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It is shown that second-sound temperature waves, which are very difficult to observe by the 
method of light scattering in ordinary dielectrics, are much easier to observe in a displacive 
ferroelectric with weakly damped soft mode. The point is that the second-sound waves are formed 
in ferroelectrics via participation of soft-mode phonons that interact relatively strongly with one 
another and with acoustic phonons. In the upshot, the frequency interval in which second sound 
exists turns out to be much broader than in ordinary dielectrics at the same temperatures. This is 
attributed to the relatively large damping of the soft-mode phonons in ferroelectrics. The second- 
sound wavelengths in ferroelectrics can be of the order of the wavelength of visible light. The 
conditions for propagation and damping of second sound in a ferroelectric are quantitatively 
analyzed for temperatures on the order of the phonon soft-mode energy. The second-sound 
velocity turns out to be of the order of that ofordinary sound, and the scattering intensity can be 
100 times smaller than the Mandel' shtam-Brillouin intensity at the same temperature. 
Contributing to the experimental separation of light scattering by second sound can be the 
dependence of the differential scattering intensity on the external field, due to the field 
dependence of the soft-mode frequency. 

1. INTRODUCTION 

Second sound, or wavelike propagation of the tempera- 
ture of the phonon gas of a crystal, is a classical photon- 
kinetic phenomenon. It was extensively investigated theo- 
retically (see, e.g., Refs. 1 and 2). Its experimental study, 
however, encountered substantial difficulties: the only 
"classical" dielectric in which second sound could be ob- 
served was crystalline NaF.3,4 It is therefore vital to search, 
for new physical situations in which weakly damped tem- 
perature waves can be observed. The purpose of the present 
paper is to show that such a situation can be realized in a 
ferroelectric of the displacive type with a weakly damped 
soft mode. We shall show that by experimentally investigat- 
ing the propagation and damping of second sound in ferro- 
electrics one can determine important thermodynamic, and 
particularly kinetic, characteristics of phonons. This per- 
tains above all to soft-mode phonons. 

The best conditions for experimentally observing this 
phenomenon, as they seem to us now, will be discussed in 
detail in Sec. 6. 

It must be stated that additional sound-like excitations 
were found by Schneider and Sto115 and by Sakhnenko and 
Timonin6 in theoretical studies of various models with struc- 
tural phase transitions. The results of our present paper are 
compared in Sec. 7 with those of Refs. 5 and 6. 

2. "FREQUENCY WINDOW OFSECOND SOUND IN A 
FERROELECTRIC 

It is known (see, e.g., Refs. 1 and 2) that the frequency 
of a weakly damped phonon-gas temperature wave should 
satisfy the inequality 

where r, and rN are the characteristic relaxation times of 
the quasimomentum and of the energy in the phonon gas. 
Neglecting phonon scattering by impurities and defects, 
7, -' = rU -' is the frequency of the umklapp processes and 

T, ' is the frequency of the normal collisions. Let us show 
how different the conditions ( 1 ) are in ordinary dielectrics 
and in phonon-soft-mode displacive ferroelectrics. 

In an ordinary dielectric,' at temperatures T (here and 
below, in energy units) higher than or of the order of the 
Debye temperature O, we have 

(finD -O, Mw2, is the characteristic atomic energy in the 
crystal, and m and w are the mean values of the atom mass 
and of the speed of sound in the crystal), and the condition 
(1)  for the existence of second sound cannot be met. At 
T g  O both frequencies decrease rapidly as the temperature 
is lowered: 

The difference between the rates of their decrease comes into 
play only at sufficiently low temperatures. Both quantities 
become in this case substantially lower than their values at 
Tk O. This is manifested by the fact that the obtained sec- 
ond-sound window is of rather low frequency. It is just the 
low frequency which makes the very existence of the window 
most vulnerable from the standpoint of impurity scattering. 
The point is that impurity scattering, together with umklapp 
processes, ensures relaxation of the phonon-gas quasimo- 
mentum density. If rd -' > 7, -' (rd - ' is the characteristic 
frequency of the phonon-impurity collisions) we have 

- 
r, ' zr, - ', so that owing to the smallness of r i  ' even low 
densities of impurities and defects can cause narrowing of 
the window (1 ), and if rd - ' z r N P 1 ,  which is also easily 
attainable because T; ' is small, they can cause it to vanish 
completely. 

