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For certain beam charge density profiles, the self-magnetic field stabilizes nonlinear electron 
oscillations of the plasma. A new mode which exhibits a threshold-saturation effect is found. 

A topic of current interest in the effort to solve several 
problems involved in the production and transport of intense 
electron beams'-3 and in the use of these beams to excite 
oscillations in magnetized plasmas46 is the stability of high- 
ly nonlinear rf oscillations of an axisymmetric charged col- 
umn of cold plasma which is oriented along the external 
magnetic field. The longitudinal dimension of the column is 
usually much greater than the transverse dimension, and the 
system can be regarded as homogeneous along the direction 
of the magnetic field. For time-varying processes with times 
-up; ' (ope is the electron plasma frequency), the ions are 
assumed to be immobile, and the stream velocity of the elec- 
trons is assumed to be much higher than the thermal veloc- 
ity. The problem is thereby reduced to one of studying the 
nonlinear dynamics of a cold electron plasma in a radial elec- 
tric field crossed with longitudinal and azimuthal magnetic 
fields. This dynamics has been studied thoroughly only in 
the case w,, go,,, where w, is the electron cyclotron fre- 
quency. The case w,, -w,, is of interest in many applica- 
tions. In this case, the plasma diamagnetism must be taken 
into consideration, and the resultant magnetic field cannot 
be regarded as uniform. The gradient which arises in the 
magnetic pressure may cause a rapid growth of oscillations 
and the ultimate formation of discontinuities in the distribu- 
tions of the charge density and the stream velocity. Under 
certain conditions, however, the inverse process may also 
occur (an increase in the drift current reduces the pressure 
gradient) and stabilize the stream. These processes can be 
described correctly only in a self-consistent system. 

In the present paper, a description of this sort is 
achieved on the basis of the nonrelativistic hydrodynamic 
equations of a cold plasma. We derive a class of exact solu- 
tions which describe charge and current profiles that are 
stable against nonlinear, slightly nonelectrostatic oscilla- 
tions of the plasma electrons. 

1. We consider the motion of the electrons in plane ge- 
ometry, using the coordinate system x,y,z, where z and x are 
longitudinal and transverse coordinates, and the system is 
uniform along y and z. We assume that the charged stream 
with immobile ions, N, = const, is oriented parallel to the 
external magnetic field, which is longitudinally uniform. 
The motion of the electrons in this case is a drift along y and 
z, while along x it takes the form of oscillations. Under the 
assumption that the electron stream velocity is substantially 
less than the velocity of light, c (under this assumption we 
can ignore they and z components of the displacement cur- 
rent), we use the nonrelativistic hydrodynamic equations of 
a cold plasma in order to find a description of the stream: 

Here x = x1wPe/s; t = t 'w,,; x' and t ' are the coordinate and 
the time; n = Ne/Ni, where N, is the electron density; and 
w$ = 4ne2Ni/m, where e and m are the charge and mass of 
the electron. 

We express the components of the magnetic field and of 
the solenoidal electric field in terms of the vector potential 
A = (O,A, ,A, ) : 

Transforming to Lagrangian variables 7 = t, $(x,t) in Eqs. 
( 1 )-(5) (in this case we have v, = ax/&, n-' = ax/d$), 
we find 

d2x 1 d - + x + - - (BUZ+BZ2) =g+jf' ( z )  +f ( z )  , a TL 2 8'4 

where the function f ( r )  characterizes the coupling of the 
system with the source of external forces, P,, ($) and P, ($) 
are arbitrary functions of $, and the prime means differenti- 
ation with respect to 7. 

Differentiating the first equation in ( 7 )  with respect to 
$, and differentiating the second pair of equations with re- 
spect to x, we find 

Eliminating n-' ($,T) from (8) ,  (9) ,  we find two equations 
for By and B,. Incidentally, the system (8) , (9)  is also valid 
for a purely electron stream in vacuum. In the other case, the 
second term would be absent from Eq. (8 ) .  

We seek a solution of Eqs. (8) ,  (9)  in the form 
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(B, 0, and Fare  arbitrary functions). Substituting these ex- 
pressions into (9 ) ,  we find 

P,' sin O+P,' cos @=0, O'=pB-'. (11) 

Here and below, the prime means differentiation with re- 
spect to the corresponding independent variable, and p is a 
constant of integration. We can separate variables in (8 )  by 
setting 

where k and A are arbitrary constants. In this case we find 

p,' cos 0-P,'  sin @=kB sin 2 0  (BB" +BIZ) .  ( 13) 

FIG. 1. 

