 0.8y, and for M = 1, 2, and 3 the er- 
ror of the approximate values ofs, is less than 2%. As we go 
from I = 4-to I = 8, the velocity of the first three branches 
changes by -0.1 %, showing that there is rapid convergence 
in terms of I. 

In most of the numerical calculations which we will be 
using below for comparison with experimental data, we used 
n (x)  from ( 1 ) . We wish to emphasize that the quantitative 
changes in the calculated results which occur when the pro- 
file n, (x)  is replaced by n ( x )  from ( 1 ) ,do not affect the 
qualitative structure of the EMP spectrum. For example, the 
velocity of the first branch ( M  = 1) is reduced by -30% 
when this replacement is made, but the ratio SM+ , /SM re- 
mains essentially constant at M >  0. 

Figure 2 shows curves ofs,(y) ands, ( y) for 0.1 (y< 10 
in full logarithmic scale. We see that at large values of y the 
velocity of the zeroth branch is inversely proportional to y. 
These results were obtained for n ( x )  from ( 1) with 
< = 1.65d; as was varied from d to 2d, the values of A, 
changed by no more than 2%. In the region y?  3 the de- 
pendence s,(y) can be approximated well by 
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FIG. 2. Velocities of the zeroth and first branches of the EMP spectrum 
versus y = d /d, . ]-so( y)/s; 2-s, ( y)/s  [ s ,  ( y )  reaches a maximum 
( -0.06s) at y- 1.61. 

4. DISCUSSION OF RESULTS; COMPARISON WITH 
EXPERIMENTAL DATA 

Edge magnetoplasmons in a system of electrons above 
helium were studied experimentally in Refs. 1,2,8, and 9. In 
Ref. 1, the electron layer was a rectangle, while in Refs. 2, 8, 
and 9 it was a disk. In the case of a disk, an excitation in 
which the electrostatic potential p is described by an expres- 
sion of the form (rand 8 are polar coordinates) 

(P ( r ,  0, t )  =cp(r) exp (-iot+inO) (26) 

can be thought of as an EMP which is traveling along the 
boundary of the disk with a wave number q = nR -', where 
R is the radius of the region filled by the electrons. We do not 
know of an analogous and comparatively simple structure of 
low-index EMPs for the case of rectangular geometry, so we 
will compare the results derived above with the measure- 
ments of Refs. 2, 8, and 9. We cannot hope to find a good 
agreement between the theory, which describes the EMPs in 
a half-plane, with experimental data obtained from an elec- 
tron disk of radius of R except when the length scale for the 
damping of the EMPs along the normal to the boundary 
(which is given at small values of q by the expression 
d, = w; ' s ,  y < 1 ) is quite small in comparison with R. In 
other words, the magnetic field must be quite strong. This 
condition held for the experiments of Ref. 8. Figure 3 repro- 

~ / Z Z ,  MHz 
r 

FIG. 3. Experimental results of Ref. 8 (curve 1 )  for the mode with the 
azimuthal index n = 1 ,  along with the results of a numerical calculation 
(curve 2 )  for the semi-infinite geometry with q = R - I .  The lower scales 
show the values of the magnetic field H and of the parameter 
71 = 277 1000/o,, which was used in Ref. 8. For 7 < 5 ( H ?  80 G ) ,  curves 
1 and 2 mergeat thescale ofthis figure. CurvesF 1 andF2 are the results of 
a recalculation of Fetter's results7 for the situation of Ref. 8 

duces some of the measurements of Ref. 8, for the mode with 
azimuthal index n = 1 (a  comparison with the modes with 
n = 2, 3, and 4 shows that at a fixed magnetic field we have 
w  E n to within 1-3%; i.e., the dispersion law for the EMPs is 
essentially linear). Also shown here are a curve plotted from 
the results of the numerical calculations of Sec. 3 and a curve 
plotted from the figures in Fetter's ~aper, '  on a numerical 
analysis of the EMP spectrum in a disk under the approxi- 
mation n ( r )  = 8(R - r). As the radius of the electron disk 
[which determines the value of the parameter < in ( 1 ) ] we 
selected R = 7 mm. (An accurate determination of R would 
require knowing the potentials of the screening electrodes 
and of the guard ring, which were not given in Ref. 8. How- 
ever, the applied potentials in a similar experiment, whose 
results are shown in Fig. 2 of Ref. 2, corresponded to the 
value R = 7.4 mm. This is the justification for the choice 
which we have made.) Fetter's paper7 reports calculations 
only for the values d /R = 0,0.5, and co . In Ref. 8, the value 
was d / R  ~0.14. Curves F 1 and F 2 in Fig. 3 correspond to 
different methods of interpolating the EMP frequency to the 
value in d /R = 0.14 (F 1 shows the results of a linear inter- 
polation from 0 to 0.5; F 2  corresponds to a plausible smooth 
curve). The calculations carried out in Ref. 7 span the mag- 
netic field region H(40 G (for the n and R values corre- 
sponding to Ref. 8).  It can be seen from this figure that our 
numerical results agree quite satisfactorily with the experi- 
mental data in the region d,/R < 0.2. 

