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Steady-state three-dimensional flows of an ideal incompressible fluid of a new class, which 
satisfies the Beltrami condition, are analyzed. A Hamiltonian formalism is constructed for flows 
with quasicrystalline and helical symmetries. The problem of the onset ofchaos in the streamlines 
is formulated as a problem of the disruption of invariant tori. The boundary of the region of 
turbulence of the streamlines is calculated. It is shown that a stochastic web can form. The effect 
of the chaos of the streamlines on the diffusion of passive particles in the liquid is discussed. The 
effect of this chaos on the generation of a magnetic field in a conducting medium is also discussed. 

1. INTRODUCTION 

Divergence-free fields have a remarkable property: the 
number of field lines inside a force tube is conserved. This 
conservation property means that the course of the field lines 
can be determined by methods similar to those of Hamilto- 
nian mechanics.' This circumstance in turn means that rapid 
progress can be made in analyzing a variety of physical prob- 
lems. A clear example is the theory of the stability and de- 
struction of magnetic The equations 

dx dy dz 
-=-=- 
B, B, B, (1.1) 

determine the course of the field lines of the magnetic field 
B(x,y,z). If we rewrite system ( 1.1 ) in a more convenient 
form, e.g., 

dx B, dy - B, 
-=- --- 
dz B, ' d z  B, (1.2) 

we see that we are dealing with a "nonstationary" problem 
for a dynamic system with a two-dimensional phase space 
(x,y). The variable z plays the role of the time. For certain 
types of fields, it is sometimes possible to put the system 
( 1.2) in Hamiltonian form. In such a case, the well-devel- 
oped apparatus of the theory of dynamic systems begins to 
operate in its full glory. The field lines of a magnetic field 
may wind around invariant surfacesz = z(x,y), or they may 
exhibit a spatial behavior which is irregular (stochastic). 
This comment by itself demonstrates the importance of the 
information obtained in this manner, since (for example) a 
random walk of a magnetic field line in space would also 
imply diffusion of magnetized charged  particle^.^,^ In partic- 
ular, the field lines in the cases of two-dimensional fields (for 
which B has no z dependence) are always regular, while in 
the three-dimensional case, generally speaking, some of the 
lines will always behave stochastically if the dependence on z 
is periodic. 

Our purpose in the present paper is to analyze the 
streamlines which are formed by steady-state three-dimen- 
sional flows. For an incompressible fluid, as for a magnetic 
field, we have div v = 0, and the equations of the streamlines 
are similar to ( 1.1 ), 

dx d y  d z  -=-=-, 
v, UII u, (1.3) 

or (1.21, 

The difference between ( 1.1) and ( 1.3) or between ( 1.2) 
and ( 1.4) results from the particular magnetic fields and the 
particular velocity fields which are of interest. 

Steady-state fields v which satisfy Euler's equation in 
the absence of external forces, 

play a special role here. The nonlinear term on the left side of 
( 1.5 ) vanishes identically for an incompressible fluid, pro- 
vided that Beltrami's property holds: 

rot v=gv, (1.6) 

where g is some scalar function of the coordinates. Every- 
where below we assume g = * 1 for simplicity. 

An example of a flow which has property (1.6) is an 
Arnol'd-Beltrami-Childress (ABC) 

u,=A sin z3-C cos y ,  
u,=B sin x+A cos z ,  
u,=C sin y+B cosx. 

Arnol'd-Beltrami-Childress flows have two important prop- 
erties. 

First, a flow of this type is a solution of the Navier- 
Stokes equation 

with a suitably chosen force F: 

Equation ( 1.9) follows from the circumstance that the ABC 
flow ( 1.7) satisfies the condition Au = - u. Furthermore, 
there is the assertion that an ABC flow is stable if the viscos- 
ity is sufficiently high.9 

