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An effective method is proposed for the description of the Anderson metal-insulator transition in 
a disordered d-dimensional system. The method becomes exact in the limit of large d. The density- 
density correlator is calculated. In the dielectric region this correlator decreases exponentially at 
large distances, with the localization length in the critical region inversely proportional to the 
square root of the proximity to the transition point. The correlator has a power-law decrease at 
the transition point. In the metallic region, the density-density correlation has a diffuse form with 
a diffusion coefficient that decreases exponentially as the transition point is approached. 

1. INTRODUCTION 

A useful model for the investigation of Anderson local- 
ization and for metal-insulator transitions is the granulated 
disordered metal model. The use of the supersymmetry 
model' permits the problem to be reduced to a study of the 
supermatrix a model for a lattice. Notwithstanding the anal- 
ogy with spin models, investigation of the metal-insulator 
transition within the framework of the supermatrix a model 
is not simple. This is primarily due to the inapplicability of 
the mean-field approximation that explains the main fea- 
tures of the transition in ordinary spin systems. The super- 
matrix a model was recentlyz4 investigated for a Bethe lat- 
tice, where an exact solution was successfully obtained. It 
was shown with the aid of explicit calculations that a metal- 
insulator Anderson transition exists, and the correlation 
functions were obtained. Although the results of the calcula- 
tions were physically quite reasonable, their validity for real 
d-dimensional lattices still remains questionable. 

We propose below an approximate method that permits 
a description of the properties of the considered a model that 
corresponds to the model of a d-dimensional granulated 
metal. The method consists of singling out two sites and cal- 
culating the interaction between them exactly, while the in- 
teraction with the remaining sites is replaced by interaction 
with an effective medium. Self-consistency conditions are 
specified for this medium. An analysis is carried out of a 
perturbation theory that permits separation of a class of dia- 
grams whose sum yields in fact the described approximation. 
The approximation considered becomes exact in the limit of 
high dimensionality of the space. The density-density corre- 
lator is calculated within the framework of this approxima- 
tion. It is shown than an Anderson metal-insulator transi- 
tion exists. The diffusion coefficient in the metallic region 
decreases exponentially as the transition is approached. The 
density correlator in the dielectric region decreases exponen- 
tially with distance. The localization length is inversely pro- 
portional to the square root of the distance to the transition 
point. The fundamental integral equation that describes the 
character of the transition coincides with the corresponding 
equation obtained for the model with a Bethe lattice. At the 
same time, the density-density correlators have different 
forms for d-dimensional space and for the Bethe lattice. 

2. PERTURBATION THEORY. NEED FOR PARTIAL 
SUMMATION 

The kinetics of a system of metal granules is described 
by the supermatrix a model for the lattice. The effective La- 
grangian in this model is of the form'-3 

The first term in ( 1 ) describes the interaction of the 
granules, the second term is the Lagrangian of the isolated 
granules, w and v denote the frequency and density of states 
in the granules, Str is a supertrace, V is the volume of one 
granule, and the parameter yo takes on values 2 or 1, depend- 
ing on whether scattering with spin flip is taken into account 
or not. The supermatrices Q and A in ( 1 ) have a dimension- 
ality 8 X 8 and are equal to 

cos 8 
Q=uQoU, Qo = ( . A is i1'8 1 

- L sin 0 - cos Ci 

The structure of the matrices u, v, and I$ depends on the 
presence of symmetry with respect to time reversal and of 
central symmetry. A superior bar denotes the charge conju- 
gate of a matrix. All the necessary equations can be found in 
the review by Efetov.' 

The calculation of the density-density correlator 
K(r,,rz) reduces in the model considered to calculation of 
the correlation function 

where F [Q ] is defined in Eq. ( 1 ) . The superscripts in (3) 
number the blocks explicitly set apart in (2), and the sub- 
scripts number the elements in these blocks. 

The model described by expressions ( 1 ) - (3)  is valid for 
any type of lattice. The most widespread method of investi- 
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gating a a model of type (1)-(3) is perturbation theory in 
the limit of large J,,, a theory corresponding to low-tempera- 
ture expansions in spin models. One method of obtaining the 
perturbation-theory series is parametrization of the matrix 
Q, say with the aid of the following expression: 

Next, expanding in expressions ( 1 ) and (3)  in powers 
o fH  (retaining in the exponential the terms quadratic in H) ,  
and calculating the Gaussian integrals, we can find all terms 
of the series. Such a procedure is used in fact in the renormal- 
ization-group method in a space of dimensionality 2 + E 