Finally, with A = 0 there exists a single root F,, 
- - - k - 'I3, regardless of the value of k. 

Let us find the oscillation frequencies for small devia- 
tions of the system from equilibrium positions. Setting 

F = F , , + ~ F ( T ) ,  6FKFeq, 

in ( 12), and linearizing this equation, we find 

6F" + (1-2k-1F,,-3)6F=0. (15) 
Equation ( 13 ) for B has a first integral: 

With R = 0 we have k F  :, = - 1; the oscillation frequency 
B ' 2 = ( C , t B 2 - p 2 B - 2 )  ( I + h k B Z ) - i ,  ( 14) is 0 = 3"', independent of k. With R = 1 and k > 3'/4, we 

have the following results for stable equilibrium points: 
where C, is a constant of integration. 

The system ( 11 ), ( 13), ( 14) determines the functions Fie,z l -k- ' ,  Qt=1--  ( 2 k ) - ' ,  Fz,,z--k-'" , Q 2- - (2k'"jS.  
Py , P,, B, and O unambiguously. The solution ( 10) there- 
fore describes a class of time-dependent one-dimensional 
configurations which are characterized by the three param- 
etersp, A, k. The parameterp determines the relative contri- 
bution of the Lorentz forces set up by the current-density 
components j, and j, (for p = 0 and O = r /2 ,  there is no 
longitudinal component j,, and we have By = 0) .  The pa- 
rameter A is a normalization parameter; the parameter k 
relates the spatial shape of the solutions with their evolution- 
ary characteristics. Without any loss of generality we will 
restrict the analysis to the two values A = 1 and A = 0. 

Let us examine solutions of ( 12) with A = 1. The func- 
tion of F'(F) has two branches, which describe solutions 
with positive and negative F, respectively . The shape of 
these branches depends on the sign and magnitude of k. The 
local extrema of the curve, which correspond to equilibrium 
points of the system, are determined by the equation 

FCq3-FCq2+k-' =0,  

which has one and three real roots under the respective con- 
ditions 

For Q>O, i.e., for k>33/4, the unique root is 

and its sign is the opposite of that of k. Solutions described by 
the branch containing the point Feq are periodic. On the oth- 
er branch we have F(r- cc ) -. cc . For Q < 0, one of the roots 
is negative, while the two others are positive. Since we have 
k - '  < 1 in this case, we find 

Values =: 1 - k - ' and F2,, =. - k - ' I 2  correspond to a 
stable equilibrium. Both branches of the F 1 ( F )  curve at 
k > 33/4 contain periodic solutions. Figure 1 shows the form 
of the curve F 1 ( F )  for k > 0. 

We now consider a purely electron stream, i.e., Ni = 0; 
we will compare the results in this case with those of the case 
discussed above. In the absence of ions the condition under 
which variables can be separated in (8 ) , (9 )  reduces to an 
equation for F ( r ) :  

F" +k-'F-Z=h. 

Periodic solutions exist here only for R = 1 and k > 0. In 
this case we have Fe, = - k ' I 2  and R = (2k ' I 2 )  'I2, corre- 
sponding to the left branch in Fig. 1 of the solution discussed 
above. 

We return to the analysis of the solutions with Ni #O. In 
the case of three real roots, and if we choose the constant of 
integration to be 

we find that the first integral of Eq. ( 12) can be put in the 
form 

F f Z = F - ' [ 2  ( I -F , , )  - F ]  (F-F,,)' .  
This representation is correct if F >  0, i.e., for F,, =:k ' I2 .  It  
describes, in particular, finite solutions on the right branch 
of the F 1 ( F )  curve in Fig. 1. Here F(r) is expressed implicit- 
ly in terms of elementary functions: 

where the range o f F ( r )  is k - " 2 ~ F ~ 2 ( 1  - k - ' I 2 ) .  

Since in a real plasma there will be a time scale which 
limits the applicability of our original equations, ( 1 ) - ( 6 ) ,  
we can interpret configurations with k > 0 and F(r) as quasi- 
steady configurations. 

Analysis shows that when we take account of the self- 
consistent influence exerted on the stream by the magnetic 
field set up by the drift currents of the system, there can be 
solutions whose evolutionary characteristics take the form 
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of stable nonlinear oscillations. In contrast with purely elec- 
trostatic oscillations in a longitudinal external magnetic 
field, these oscillations are anharmonic. Furthermore, for 
certain relations among the parameters of the system, the 
spectrum acquires a new branch, which exhibits a threshold 
saturation. When the threshold is exceeded, the system loses 
its stability on this branch. 