Second, the streamlines of an ABC flow have the prop- 
erty of being stochastic in a region of (x,y,z) space of finite 
measure. This property has been studied numerically and 
analytically in a series of papers.'&'2 It is completely analo- 
gous to the stochastic spatial "arrangement" of the field 
lines of a magnetic field, as noted above. A chaos of stream- 
lines has a variety of consequences! It imparts a diffusive 
natu to the dynamics of passive particles in a liquid.') An 
AB Y flow leads to the generation of a magnetic field in a 
conducting medium.I4-l6 If the magnetic field is frozen in, 
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FIG. 1 .  Stable (a )  and unstable (b)  streamlines 

the diffusion of streamlines involves diffusion of magnetic 
field lines. This effect in turn means that magnetized parti- 
cles will exhibit stochastic dynamics. We are thus essentially 
dealing with a new and as yet little-studied manifestation of 
chaos-a manifestation which stems from the nonlinear na- 
ture of the dynamic equations: A regular (for example, peri- 
odic) vector field has a stochastic tangent space. This prop- 
erty can be defined in a variety of ways. Let us assume, for 
example, that a field line of the field v emerges from the point 
r, and goes to the point r, (Fig. 1 ). These points are related 
by the relation 

h 

where the operator 2 specifies the "motion" of the stream- 
line (or field line). Since the number of streamlines is con- 
served within a current tube, the onset of chaos means that 
these streamlines will become highly tangled in space (Fig. 
l b )  by comparison with regular behavior (Fig. l a ) .  Mixing 
of streamlines (or of the lines of a force field) occurs in coor- 
dinate space, as occurs for the trajectories of a particle in the 
phase space of Hamiltonian systems." 

Below we will formalize this phenomenon, which might 
naturally be called "turbulence of streamlines" (or of field 
lines of a field). This phenomenon is sometimes referred to 
as "Lagrangian turbulence" in contrast with ordinary "Eu- 
lerian turbulence." Let us outline the analysis below of the 
turbulence of streamlines. 

In Sec. 2 we introduce a new class of three-dimensional 
steady-state flows which satisfy the Beltrami's condition 
( 1.6). These flows might be called "flows with a quasicrys- 
talline symmetry" or, more simply, "flows with quasisym- 
metry." ABC flows and also two-dimensional Kolmogorov- 
Sinai flows" are particular cases of this class. For flows with 
quasisymmetry we construct a Hamiltonian formalism (Sec. 
3 ) ,  which we then use to formulate a problem of the appear- 
ance of turbulence of streamlines as a problem of the de- 
struction of invariant tori. 

In Sec. 4 we calculate the boundary of the turbulence 
region as the width of the stochastic layer near certain spe- 
cial streamlines which pass through steady-state points of 
the velocity field. 

In Sec. 5 we present yet another example of steady-state 
flows with helical symmetry, and we establish an analogy 
between a flow of this sort and the magnetic field in a toroi- 
dal system. 

In essence, the results show that a steady-state flow is 
constructed in a largely nontrivial way, although the formal 
expression for the velocity field may look totally harmless 
[see, e.g. ( 1.7) 1 .  The streamlines partition the entirecoordi- 
nate space with the flow into a system of cells. This system 

may be either simple (e.g., cubic in the case of an ABC flow 
or a hexagonal two-dimensional flow) or a very complex 
system, as in the case of a quasisymmetry of higher order. 
These cells are separated by layers of turbulent streamlines, 
whose thickness is determined by the parameters of the flow. 
This situation appears to be a fairly general one, so the well- 
known structures in the case of thermal convection or in 
other steady-state liquid flows have analogous properties. 
These questions will be discussed in the conclusion to this 
paper. 

2. QUASISYMMETRIC FLOWS 

Steady-state flows in a sufficiently large volume may 
have a regular structure of the crystalline type. The best- 
known examples here are convection rollers and convection 
cells of rectangular and hexagonal shapes. Rectangular 
structures may also arise in the case of electrodynamic con- 
vection and in two-dimensional flows of the Kolmogorov- 
Sinai type.'*.19 

The circumstance that we presently observe only struc- 
tures with crystalline symmetry (i.e., with rectangular and 
hexagonal lattices) is a reflection of their greater stability. 
Formally, the spatial symmetry and the hydrodynamic 
equations allow a considerably wider class of steady-state 
flows with a symmetry like that ofquasicrystals (for brevity, 
"quasisymmetric flows") ."-" 

In two-dimensional hydrodynamics, with v 
= ( v, (x,y) ,u, (xy ) 1, the Euler equation ( 1.5 ) can be put in 

the form 

by means of the stream function $ = $(x,y), where 

Here A, = d 2/dx2 + d '/dy2. Accordingly, if (for example) 

where f is an arbitrary function, the nonlinear term vanishes 
identically, making the solution a steady-state solution. 