(Refs. 5, 6 and 1 ). Such an expansion, however, leads to 
errors due to replacing by infinity all the limits of integration 
over the elements of matrix B in (4).  A more correct expan- 
sion method is proposed in Ref. 7. This method was used in 
Ref. 8 to investigate the model defined by ( 1 )-( 3). The key 
point was the separation of the mean value (Q ) = A and its 
expansion in powers of the deviations from the mean. We 
rewrite accordingly F  [Eq. ( 1 ) ] in the form 

Regarding the second term of (5) as small and expand- 
ing with respect to it in the integral ( 3 ) ,  we can write down 
the perturbation-theory series. The first-order terms were 
written out explicitly in Ref. 8. (Owing to the omission ofthe 
contribution of one of the diagrams, it is incorrectly stated in 
Ref. 8 that the calculation results contradict the prediction 
of the one-parameter renormalization group.) The next 
terms of the series turned out to be small compared with the 
preceding ones in the limit of large JU or of the large interac- 
tion radius, 

Notwithstanding the decrease of the flrst terms of the 
per turbation-theory with increase of order, starting with a 
certain number that depends on the value of JU, the pertur- 
bation-theory series terms begin to increase, The reason for 
this increase is the non-compactness of the group of matrices 
Q, and no such increases occur in compact a models. The 
importa'nce of the non-compactness was discussed already in 
Refs. 2 and 3. An increase of the terms of the perturbation- 
theory series is observed in the calculation of any of the mean 
values of the product of several matrices Q. To estimate the 
magnitude of the terms of the perturbation theory series we 
choose any two neighboring sites 1 and 2 and calculate the 
integral 

A definition of the matrix k can be found in Refs. 1,2, and 3. 
Expanding in terms of F, in ( 6 ) ,  we can write down all 

the terms of the series. It is convenient to represent each Jv in 

the graphs by a thin line joining the sites i and j. Let us 
estimate the contribution of graph a in Fig. 1. This graph 
consists of n lines joining the sites i and j, and corresponds to 
the expression 

-A)  (Qa-A) 1)" exp [2J (STr AQ, + STr AQ*) I dQ, dQa. 

The calculation in (7)  must be separately continued for an 
orthogonal, unitary, and symplectic ensemble. The growth 
mechanism of the perturbation-theory series terms is the 
same for all three ensembles; we confine ourselves therefore 
only to the unitary one. Integrating over the matrices u and v 
[Eq. (2)  ] (the explicit form of these matrices and the defini- 
tion of 6 ,  can be found in Refs. 1-3 and separating only the 
largest significant region 6 , )  1, we get 

The region 6, ) 1 makes the main contribution to L, at 
large n )S. In this limit, the integral in (8)  can be calculated 
by the saddle-point method. 

The saddle-point value is 

Integrating in (8)  near the saddle-point (9) we get 

L,= (-l)'.(n-1) I (Ji2/J)" (43) ch2 83. (10) 

The value of I L, I increases with increase of n if n is large 
enough. An essential condition of this growth is noncom- 
pactness of the model, as a result of which a nontrivial sad- 
dle-point exists at large n. Calculation by expa~ding (4)  in 
terms of H correspondsr"to calculation near 8 = 0, which 
does not allow account to be taken of the saddle point (9). 

A similar calculation can also be carried out for models 
that are invariant to time reversal, The perturbation-theory 
series terms increase also in calculations of other correlators, 
different from I [Eq. (6) 1. Of course, besides the diagram 
la, there exist also other graphs of the same order in 5 ' I .  It 
will be shown below that at high dimensionality d of space 
these graphs have additional smallness in terms of d - '. It is 
difficult to assume, however, that they can cancel out the 
obtained increasing term also at d -  1, since their contribu- 
tion should depend on the lattice geometry. The contribu- 
tion of graph a of Fig. 1, however, does not depend on the 
geometry. 

The difficulty with the divergence of the perturbation- 
theory series can be circumvented by partial summation 
over repeated lines and by converting to graphs that contain 

a 
t + ..* 

b - 
FIG. 1. 
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only effective lines. Denoting the effective line by a thick bar, 
we have for it the equality illustrated by graph b of Fig. 1. 
Carrying out such a summation in all the perturbation-theo- 
ry graphs, we can change to a new expansion whose graphs 
contain only effective lines. An analogous partial summa- 
tion is also the starting point of the calculation, from conven- 
ience considerations, of the partition function in the Ising 
model.9 In the localization problem, however, this partial 
summation is essential. 

The need for summing the sequence of graphs b of Fig. 1 
can be arrived at also with the aid of a "high-temperature" 
expansion, in which the second term of ( 1 ) is the principal 
one, and first is the perturbation. In this case the singled-out 
sequence of diagrams diverges most as w -0, since the nth 
order contains the quantity n!w -,". 