The phonon spectrum of a displacive ferroelectric is 
known7 to differ from that of an ordinary dielectric in that 
the frequency of one of the optical modes at the center of the 
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Brillouin zone is anomalously low. The presence of such a 
mode, called soft, in the ferroelectric lattice-vibration spec- 
trum uncovers new possibilities for the existence of weakly 
damped temperature waves. The point is that it is possible to 
separate in such a phonon spectrum a group of soft-mode 
long-wave phonons and relatively long-wave acoustic phon- 
ons, for which the energy and quasimomentum relaxation is 
effected at any temperature by different processes with dif- 
ferent characteristic collision frequencies. The condition 
( 1) for the existence of second sound can therefore be met 
for this group of phonons at arbitrary temperatures. By arbi- 
trary temperature we mean an arbitrary ratio of Tand 0, but 
assume, naturally, that at the temperatures considered the 
soft mode remains soft (Ro<RD ) and weakly damped 
( 0 , s  r ) ,  where R, and r are the frequency and damping of 
the soft mode at the center of the Brillouin zone. Since the 
phonon kinetics was investigated in detail only for cubic fer- 
roelectrics, we shall pay attention to just these crystals, al- 
though the general reasoning can be applied to other com- 
pounds with structural transitions that are accompanied by 
softening of the phonon soft mode. 

As shown by Balagurov, Vaks, and Shklovskii,' the 
damping of the phonon soft mode of a cubic ferroelectric is 
determined by the interaction between low-energy phonons 
of the long-wave part of the spectrum (soft-mode phonons 
with long-wave acoustic ones). 

It must be assumed in the framework of the theory of a 
weakly anharmonic crystal that the main contribution to the 
damping r of the soft mode is made by three-quantum pro- 
ce s~es ,~  so that the following estimate is ~ a l i d ~ * ~  

This estimate corresponds to the contribution of the elec- 
trostriction interaction. It is therefore obvious that this in- 
teraction should ensure the same damping of acoustic phon- 
ons having frequencies on the order of a,. The contribution 
(2) is also predominant for these phonons. This can be veri- 
fied by comparing ( 2 )  with the contributions made to the 
damping by the interaction between the considered phonons 
and the thermal ones. These contributions, T T ,  can be esti- 
mated from the known equations for the damping of high- 
frequency sound'32 

We see thus that there exists a group of long-wave phon- 
ons (soft-mode phonons and acoustic phonons with fre- 
quencies of order a,) whose damping builds up in the main 
through mutual scattering. Since these are long-wave phon- 
ons, the quasimomentum is conserved in all these pro- 
cesses.'' The intrinsic temperature of this group of phonons 
can set in after substantially shorter times (rN = l/r) than 
the relaxation of their quasimomentum. This means that the 
condition for existence of second sound is met for the intrin- 
sic temperature of this group. 

To determine the size of the "frequency window" for 
second sound in a ferroelectric, we must estimate the charac- 
teristic quasimomentum-relaxation times for the indicated 
group of phonons. 

Consider the contribution of the umklapp processes to 
the quasimomentum relaxation. Of basic imporance to us is 
the question of the minimum size of the "window." In our 
estimate of the characteristic times of the umklapp process 
we shall see to it only that they are not undervalued. Accord- 
ingly, any process in which a short-wave phonon partici- 
pates will be regarded as umklapp. The contribution to the 
damping of the considered group from the interaction with 
the short-wave phonons yields the upper bound of T; '. 

For the characteristic frequency of the umklapp pro- 
cesses with participation of an acoustic phonon having a fre- 
quency on the order of no at T 2  O we can, in accordance 
with the foregoing, use the estimate ( 3 )  for T,, i.e., 

A similar calculation for the characteristic frequency of 
umklapp processes with participation of a soft-mode long- 
wave phonon also leads to the estimate (5). 