Periodic structures and structures of a quasicrystalline 
type can be found by means of the function2' 

H. = cos (Re,), 

where R = (x,y), and the "hedgehog" e, is formed by q unit 
vectors: 

In the case q = 2, the contour lines of the function H ,  corre- 
spond to rollers (parallel straight lines); in the case q = 4 
they correspond to a square lattice; and at q = 3 and 6 they 
correspond to a "kagome" hexagonal lattice. These are cases 
of crystalline symmetry. With q#2,3 ,4 ,  6, the contour lines 
of function (2.4) specify a quasisymmetry. 

Since H, satisfies the equation 

it is clear that $ = H,, is one of the possible solutions of two- 
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dimensional hydrodynamics. Generally speaking, therefore, 
a quasicrystalline symmetry may be realized in two-dimen- 
sional hydrodynamics if a region of stability of flows of this 
sort is created by means of a source and viscous terms. 

In three-dimensional steady-state flows, quasisym- 
metry can again arise. Let us consider the simplified case in 
which the velocity field is determined by the expressions 

where E is a perturbation parameter. We will call this a 
"quasisymmetric flow." It is periodic in z and quasisymme- 
tric in the (x,y) plane. By virtue of property (2.6), the Bel- 
trami's condition ( l .6) holds in this case. A solution of this 
sort is accordingly a steady-state solution of Eq. ( 1.5). At 
q = 4 we have Ha = 2(cos x + cosy),  so (2.7) takes the 
form 

u,=2 sin Y+E sin z, 
uY=-2 sin 5-8 cos Z, 

v,=2 cos x+2 cos y. 

Comparison of (2.8) with (1.7) shows that flow (2.8) is an 
ABC flow (in the resulting expressions we need to make the 
replacements x - - x, y + z-/2 - y, and z- z- - z )  in this 
case). 

The symmetry of flow (2.7) with q#2, 3,4,  6 is lower 
than that with q = 2,3,4,6 (Ref. 23). The Fourier spectrum 
of the velocity components u, ,u,, ,u, has a finite number of 
harmonics, because the function H, defined by (2.4) is near- 
ly periodic. We thus meet a new type of "less organized" 
order, one example of which is the structure of schechtman- 
ite quasi crystal^.^^ 

3. HAMlLTONlAN DESCRIPTION OF STREAMLINES 

Equations ( 1.4) determine a curve, i.e., a streamline, in 
the space (x,y,z). It can be described in the following way. 
We denote by (x, ,yo ,zo ) a fixed ("initial") point through 
which the streamline passes. Its coordinates for an arbitrary 
value of z are then determined in the form of certain func- 
tions 

which constitute the solution of system ( 1.4) under the ini- 
tial conditions 

x(z=zo; xo, yo)=xo, y(z=zo; so, yo) =yo. 

Parametrization (3.1 ) by means of one of the variables z is 
convenient for introducing a canonical Hamiltonian de- 
scription of the pattern of streamlines. 

We introduce the new variable3 

which depends strongly on the choice of one streamline or 
another. For this purpose we set 

In (3.3) it is assumed that u, is a function of z alone, if we 
write expressions for x and y with the help of (3.1 ) .  The 
variable 

will play the role of a "time." 
System (1.4) for a quasisymmetric flow, (2.7), takes 

the form 

aH0 
i = - - + e s i n z ( t ) ,  a Y 

aHo 
5 ' = a ~ -  E COS 2 (71, 

where the dot means differentiation with respect to 7, and it 
is assumed that z is expressed in terms of r through inversion 
of Eq. (3.4). It is now a straightforward matter to see that 
the expression 

H=H0+&V, V=-x cos z(T)-y sin Z(T) 

is a Hamiltonian, which determines the canonical equations 

which are the same as (3.5 ). The change of variables in (3.3) 
takes the following form, according to (2.7): 

At first glance it appears that the system (3.5), (3.8) is 
identical to the equations ordinarily used in advection theo- 
ryI3 or in an analysis of the motion of passive particles, if 
suitable right sides are chosen for the equations in the latter 
cases. Actually, these equations are not identical. The t imer  
is not the ordinary time, and in general it is totally unrelated 
to the ordinary time. It is determined by Eq. (3.8) and is of a 
purely formal nature. 