We turn now to the spatial distributions of the function 
of the system which correspond to solutions of ( 12). From 
( 1 ), (7)-(9), ( 13), and ( 14) we find the following expres- 
sions for the charge density, x, 0 ,  the velocity components, 
and the components of the electric field: 

B(r-0) 

v,=kF'(B'+CoB2-p2)'" (l+hkB2)-'"+f'(~), (17) 
v,=-B-'F-~ [ (B4+CoB2-pZ)'h (l+hkB2)-'%in O+p cos 01, 
v , = B - ' F - ~ [ ( B ~ + C ~ ~ - ~ ~ ) ' ~  ( l + h k B 2 ) - X ~ ~ ~  0-p sin 81, 

E,=k(h-F) (B4+C0B2-p2)'h (l+hkB"-"-f"(z), 
E,=F'B-'F-2 [ (B4+COB2-p2)lh (1+hkB2)-/I (1+kFB2)sin O 

+ p cos @] +flBF-' sin O 

E , = - F ' B - ~ F - ~ [ ( B ~ ~ C ~ B ~ - ~ ~ ~ ' ~ ( ~ + ~ ~ B ~ ) - ~ ~ ~ ( ~ + ~ F B ~ ) ~ O ~  O 

-p sin 01-frBF-' cos 0. 

Here O, is a constant of integration, and we have chosen 
dB /d$>O in ( 14). This choice corresponds to a specification 
of the solutions in one of the regions x>O, x<O. Expressions 
( 17) along with ( lo),  ( 12) determine an implicit depend- 
ence of the functions of the system on x and t .  At equilibrium 
we have F' = f '  = 0 and F = Feq, and the equation Ex 
+ vyB, - v,By = 0 holds. Let us assume that at F = F,, the 
distribution of the charge density n, is uniform. It follows 
from ( 17) that an equilibrium of this sort is realized only for 
A = 0 and kc, = 1 - k 'p2. In this case we have B :, 
= kp2 + x2/kF;, and the parameters k and F,, can be ex- 

pressed in terms of no: 

Fep=n0-', k=no3(no-I) -'. 
Since we have k > 0 here, we also have n, > 1. With n, > 1, 
the functional dependence k(n,) is double-valued and has a 
minimum k,,, (n, = 3/2) = 33/4.. The value k,,, corre- 
sponds to the value at which the potential well disappears 
from the right branch ofF1(F)  in Fig. 1, and the system loses 
its stability. For no> 3/2 we have Feq--kL'12, and for 
n, < 3/2 wehaveF,, z 1 - k -I; i.e., positionsofrespectively 
unstable and stable equilibria are realized. 

This solution can be used to describe oscillations in a 
ribbon-shaped diamagnetic beam with a uniform charge- 
density profile which has sharp inner and outer boundaries 
in the transverse direction. The equilibrium of a stream of 
this sort is characterized by a drift with velocities which are 
constant over the cross section: 

(Jy and J, are the total drift current and the total longitudi- 
nal current) in linearly increasing electric and magnetic 
fields. The equilibrium transverse dimension of the beam, 4, 
can be expressed in terms of n,, J,, and J,: 

lo= ( ~ , " + J z 2 ) ' ~ 2 n 0 - ' 1 ~ ( n o - 1 ) 1 ~ 2 .  

In the time-dependent case, the condition n, > 1 means that 
we have only the right branch of the F1(F) curve in Fig. 1, 
and the oscillation amplitude is limited by the condition 
F(T) < 1, which clearly holds near equilibrium points. The 
functions E x ,  By, B,, uy, v,, and n oscillate around their 
equilibrium positions, while remaining constant in sign. The 
laws of motion of the outer and inner boundaries of the 
stream are determined from the conditions for matching 
with the external magnetic field and from the condition that 
the total current in the system is conserved. 

We turn now to a study of configurations with a nonuni- 
form charge-density profile. The basic properties of these 
configurations are determined by the values of the param- 
eter k. In addition to the case discussed above, the integrals 
in ( 17) can be calculated in terms of elementary functions 
only for A = 0 and A = 1, C, = 0, andp  = 0 (the latter case 
is of no practical interest). They can be estimated approxi- 
mately, however, in the limiting cases k)  3'/4 and k-0. We 
express the parameters k, C,, and p2 in terms of the charac- 
teristics of the system in equilibrium. For definiteness we 
consider a solid beam with sharp transverse boundaries, 
- x, g x ~ x , ,  with a charge-density distribution which is 

symmetrical with respect tox. In this case, withd /dt f 0, the 
components of the velocity and of the electric and magnetic 
fields in ( 10) and ( 17) must satisfy the conditions 

where B,, is the given external longitudinal magnetic field. In 
general, the elliptic functions in ( 10) and ( 17) are double- 
valued. Solutions with dB /d$>O and dB /d$,<O, which cor- 
respond to the regions x>O and x,<0 and which can be joined 
in the x = 0 plane, satisfy these conditions if 

and 0,) = (21 + 1)~-/2 (the upper and lower signs corre- 
spondtop#Oandp=O;l isaninteger) .  I f k =  - Ik/,and 
B + 1 k / - ', expressions ( 10) and ( 17) do not apply. 