At fiRo 5 T<@ it is necessary to take into account in the 
estimate (5)  the additional factor exp( - @/T), which re- 
flects the decrease of the number of thermally excited short- 
wave phonons on cooling, and we have in place of (5 )  

Comparing (2) with (5)  and (6) ,  we see that at T 2  @ 
second sound can exist in a band in which its frequency can 
change by rU/rN =:OD /ROzX1'2 times (X is the dielectric 
susceptibility of the ferroelectric. For (3% T)fiR, this 
change can be even larger, by X"2exp(@/~) times. Thus, 
the "frequency window" of the second sound in a ferroelec- 
tric is situated at rather high frequencies (in an ordinary 
dielectric, the upper limit of the "window" is of the order of 
RD T/Mw2( T / c ~ ) ~  and can be quite broad, at any rate for a 
pure dielectric, even near the Debye temperature O. 

3. EQUATIONS OF PHONON HYDRODYNAMICS 

For a quantitative description of second sound in a fer- 
roelectric one can set apart two situations that call for differ- 
ent approaches. These are the cases TzfiR, and BR,< T, @. 
In the first case the second sound is a temperature wave of 
the entire phonon system of the crystal, and in the second it 
is a wave of local temperature of phonons with energies on 
the order of fiRo, interacting strongly with one another and 
weakly with all other phonons. We present in this paper a 
quantitative description for TzfiR,. In this case the 
phonon-hydrodynamics equations can be obtained from the 
kinetic equation for acoustic phonons and soft-mode phon- 
ons by the standard Chapman-Enskog procedure (see, e.g., 
Ref. 2). We seek the phonon distribution function in the 
form of a Planck distribution with drift 

N = ,r ( k, + nonequilibrium additions, ( 7  ) 

where V is the drift velocity, k the wave vector of the phon- 
ons, and the frequency of the phonons of the branch j. 

The equations are of standard form1*' 
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a2T 
C!/'+TS div V-xct - 

ar,ar, - 0, 

where Sand Care respectively the entropy density and heat 
capacity of the phonon gas, while the tensors Dl,, All, vl~,, 
and xi, are expressed by equations analogous to those of or- 
dinary dielectrics, but with the soft-mode branches included 
in the phonon spectrum: 

where I , ,  are the linearized collision operators of the umk- 
lapp and normal processes, respectively. The operators are 
assumed to act on the functions of the wave vector and on the 
numbers of the phonon branch to the right of the operators. 
The symbol ((  . . . ) )  denotes the following subtraction op- 
erator: 

which ensures that expressions ( 10) and ( 1 1 ) are finite and 
single-valued, We use here and below the abbreviated nota- 
tion 

51-51kj, No-n(QkdT). 

Just as in the case of an ordinary dielectric, the main 
damping otthe sevnd sound is described by the kinetic coef- 
ficients +, x, and? (Refs. 1 and 2) :  the contribution of the 
terms with + or x to the d~mping is proportional to w2r,, 
and that of the terms with A is independent of frequency and 
is proportional to T; '. In the cubic crystal of interest to us, 
the second-sound velocity w, is connected with the coeffi- 
cients of Eqs. (8) and (9) by the known re la t i~n ' .~  

Although the phonon spectrum used to calculate D, S, 
and Ccontains a soft mode and therefore differs substantial- 

ly from the long-wave acoustic spectrum of an ordinary di- 
electric, estimates show that the second-sound velocity in a 
ferroelectric should be of the usual order of magnitude, i.e., 
of the order of the velocity of ordinary sound. 

In the derivation of Eqs. (8)  and (9)  we have neglected 
the temperature dependence of the soft mode. We shall show 
that in the framework of our analysis this dependence can 
indeed be neglected. Inclusion in (7) of the temperature de- 
pendence of the spectrum frequencies does not interfere with 
the Chapman-Enskog procedure, but leads to additional 
terms 

in Eq. (8) and 

in Eq. (9),  where 

The new kinetic coefficients P and q describe the additional 
contributions, proportional to w2, to the second sound 
damping. Standard order-of-magnitude estimates (see, e.g., 
Refs. 1 and 2)  yield for (13) and (14) at Tzzfin, 

where a is the characteristic interatomic distance. 
We wrote down (18) using (2 )  and the estimate 

obtained for TsfiSZ, from the results of Ref. 11. As seen 
from ( 18), 5 is of the same order as the correlation param- 
eter, so that 64 1 in the region where the Landau theory is 
valid. The damping contribution due to the coefficient q has 
a ready physical int,erpretation it is the analog, for second 
sound, of the Akhiezer mechanism, or of the fluctuational 
mechanism of ordinary-sound ab~orption.'.'~ This can be 
verified by comparing ( 14) with the known expression for 
the contribution from the Akhiezer mechanism to the vis- 
cosity tensor.' They differ by the interchange afl /aT-an/ 
au, (u, is the strain tensor). 