The introduction of the Hamiltonian formalism (3.6), 
(3.7) makes it possible to quickly find the basic results, re- 
garding how the streamlines are constructed. In those cases 
in which Eqs. ( 1.2) have some additional symmetry proper- 
ty it is possible to construct a Hamiltonian by making use of 
this property. An example of such a construction of Hamil- 
tonian equations for toroidal magnetic confinement systems 
is given in Refs. 25 and 26. 

4. STOCHASTIC LAYERSAND WEBS 

Let us consider the streamline Hamiltonian (3.6). With 
E = 0 (the two-dimensional case) it determines a family of 
cylindrical surfaces which correspond to various values of 
the "energy" integral Ha = const = E. This integral is si- 
multaneously a stream function. A perturbation V for which 
E is nonzero but very small has the consequence that a signif- 
icant fraction of these surfaces, while undergoing a slight 
distortion in shape, remain invariant under a change in the 
time 7, in accordance with the Kolmogorov-Arnol'd-Moser 
theory.' At E = 0, however, there are singular separatrix sur- 
faces on which even a small perturbation has a pronounced 
effect. The intersection of these surfaces with the z = const 
plane produces a quadratic ( q  = 4)  or hexagonal (q = 6)  
grid (Fig. 2)  with crystalline symmetry. The cases of the 
q = 5 and 8 quasisymmetry are shown in Figs. 3 and 4. Dif- 
ferent distributions of loops are produced in different H, 
= const planes. A special pattern is obtained with H,, = 1 
(Fig. 3a). Near this value ofH,, there is a maximum number 
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FIG. 2. Streamlines which form lattice structures 
in the cases of fourfold and sixfold symmetry. a- 
The surface h = Ho (x,y) with q = 4 is a checker- 
board alternation of hills H- > 0 and valleys H, 
< 0. The contour lines (the cross sections of the 
surface at Ho = const) form a square lattice in the 
caseH,, =O.InthecasesHo = 1, - 1,and -3 the  
contour lines are closed curves; b-the contour 
lines for q = 6 [cross sections of the surface 
h = H,(x,y) = const] form a "kagome" lattice. 
The closed streamlines inside the hexagons (H, 
= 4) are cross sections of hills, while those inside 

the triangles (H,, = - 3) are the cross sections of 
valleys. 

of hyperbolic points.23 The phase trajectories, however, = 1 plane. As a result, within a thin layer AH near H, = 1 a 
probably do not form a single network or web. There are common network (web) of finite thickness forms. In this 
many discontinuities, as can be seen in Fig. 3, a and b. The sense, the value H, = 1 is a special one, since at other values 
distance between trajectories near a discontinuity is very ofHo (Fig. 3c) the phase trajectories have very few hyperbo- 
small. Accordingly, even small perturbations can easily lic points, and the formation of a common network through 
"mend" regions where the loops are not connected in the Ho slight broadening of the separatrices or ofnearby trajectories 

FIG. 3. Phase portrait of streamlines having 
fivefold quasisymmetry ( q  = 5) .  a-Con- 
tour lines near H,, - 1. All the points belong 
to the interval 0.8 < H,  < 1.2. The size of the 
square is 3 2 ~ x 3 2 ~ ;  b-enlarged image of 
the contour lines in the small square drawn 
in part a (0.9 < H,, < 1/1); c-contour lines 
near H, = 0.2 (heavy lines) and H,, = 3.2 
(faint lines). All the points belong to the in- 
terval 0.05<H,,<0.45, 3<H, ,<3 .4 .  The 
width of the square is 321~. 
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FIG. 4. Contour lines in the case ofeightfold quasisymmetry ( q  = 8 )  near 
H, = 0. The width along H, of the window is - 0.4 < H,, < 0.4. The size 
of the square is 32n-x 3 2 ~ .  

is difficult. This pattern explains the mechanism for the for- 
mation of a web under the influence of a perturbation. At the 
same time we see why there is quasisymmetry at q = 5, 7, 8, 

Figure 5 shows the surfacet'{ = Ho (x,y) for q = 5. We 
clearly see here how the saddle regions form structures of 
lines which are approximately straight. These lines produce 
the web network in Fig. 3a. 