We assume that in equilibrium the following are given: 
the total drift current and the total longitudinal current, Jy 
and J,, v, (z = 0)  = u, and 

From (10) and (17) we then find 
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where ~ = B ~ + J ~ - ( B , - J y ) 2 + v $ - ~ ~ .  Solution 
( 18) withilk = 0 leads to the relations 8 = 0, which corre- 
sponds to a generalization of the condition for a Brillouin 
equilibrium to the case of a diamagnetic planar beam with a 
nonuniformcharge-density profile. Withil = 1 and k #Owe 
have %' # 0, and the values of k and F,, are determined un- 
ambiguously from ( 12) and ( 18 ) : 

For definiteness we assume u: > vf, at this point. Expres- 
sions ( 18) and ( 19) can be used to evaluate the parameters 
k, C,, p, and Fe, in various regions of values of the equilibri- 
um characteristics of the system. If the self-magnetic fields 
of the beam are negligible in comparison with B,, i.e., if Jy 
4 B, and J, < B, (the given-field approximation), we find 
from (18) and (19) 

At the same accuracy level it follows from (17) that the 
equilibrium charge density is n,, =;const, but the squares of 
the equilibrium velocities are negative; i.e., an equilibrium of 
this type cannot be realized with k < 0. 

Incorporating the self-magnetic fields of the beam leads 
to a decrease in the absolute value of g . It follows from ( 19) 
that k, while remaining negative, also decreases. In the limit 
8 - 0 we have k + 0 and Fe, + co , and expressions ( 19) are 
formally inapplicable. In solution ( 17) and Eq. ( 12) in the 
limit k-0 we should take the limit il = 0; as a result, k be- 
comes a scale factor. Let us examine solution (17) with 
il = 0. The integrals in ( 17) can be calculated in terms of 
elementary functions in the case A = 0. Assuming k = 1 for 
definiteness, we find the following expressions for the charge 
density, x, and O from (17) and (18): 

Here F(T) <O, F,, = - 1, 77 = B(Bo - Jy ) - I ,  ~ ( x  = 0)  
= 1, and E = U$ (B, - Jy ) 2 .  In equilibrium, the charge den- 

sity attains a minimum at x = 0, and it increases monotoni- 
cally as x-x,. The condition that n;' not be negative im- 
poses restrictions on the values of the equilibrium 
characteristics of the system: 

The equilibrium dimensionx, is a function of B and Jy/B,,. 
For a diamagnetic beam with Jy/B,< 1 we find, ignoring 
v$/B : in comparison with Jy/B,, 

x b ~ 2 ' "  (Jv/Bo)'" (1-B:). 

The quantity O, (x,) is determined under the same as- 

sumptions by the product of the parameters vf,/B : and J,/ 
B,: 

8 , , ~ n / 2 + v , o Z J , / ~ 0 3 .  

In the course of the oscillations, the charge-density profile 
retains its shape (Fig. 2), and the amplitude is limited by the 
condition n > 0. The velocity components vy and v, and the 
field components Ex,  By, and B, oscillate around their equi- 
librium values, while remaining constant in sign. The dimen- 
sional frequency of the small oscillations is 

where ope and w, are related by the condition for a Bril- 
louin equilibrium. 

Finally, we consider the limiting case k ,  3'/4. We re- 
strict the analysis to a stream with v, = J, = 0. In this case, 
F, and k in ( 19) are expressed in terms of the ratio v; B :/ 
g :  

F.,=I-vo2BoZ/8, I<= (v02BOZ/8)- '  ( l - ~ ~ ~ B ~ ~ / 8 ) - ~ .  