Comparison of the contributions mad: by q and jl to the 
second sound with the contributions from x and .i. shows that 
the former are small relative to the parameter 6. Since the 
kinetic equation used by us in the derivation of (8) and (9) is 
itself valid in terms of this parameter for the considered 
group of phonons, retention of the terms with@ and q in the 
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phonon-hydrodynamics equations is in exaggeration of the 
accuracy. 

It is easy to verify that the correction AC ( 15) to the 
heat capacity is also small compared with C in terms of the 
parameter I/<. It should therefore also be neglected for the 
same reason. 

4. LIGHT SCATTERING BY SECOND SOUND 

Observation of light scattering by second-sound oscilla- 
tions induced in an ordinary dielectric is a rather complicat- 
ed experimental task.4 In the case of thermal second-sound 
oscillations, the problem becomes in fact experimentally in- 
soluble in view of the low scattered-light intensity and of the 
need to use very small scattering angles ( 5 1 0 - ~ ) . ' ~  We 
shall show that a much more favorable situation obtains in a 
ferroelectric, both with respect to intensity and with respect 
to the scattering geometry. 

The need for using very small scattering angles was dic- 
tated by the "low-frequency" position of the existence win- 
dow in an ordinary dielectric. As shown in Sec. 2, the "exis- 
tence window" of the second sound in a ferroelectric is 
located in a higher-frequency region. The upper limit of the 
"frequency window" is a quantity of the order of the soft- 
mode damping r and easily reach several times ten giga- 
hertz. This means that it is possible to have in a ferroelectric 
a weakly damped second sound with a wavelength of the 
order of that of light, and consequently light can be scattered 
by this excitation at angles that are not small. 

We consider now the question of the intensity of the 
scattered light. A rough estimate for the intensity of light 
scattering by second-sound fluctuations is provided by the 
Landau-Placzek relation, by the Fabelinskii formula, l4 or by 
the modified Landau-Placzek r e l a t i ~ n ' ~ . ' ~  for the central- 
peak intensity. Strictly speaking, however, the intensity of 
the central peak when it is split into a second-sound doublet 
does not remain constant. The point is that the central peak 
can be regarded, with good accuracy, as stemming from iso- 
baric fluctuations of the entropy, while the fluctuations cor- 
responding to second-sound excitations are no longer of iso- 
baric origin. Allowance for this circumstance not only 
changes the result for the scattered-light intensity (although 
the intensity should remain of the same order, except in spe- 
cial "compensation" conditions, as in Ref. 13), but leads 
also to an additional anisotropy of this intensity (i.e., to a 
dependence on the direction of the transferred wave vector). 

Confining ourselves, as above, to the case of a cubic 
crystal, we start from a coupled system of second-sound and 
elasticity-theory  equation^'.^: 

glecting this effect, these modes are a temperature wave of 
amplitude Tq and three acoustic waves with amplitudes A'") 
(S = 1,2,3), 

where els' (q)  are the displacement polarization vectors in 
these waves. We determine the true normal modes of the 
system ( 19), U'" and .rq , in first order in the coupling con- 
stant of the equations; this constant is of the order of aT, and 
the modes are connected with A and Tq by the relations 

where 

the 7,, mode corresponds to excitations of second sound with 
a wave vector q. The differential (with respect to the direc- 
tions) extinction coefficient for scattering of light by this 
mode, can be written, in analogy with Ref. 14, in the form 

where A is the wavelength of the light in the crystal, d and d' 
are the polarization vectors of the incident and scattered 
light, ( . . . ) denotes thermodynamic averaging over a crys- 
tal of volume v, dOis the solid-angle element, E ,  is the dielec- 
tric tensor at the optical frequency, 

Using the known relations for the probability of the 
fluctuations of the thermodynamic quantities and relations 
(20), we easily obtain 