A system similar to (3.5) was studied in Refs. 20-23. It 
was shown there that at Z ( T )  = ~ T ( I  > 1) there is an un- 
bounded network of channels (a  stochastic web) in the (x,y) 
plane within which the particle dynamics is stochastic. The 
(x,y) plane is the phase plane of the particle ( x  is the mo- 
mentum, and y the coordinate). The web has the corre- 
sponding symmetry of a periodic lattice (q = 2, 3,4, 6 )  or a 
quasisymmetry. Its thickness is exponentially small 
[ -exp( - const Y )  ] in the case E = 1. In this case the situa- 
tion is different, since z ( ~ )  is not a fixed function of T, and it 
depends on the energy of the particle by virtue of Eq. (3.8). 

Let us examine Eqs. (3.5) and (3.8) in the case E< 1. 
The change in the stream function of two-dimensional struc- 
tures is found with the help of the equations 

For definiteness we will discuss the case 

which corresponds to q = 4 in Eq. (2.4), i.e., to an ABC flow 
[for simplicity we are omitting the factor of 2 in (2.4) 1. The 
unperturbed ( E  = 0) course of the streamlines in the case 
Ho = E (Ref. 20) is 

cos x=E/2+ (1-E/2)cd[  ( l + E / 2 )  r, x ] ,  
(4.3) 

cos Y = E / ~ -  (1-E/2)  cd[ (1+E/2) T, x ] ,  

where cd = cn/dn (cn and dn are elliptic functions), and x 
is the modulus of the elliptic function, given by 

FIG. 5. Surface mapping the stream function < - H,, (x ,y )  in the case of fivefold quasisym- 
metry ( q  = 5 ) .  
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Furthermore, the nonlinear "frequency" of the unper- 
turbed motion is 

o (E) =n/2K (x) , ( 4 . 5 )  

where K ( x )  is the complete elliptic integral. 
The perturbation in (4.1 ) has its greatest effect near the 

separatrix which corresponds to the value E = 0  and to a 
square lattice in the phase plane (Fig. 2) .  Any point in the 
( x , y )  plane near the lattice lies on a trajectory with a small 
value of E. It may fall in the region of the stochastic layer of 
the web, which forms at the position of the separatrix 
network under the influence of perturbation V. Near the se- 
paratrix ( E -  0 )  we find from (4 .5 )  

o (E) -nlln (81 E I-'). ( 4 . 6 )  

The usual picture of the destruction of the separatrix 
and of the formation of a stochastic layer is determined by 
the overlap of resonances on the right side of expression 
(4.1 ) for H,: 

f io=-~  (sin x sin z-sin y cos z) , i=Ho. ( 4 . 7 )  

The resonance condition 

no  (E) =i=E, ( 4 . 8 )  

where n is an odd number, actually cannot be satisfied as 
E - 0  at any value n > 1 .  That this is true can be seen immedi- 
ately by substituting ( 4 . 6 )  into ( 4 . 8 ) .  Since the perturbation 
frequency z = E is itself determined by the value of the un- 
perturbed Hamilton H,, we have an adiabatic situation. 

Nevertheless, the effect of the perturbation is quite 
strong, although it develops slowly in time. It is related to 
repeated, and nearly periodic, crossings of the separatrix of 
the system (H, crosses zero). Let us examine this process in 
more detail. 

We rewrite system ( 4 . 8 )  in the form 

Z+E (sin z sin x-cos z sin y)  =0, ( 4 . 9 )  

where for sin x and sin y  we should substitute in explicit 
functions of the time T of the unperturbed motion ( 4 . 3 ) .  
Near the separatrix we have E+O and x+ 1 [see (4.411. 
Using the relations 

sin y% (21 El)'" sd(r, l-E), sd=sn/dn, 
sd(.r, x ) = ~ ( l - x ~ ) - ' ~  cn(.r-K, x ) ,  

and the change of variables (z - ~ / 4  +z, r - K -  T), we find 

i'f 2'"e cn (t, 1-E) sin z=0. (4 .10 )  

In the limit E - 0 ,  the function cn has a periodic se- 
quence of pulses (solitons) which are narrow (in compari- 
son with the period 2n-/w), so we can transform from Eq. 
(4 .10)  to a discrete mapping. From the exact expansion in a 
Fourier series, 