A branch of the EMP spectrum with M >  1 has yet to be 
discovered. The apparent explanation is that such branches, 
with comparatively low frequencies, are easily suppressed by 
dissipative effects. For them, the value of the parameter w r  
(7 is the momentum relaxation time of an electron), which 
determines the efficiency of one of the EMP damping mech- 
anisms is comparable to unity at M = 1-3 and exceeds it at 
M% 1. Difficulties of this sort can be avoided by making use 
of the fact that the electrons above the helium can easily be 
heating by an electric field. In the process, there motion 
along the z direction goes into states which interact compar- 
atively weakly with oscillations of the surface of the liquid. 
The result is to increase T and the value of the parameter wr. 
Furthermore, in the region 1 ( y 5 3 the velocity s, is propor- 
tional to N 'I2. In other words, ifwe wish to increase the value 
of the parameter wr we should work with electrons densities 
as high as possible. Consequently, we would be interested in 
seeing an experiment designed to detect branches of the 
EMP spectrum with M >  1. 

There is one final point we would like to discuss. As we 
mentioned earlier (Sec. 2),  the combination p ' + il yp  
should vanish rapidly as x -  + 0. Otherwise, the fluctuation 
of the electron density near the origin induced by the plas- 
mon will exceed the equilibrium density, which has an x'I2 
behavior as x -  + 0. This would mean that the linear ap- 
proximation in Sn would be incorrect near the origin. The 
eigenfunctions found in the course of the solution of the cor- 
responding matrix eigenvalue ( A )  problem exhibit the fol- 
lowing property: at y 5 1, the condition (p  '/p), = - ily 
holds to within an error of order 10% for the zeroth branch, 
while for the branches with M = 2,3, and 4 it holds to within 
a few tenths of 1 %. As y is increased, this error increases. At 
y- 10, it amounts to -80% for the zeroth branch, and it 
improves monotonically with increasing M. For the fourth 
branch it is - 10%. 

292 Sov. Phys. JETP 67 (2), February 1988 S. S. Nazin and V. B. Shikin 292 



In summary, the validity of the procedure used for lin- 
earization in the region y 2 1 remains questionable. One pos- 
sibility (and an extremely likely one) is that the method used 
here, involving an expansion in eigenfunctions, while yield- 
ing good results in a search for the integral characteristics of 
Eq. (22) (the matrix elements are calculated through the 
use of a double integration, and are not very sensitive to the 
local variations in the functions in which the expansion is 
carried out), is poorly suited for searching for such quanti- 
ties as the logarithmic derivative at the origin." Another 
possibility is that condition (17a) is indeed violated as y is 
increased. In the latter case, the situation is similar to that 
which prevails in the case of a 0-function approximation of 
n(x), where p (x )  contains an x3/' term in the limit x -+ + 0 
(Ref. 5).  In this case a contribution to Sn which diverges as 
x- + 0 comes from the term nq, " (we have n- 1 in the 0 
approximation). It would apparently be possible to avoid 
violating the inequality Sn gn by including a term of diffu- 
sive origin in the electron current. We have not checked out 
this version quantitatively, since it significantly complicates 
the numerical calculations. 

"The solution of Eq. (8) for v(x) (under the additional condition that 
there are no charges at x<O) should be of the form 
u(x) = p ( x )  + $;K(x,x')q(x')dx', where K(x,xl) is some kernel 
which is concentrated primarily in the region Ix - x'l 5 1 , x  1. The as- 
sumption that p varies slowly (q '/p- y ( 1,O < x < oo ) allows to extract 
the potential q from the integral in this expression; as a result we find for 
v(x) expression (13) with V(x)$;K(x,x')dx'. 

2'In precisely the same way, the variational method in quantum mechanics 
yields the discrete spectrum quite reliably, but it is very inaccurate in 
describing the details of the behavior of the wave functions. 
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