The term in the square brackets can be neglected compared 
with unity: order-of-magnitude estimates show that it is an- 
harmonically small. For the considered case of a displacive 
ferroelectric at Tzfifl,, this term is of the order of the corre- 
lation parameter 6. Ultimately, using relations ( 16)-(19), 
we can write 

where 

where u is the acoustic displacement vector, c the elastic- 
moduli tensor, p the density, a and K = c,, + 2cI2 the ther- 
mal-expansion coefficient and the hydrostatic compression 
modulus, respectively, and C,  the heat capacity at constant 
strain. Let us consider for this system the normal modes that 
propagate with a wave vector q. Equations ( 19) are coupled 
as an anharmonically small effect of thermal expansion. Ne- 

In the ease of an elastically isotropic medium Nil 
a n, n, , the dependence of N,, on n for a cubic crystal is more 
complicated and reflects the cubic anisotropy of the elastic 
spectrum. 

The anisotropy of the elastic spectrum is thus manifest- 
ed as an additional anisotropy of the intensity of light scat- 
tering by second sound fluctuations. Such an anisotropy ap- 
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pears in pure form in scattering in which the polarization is 
not changed and the vectors d and d' are parallel to a four- 
fold axis. Then 

where y is the angle between the oscillation polarization vec- 
tor in the "longitudinal" sound wave, while n, w,, and wT 
are the velocities of the "longitudinal" and "transverse" 
acoustic waves propagating along n. 

It can be seen that the angular dependence of the differ- 
ential exctinction coefficient, described by (27), drops out in 
the case of an elastically isotropic spectrum, for in that case 
w, , w,, and yare independent of the vector n (which lies in 
a plane Id) and y = 0. 

The physical cause of the manifestation of the elastic- 
spectrum anisotropy in the anisotropy of the intensity of 
light scattering by second-sound fluctuations can be easily 
explained: since a ~ / a T a n d  a a ~ / a u ,  are more likely to be of 
the same order, the amplitudes of the strains accompanying 
the thermal waves are important for the scattered-light in- 
tensity. Clearly, the amplitude of a strain corresponding to 
any acoustic wave connected with a thermal one by Eqs. 
( 19) is larger the smaller the velocity difference between the 
second sound and the corresponding ordinary sound. The 
size of the "hydrostatic compression component" in the 
wave is also important. The structure of the tensor Nil (26) 
is just a manifestation of these two features. Only the first 
factor, naturally, plays a role for the directions along which a 
purely longitudinal acoustic wave can propagate. Assuming 
in the foregoing example that the second sound propagates 
along twofold and fourfold axes, it is easy to obtain for the 
ratios of the corresponding scattered-light intensities 

We present also an equation for the intensity ratio I , ]  and C ,  at a temperature equal to the energy of the soft-mode 
of light scattering by second sound for dlldfll[ 1001 and phonon limit. Let us show how this estimate was obtained. 
rill [0101, and for the ratio I M B  for longitudinal sound in the First, we took the scattering source to be opto-elastic inter- 
same geometry actions. Second, it is clear from the reasoning behind the 

derivation of (25) that Eq. (29) should contain a "thermal 
(28) expansion coefficient" and a "thermal expansion coeffi- 

cient" and a "heat capacity" for a local temperature of phon- 
Note that to stay consistently in the framework of the weakly 
harmonic model of displacive ferroelectrics (see, e.g., Ref. 
8 ), then I[  ,,] / I , ,  =: Tc, , a2 /C ,  turns out to be of the order 
of the correlation parameter 6 for T=:fiR,. 

Recall that the analysis in the present section pertains 
to low temperatures, T4O.  The relations obtained are 
equally valid for ordinary dielectrics and for low-tempera- 
ture ferroelectrics. In the former case they are apparently 
only of academic interest, in view of the extreme difficulty of 
experimentally observing light scattering by second-sound 
fluctuations in an ordinary dielectric. For a low-temperature 
ferroelectric, these relations hold for a situation that is real- 
istic from the experimental point or view, but in the relative- 
ly narrow temperature interval TzfiR,. As indicated in Sec. 
2, high-frequency second sound can exist in a ferroelectric in 
a considerably larger temperature interval, but for TSfiR, it 
will already be a local-temperature wave of soft-mode phon- 
ons and of acoustic ones with energies =fin,. Clearly, in this 
case the intensity of the light scattered by the second sound 
can no longer be directly connected with macroscopic char- 
acteristics of the crystal, as was the case at TzfiR,. We do 
not analyze here the case T%fiR, quantitatively. We can 
suggest, however, a rough estimate for the ratio of the inten- 
sity I , ,  of light scattered by "high-temperature" second 
sound to that of Mandel'shtam-Brillouin scattering by 
acoustic phonons, I,, , at the same temperature: 