OD 

2n X'T 
cn (T, x )  = E o n  cos[ (2n+1) -4 

x ' " K ( x )  n-0 

we find, in the limit E+ 0 ,  

cn(r, l-E) - 4w x c o s [  (2nfl) nor] .  (4 .12)  

where we have used the asymptotic expression ( 4 . 6 )  for w 
and where the number 

determines the effective number of harmonics in expansion 
(4.1 1 ) for which the amplitude satisfies a, - 1 .  Specifically, 
as E -  0  we find b, cc e-  """, and the definition (4 .13)  of N 
follows. In the limit E + 0  we have N -  cc , and the expression 
on the right side of (4 .12)  can be approximated by 

Introducing the dimensionless time 

and substituting in (4 .14 )  and (4 .15 ) ,  we finally find ap- 
proximate equations of motion near the separatrix: 

d2z 8'''~ - f -sin z (-1) "6 (s-n) =O. 
as2 o 

n=-m 

The idea of using the approximation (4 .16 )  instead of 
(4 .10 )  is based on the circumstance that the width of the 
pulses (solitons) which follow periodically, representing 
function (4 .12 ) ,  is - l / N w  and therefore smaller by a factor 
of N than the period at which these pulses repeat, which is - I/w. 

It is now a simple matter to transform from (4 .16 )  to a 
discrete mapping in the ( p , z )  phase space: dz/ds = p. Relat- 
ing the variables ( p ,  ,z, ) and ( p ,  + , J, + , ) in front of the 
two sequences of &function pulses in (4 .16 ) ,  we find 

P.+~=P.+ (-11°K sin z,, ~,+~=z,+p,+,,  (4 .17)  

where the parameter K is given by 

We have obtained a so-called standard ma~ping ,~ '  in which 
the condition K k 1 determines the boundary of a strong sto- 
chastic behavior. In the case at hand, however, we have a 
different situation. 

It can be seen from (4.1 ) that over a time r-  1 equal to 
the width of the soliton the change in H,, i.e., E, is at most E .  

Accordingly, if 

there will be an intersection of the separatrix as z changes. 
Such intersections repeat quasiperiodically, causing a sto- 
chastic dynamics over the entire energy region (4 .19)  (Refs. 
28 and 2 9 ) .  The inequality (4 .19)  begins to hold before the 
condition E > W ,  which follows from (4 .18 ) ,  begins to hold. 
Accordingly, it is this inequality which determines the thick- 
ness of the stochastic layer, E - E ,  near the separatrix, where 
we have E = 0 .  The distance along z over which the chaos 
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develops turns out to be quite small in this case. Specifically, 
the chaos onset time is given in order of magnitude by 

from which we find 

This result shows that there is a finite region-a web- 
in the space (x,y,z) within which the streamlines are ar- 
ranged stochastically. Although this conclusion is reached 
here only for the particular case of an ABC flow, it can be 
generalized in a fairly simple way to the case of an arbitrary 
symmetry or quasisymmetry q. This assertion means that 
steady-state flows, while producing a definite spatial struc- 
ture, simultaneously produce regions of chaos in the ar- 
rangement of streamlines in the vicinity of this structure. A 
three-dimensional structure is a necessary condition for the 
formation of a structural chaos. 

5. HELICAL STEADY-STATE FLOWS 

In this section we introduce yet another type of three- 
dimensional steady-state flow: a flow with a helical symme- 
try of order n. Such flows are symmetric with respect to 
rotation through an angle of r / n  around the z axis. Their 
existence is again based on a representation of Eqs. (2.7) for 
the velocity in cylindrical coordinates: 

l a H o  e 
,) =--- + - sin z, 

r drp r 

The stream function Ho (r,p) of two-dimensional hydro- 
dynamics satisfies the equation 

here, and Ho is a solution with azimuthal symmetry. 
It is easy to verify that we have 

rot v=-v, 

so the Beltrami condition holds. A solution of (5.2) is 

H .  = C.J, ( r )  cos ncp, 

where C,, are coefficients, and J,, are Bessel functions. 
Certain particular cases of (5.3) are of special interest. 