The value of k is large under the conditions v: B :/g < 1 and 
v:~: /g- l .  Withv:B:/8<1 wehaveFe9 z 1 - k -',and 
a solution is realized in a region with a stable-equilibrium 
point on the right branch of the curve of F1(F). With v:B: 
- 8 we have F,, =: + (k )  - ' I 2 ,  and the solutions with v:B 
k 8 and v ~ B  5 $ correspond to the left branch and to a 
region with an unstable equilibrium point on the right 
branch of the Ff(F) curve. Let us find the charge-density 
profiles and the nature of the oscillations as functions of the 
values of v:B :/$, Jy, and B,. With k% 33/4 and B, - Jy k 1 
in thex(B) integral, we have kB ' > 1, and it can be evaluated 
approximately. From ( 17) we have 

where (=Fe9(B,- J Y ) B p '  and l ( x = O )  = 1. The 
charge-density distribution is monotonic for 
F,, (B, - J, ) (B<Fe,B,. From (21 ) we find the equilibrium 
values n; ' (x  = 0)  and n; ' (x  = x, ) to be 

For the left branch of the F1(F) curve, the condition viB : 
> 29 with n,, > 0 and v; < 1 leads to Jy < B,v:/2. In this case 
we have n, (x = x,) > n, (x  = O), but in contrast with the 

FIG. 2. 
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case of a Brillouin stream, discussed above, the quantity n,, 
(x  = 0) may be either greater than or less than unity. For 
uiB i < f?? the equilibrium transverse dimension x,,, is de- 
termined primarily by the second term in expression (21) 
forx(B1: 

~beq~Bo-'(J,/2B,) '". 

The nature of the oscillations is completely analogous to that 
in the case discussed above. In other words, all quantities 
oscillate around their equilibrium positions; the charge-den- 
sity profile retains its shape; and the oscillation amplitude is 
limited by the applicability condition for solution (17). 

On the right branch of the F1(F) curve the condition 
ugB 6 < f?? with u i  < 1 leads to 

The degree of nonuniformity of the charge density is deter- 
mined by the ratio Jy/B,, and the deviation from charge 
neutralization is determined by the ratio viB i/Z?. The first 
and second quantities are large if Jy <B, and u ~ B  i - g ( a  
point of unstable equilibrium), while they are small if J, 4 B, 
and u i  B i < 8 (a  point of stable equilibrium). As before, we 
have n, (x = x,) > n,, (x = O), and n,, (x = 0)  can be ei- 
ther greater than or less than unity. The transverse length 
scale of the beam under the condition viBt < 8 is deter- 
mined by the first term in expression (21 ) for x (B)  : 

In the case uiB i 5 f?? it is instead determined by the second 
term: 

x,-2-'B,-' [ I -  (1-J,lBo)2]". 
The condition that Jy is bounded from above rules out the 
possibility of a complete reversal of the longitudinal magnet- 
ic field. In a time-varying situation, the behavior of all the 
functions except Ex and n is similar to that discussed above. 
The density profiles retain their shape only if F(T) < 1; this 
condition corresponds to small oscillations around the sta- 
ble equilibrium point. With F(T) = 1 in (17) and (21 ), we 
have n = 1 and Ex = 0; at F(T) > 1, the maximum of the 
density profile shifts away from the boundary toward the 
median plane of the stream (Fig. 3 ) .  The difference 
F(T) - 1 reaches its highest positive values in the course of 
oscillations around an unstable equilibrium point. It follows 
from expression ( 16) in this case that as the oscillation am- 
plitude increases, and as the system approaches the position 
of an unstable equilibrium, the time spent in the state with 
F(T) < 1 increases without bound. 

This analysis shows that in a study of slightly nonelec- 
trostatic, nonlinear, rf oscillations of a plasma in crossed 
fields a self-consistent consideration of the drift currents im- 
plies the existence of solutions with stable evolutionary char- 
acteristics. In contrast with purely electrostatic harmonic 

FIG. 3. 

oscillations in a longitudinal external magnetic field, for 
which the spatial distributions of the functions do not influ- 
ence the temporal characteristics of the system, the stable 
nonequilibrium oscillations in this case correspond to com- 
pletely definite profiles of the densities of the charge and the 
current. In equilibrium, they have a clearly defined cylindri- 
cal nature. In the case of a slight diamagnetism of the stream, 
the incorporation of the drift current leads simply to an an- 
harmonicity of the oscillations. The presence of an ion back- 
ground, combined with a strong diamagnetism of the 
stream, gives rise (for certain relations among the param- 
eters) to a new oscillation branch, which exhibits a thresh- 
old-saturation effect. The shape of this branch near an unsta- 
ble equilibrium point and the evolutionary characteristic of 
the charge-density profile are evidence that weakly nonlin- 
ear helical waves of the envelope soliton type can exist in this 
region. 
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