where a(  T = fiR,) and C ,  ( T  = fiR,) are the values of a 

ons with energy on the order of fin,. To estimate such a 
"thermal expansion coefficient" we used the known 
phonon-thermodynamics re la t i~n ' .~  

and also the order-of-magnitude relation 

which is valid for soft-made phonons. The summation and 
the integration in (30), however, were only over phonons 
with energy 5 fiR,. The "heat capacity" for the local tem- 
perature was estimated similarly. 

5. INFLUENCE OF DEFECTS ON SECOND SOUND IN A 
FERROELECTRIC 

Just as in the case of an ordinary dielectric, scattering 
by crystal imperfections of a ferroelectric should cause nar- 
rowing of the second-sound "frequency window" on ac- 
count of the decrease of 7,. The interaction of the (soft- 
mode) phonons with defects in ferroelectrics is more 
noticeably pronounced than that of acoustic phonons having 
the same frequency in ordinary dielectrics. l 6  The increase of 
the characteristic frequency of the second-sound window on 
going from an ordinary dielectric to a displacive ferroelectric 
should therefore be accompanied by a decrease of the 
phonon-impurity collision times r, . One can visualize a situ- 
ation in which a wide high-frequency window exists for sec- 
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ond sound in an ideally pure ferroelectric but not in a real 
ferroelectric with defects. Let us estimate the defect density 
for which weakly damped second sound can exist in a ferro- 
electric. In view of the great variety of crystal imperfections 
(charged, uncharged, or polarized point defects; disloca- 
tions, crystallite boundaries, and others) it is desirable to 
obtain such an estimate for a realistic physical situation. To 
assess the scale of the discussed effects, however, we obtain 
an estimate for the simplest case of point defects that intro- 
duce a strong but local perturbation both into the kinetic 
energy and in the matrix of the lattice force constant (the 
mass of the subtituent atom differs substantially from that of 
the substituted one, and the force constants are noticeably 
altered near the defect). 

Estimating rd for soft-mode long-wave phononons, we 
use a scheme described in Ref. 2. It is easy to verify by using 
Eqs. (9.16)-(9.19) and (12.4) of Ref. 2 that the contribu- 
tion to r; ' from the perturbation of the kinetic energy by the 
considered type of defect is of the same order as for acoustic 
phonons in an ordinary dielectric: 

where Nd is the atomic concentration of the defects. 
The contribution to 7, ' from the perturbation of the 

force constants by the matrix defect can be estimated from 
relations (9.25), (9.28), ( 12.2) and ( 12.4) of Ref. 2, but 
with allowance for the fact that the soft mode is an optical 
phonon [it suffices to retain in (9.25) the zeroth expansion 
term of the exponential]. This contribution turns out to be 
substantially larger than (3  1 ) and than the corresponding 
contribution for acoustic phonons of the same energy in an 
ordinary dielectric, and is given by 

The defects permit second sound to exist in a ferroelec- 
tric if the proper (anharmonic) damping r of the soft mode 
is much larger than their contribution r; ' to the damping. 
For the considered type of uncharged point defects this con- 
dition, with allowance for (2)  and (32), is equivalent to 

6. POSSIBILITIES OF OBSERVING SECOND SOUND IN 
FERROELECTRICS 

Promising substances for observation of second sound 
excitations in light scattering are the virtual ferroelectrics 
SrTiO, and KTaO, at temperatures Tz20-40 K. The soft 
mode in these crystals has at these temperatures a frequency 
f l , ~  T/fi and a damping on the order of several cm-', so 
that second sound with frequencies w 100 GHz is possible. 
In especially clean crystals, the lower limit of the second- 
sound existence window is determined by umklapp pro- 
cesses [Eq. ( 6 )  ], and the window itself can reach 3-4 dec- 
ades. The actual lower limit of the window should probably 
be determined by phonon scattering from the crystal imper- 
fections. At sufficient density of the latter, there may be no 
window at all. We present an estimate of the concentration 
N, of point defects of the type considered in Sec. 5, a concen- 
tration for which second sound can exist. Using (33) and 

putting MW'Z lo5 K, we get N, 4 It must be noted 
that this estimate is patently approximate. To estimate the 
real second-sound existence window for a specific crystal it 
is desirable to have detailed information on the phonon-im- 
purity scattering. This information can be extracted, for ex- 
ample, by theoretical reduction of the thermal-conductivity 
data.4 