If we retain only the one term with n = N in (5.3), we find a 
helical flow which is symmetric with respect to rotation 
through an angle of 2r /N in the z = const plane: 

e 
up=lNf ( r )  cos Nrp - - cos Z, 

r  

v,=J, ( r )  cos Nrp. (5.4) 

Equations similar to (5.4) arise for the magnetic field 
lines of closed confinement ~ ~ s t e m s . ~ ' ~  In the case E = 0, the 
flow has the invariant 

which is a Hamiltonian for the field lines: 

dr l d H o  drp dHo r - = -  
d~ r 3~ ' d ~  d r  ' 

The principle for introducing the parameter T is the same as 
in (3.5): 

The separatrices of the system (5.5) form a regular web 
which has 2N cells over the angle p (Fig. 6).  In two cells 
which are positioned symmetrically with respect to the cen- 
ter, the liquid flows in opposite directions. Any perturbation 
will disrupt the separatrix network, forming a stochastic lay- 
er in its place.30 A perturbation along z under the condition 
E # O  in Eqs. (5.6) and (5.7) has precisely the same effect: 

aH0 E 
rip=--- COS z=vp, 

a r  r 

where the dot means differentiation with respect to T. These 
equations can also be written in Hamiltonian form: 

1 aH dH 

H = H o - ~  (cp sin z+ln r cos z )  . 
For these expressions, as in the preceding section of this pa- 
per, the existence ofa stochastic web is established. A partic- 
ular case of helical flow (5.8) is cylindrical flow with N = 0. 
In this case, we find H, = Jo ( r )  from (5.5), and the entire 
three-dimensional problem is integrable. Specifically, we 
find from (5.4) 

E E 
VI = - sin z ,  v,=JOr ( r )  - - cos z, u,= J, (r) . 

r r 

Hence 
dr  e 
-=- sin z. 
d z  rJo ( r )  

This equation can be integrated immediately: 
t 

E cos z + J dr r l o ( r )  = const. 
0 

In this case there is no chaotic field line dynamics. 

FIG. 6 .  Phase portrait and regular web in a cross section of a helical field 
with threefold symmetry (i.e., symmetry under rotation through an angle 
of 2?r/3). 
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6. CONCLUSION 

The role played by steady-state flows has not yet been 
studied adequately. This comment applies primarily to the 
stability of these flows. On the other hand, it is clear at this 
point that there may exist conditions in the form of an exter- 
nal field (a  pump) and a dissipation under which such flows 
can be realized. Under these conditions, quasisymmetric 
flows substantially extend our conception of possible regular 
structures in a liquid. That these structures have stochastic 
structures is of fundamental importance. It is apparently this 
property of these structure which allows the appearance of a 
fast dynamo.7,'4-'6 Numerical analysis shows that the maxi- 
mum field-generation amplitude arises in regions near sad- 
dles, i.e., in specifically those regions where the width of the 
stochastic layer reaches a maximum. The generation of a 
macroscopic vortex was also found in Ref. 31, where the 
Beltrami property held on the average for the small-scale 
random velocity field. 

Furthermore, we do not rule out the possibility that 
quasisymmetric structures may turn out to be intermediate 
states in a sequence of bifurcations in the transition from the 
laminar regime to turbulence. In this case, much depends on 
the choice of boundary conditions. The use of homogeneous 
or periodic conditions will hinder the appearance of quasi- 
symmetric structures. 

Yet another property of structures with quasisymmetry 
appears important for the analysis of the development of 
spatial turbulence. As was shown above, these structures are 
generated by a separatrix grid. The destruction of this grid 
and the formation of a stochastic web in its place can occur 
not only for streamlines but also for a velocity field itself. As 
was shown in Refs. 20-22, an arbitrarily small time-varying 
perturbation disrupts the separatrices in dynamic systems 
and gives rise to a stochastic web of finite thickness. The role 
of such a perturbation could be played in actual hydrodyna- 
mics by essentially any deviation of the velocity field from a 
steady state. The Beltrami property, which is a property of 
steady-state flows, causes the nonlinear term to vanish. Ac- 
cordingly, if this property does not hold to some extent, then 
there will be a proportionate interaction of the structures 
with the additional velocity caused by the deviation of the 
actual field from a steady state. Although the Fourier spec- 
trum of quasisymmetric structures is a point spectrum, the 
existence of a finite width for a stochastic web gives rise to 
insignificant broadening of the points on the spectrogram. 
This broadening increases with increasing deviation of the 
structure from quasisymmetry, since the web broadens and 
undergoes a simultaneous distortion in shape. This may be a 

path by which a spatial chaos arises on the path to turbu- 
lence. 
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