The intensity of light scattered by second-sound fluctu- 
ations can be calculated from the equations of Sec. 4. The 
ratio of the integral intensity of a second-sound line to one 
from thermal acoustic phonons is given, in order of magni- 
tude, by the correlation parameter 6 = r / f l O z O /  
Mw2z  low2. Note that for second sound in an ordinary di- 
electric this ratio would be determined by the substantially 
smaller parameter ( T / 0 )  ,T/Mw2. The relatively high loca- 
tion of the existence window in frequency makes it possible 
to use a geometry with relatively large scattering angles in 
experiments on light scattering from second sound. 

The crystals mentioned are not the only possible objects 
for second-sound observations in ferroelectrics. The follow- 
ing must be taken into account when searching for other 
objects. First, second sound can exist also in dielectrics with 
sufficiently high transition temperatures (see Sec. 1). Sec- 
ond, although we have discussed in the present paper only 
cubic ferroelectrics, a similar situation with second sound 
can possibly be realized in uniaxial displacive ferroelectrics 
with a weakly polar soft mode (see, e.g., Ref. 17). 

We point out one more circumstance that may be use- 
ful, in our opinion, for experimental observation of second 
sound in a ferroelectric. Application of an electric field or a 
change of temperature can cause a strong change of the soft- 
mode frequency. Such a restructuring of the phonon spec- 
trum can strongly influence second-sound excitations. For 
example, these excitations should vanish if the soft-mode 
frequency is greatly increased. 

7. COMPARISON WITH THE RESULTS OF REFS. 5 AND 6 

Let us compare our results with those of Sakhnenko and 
Timonin4 on additional sound-like excitations that can ap- 
pear in the light-scattering spectrum. In Ref. 6 was consid- 
ered an initial phonon spectrum containing only a single 
branch-a soft mode with an isotropic dispersion law 
f12(k) = + ck2; it was established there that an addi- 
tional excitation appears here, with a dispersion law 
w 2  = ck which is weakly damped at w)max(T, f l ; / r ) .  It 
is known that such kinetic properties of phonon spectra are 
exceedingly sensitive to details of their spectra,' and it is 
therefore immaterial, from our point of view, whether the 
indicated excitations will exist in a crystal with a real aniso- 
tropic soft-mode spectrum. If such excitations do exist, they 
are weakly damped for the considered ferroelectric with 
phonon soft mode only at rather high frequencies w ) flo/g. 
~ c t u a l l y , ~ '  however, they can be only short-wave with fre- 
quencies Z 100 cm-'. It is clear that objects such as weakly 
damped excitations should not be manifested in the scat- 
tered-light spectrum. Thus, different soundlike excitations 
are investigated in the present paper and in Ref. 6. Only the 
temperature waves considered in the present paper can oc- 
cur as weakly damped in experiments on light scattering. 

The soundlike mode recorded in the computer experi- 
ments of Schneider and S t ~ l l , ~  judging from all the forego- 

21 1 Sov. Phys. JETP 67 (I), January 1988 V. L. Gurevich and A. K. Tagantsev 21 1 



ing, is likewise not second sound in its classical meaning 
(see, e.g., Ref. 2) .  This is indicated by the following circum- 
stances: 1 ) the high-frequency w 2 r of the recorded mode; 
2)  the mode is recorded also when the phonon spectrum 
constitutes only one optical branch with 15% variation of 
the frequency over the Brillouin zone; clearly, in such a 
phonon spectrum the times to establish the temperature and 
the quasimomentum should be of the same order, i.e., a win- 
dow for the existence of second sound should be present. 

Just as in the case of Ref. 6, the high-frequency charac- 
ter of the soundlike excitation recorded in Ref. 5 makes it 
difficult to observe it by the light-scattering method. 

"The importance of taking this circumstance into account in the analysis 
of the thermal conductivity of ferroelectrics was first pointed out by 
Levanyuk et a/." 
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