Of course, partial summation does not solve the prob- 
lem exactly, and some approximations are necessary. We 
propose in the next section an approximation that describes 
the Anderson transition and becomes exact in the limit of 
high dimensionality of space. 

3. PRINCIPAL APPROXIMATION 

Carrying out the partial summation described in the 
preceding section, we can represent the function 
- K(rl,r,)/2?r 2Y2 in the form of a sum of graphs, each of 

which contains only thick lines. Typical graphs are shown in 
Fig. 2. To calculate the contribution of any particular graph 
it is necessary to set each line with ends at the sites i and j in 
correspondence with the expression exp(2JU StrQ, Qj ). Each 
black circle at site i corresponds to exp[b i(w + is) 
avV Str AQ, 1 .  The left-hand light circle differs from the 
dark one by an additional factor (Q  :: ),, and the right one by 
a factor - (Q:: ) j .  After writing down the corresponding 
expression we must integrate over Q in each site. 

The graphs of Fig. 2 correspond to the case of a simple 
cubic d-dimensional lattice with nearest-neighbor interac- 
tion; this is the case studied below. The length of each seg- 
ment on any graph is equal to edge length of the elementary 
cube, and any two sites can be connected by not more than 
one such segment. 

The graphs obtained in this manner can be classified in 
accordance with the number of the closed loops. For exam- 
ple, graph 2a contains no loops, while graph 2b contains one 
loop. Denoting by K, (rl,r2) the sum of all the n-loop 
graphs, we represent the exact density-density correlator 
K(rl,r2) in the form 

It is impossible to calculate K, (r, ,r2) for arbitrary n. 
The simplest approximation accounts in Eq. ( 11 ) for only 

- - - -  

a b 

FIG. 2. 

the zero-loop graphs Ko(rl,r2). In a real three-dimensional 
space this approximation cannot be checked, since the dia- 
grams with loops are not small compared with those without 
loops. The approximation becomes exact, however, in the 
limit of high dimensionality of space. 

To check this statement it would be necessary to esti- 
mate the contribution of the graphs with loops and com- 
pared with that of graphs without loops. The explicit calcu- 
lations are quite difficult. It is simpler to recall the initial 
perturbation theory in F,, to which graphs with thin lines 
correspond, and see when merging several lines into one is 
more expedient than formation of a loop. By way of example 
we compare graph b of Fig. 3 with graph a of this figure, the 
latter obtained from the former by merging points 3 and 1. 
The cause of the difference is that graph 3b contains one 
mor5integration with respect to Q. Changing over to vari- 
able 0 of (2)  gives rise to an additional Jacobian. The volume 
element in terms of these variables, say in the unitary model, 
is proportional to'v2 

If J i n  (5)  is small, the significant A, are large and are of 
the order of J-' (we consider the limit w-0). Each addi- 
tional integration with respect to Q introduces a small J.  
This statement remains in force for an orthogonal or a sym- 
plectic ensemble. It can be verified, by comparing more com- 
plicated graphs, that for small J i t  is more expedient to merge 
the lines than to force loops. This permits the validity of the 
zero-loop approximation to be expressed ultimately in the 
form 

It will be shown below that the Anderson transition occurs 
in the region in which ( 12) is valid if the dimensionality d of 
the space is high. 

It remains now to sum the contributions of the zero- 
loop graphs. We note for this purpose that the graphs for 
Ko(r,,r2) take the form of trees that grow out of sites of 
broken lines joining the points r ,  and r, (see, e.g., Fig. 2a). 
In the approximation considered we assume that the trees 
and branches are not linked with one another, so that all the 
trees are independent. From each site on the broken line can 
grow m - 1 trees, where m is connected with the dimension- 
ality of space by the relation m = 2d - 1. Each branch of the 
tree can have m branches of its own. 

The structure of the trees obtained allows us to write an 
integral equation that determines their contribution to 
$(Q), where Q pertains to the base of the trees 

where 

k 4 'n" 1 4  

a b 

FIG. 3. 
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N( Q, Q') =exp ('lla STr QQ') , 

z ( Q ) = V - ' ( Q )  exp ('1.p STrAQ), 

Equation ( 13) coincides with the corresponding equation 
written for a Bethe lattice.24 

The correlator Ko(rl,r2) can be conveniently calculated 
by introducing the function P(r,Q),r = r, - r,, which 
differs from K(rl,r,) by the absence of the factor 
- 27 2 d y o ~ ( Q ) $ ( ~ ) Q l , ' 2  at the point r, and by the fact 
that no integration with respect to Q is carried out at the 
point r,. In accordance with this definition we have 

In the zero-loop approximation we can obtain for 
P(r,Q) the equation 

where 

1 r-r' 1 =I,  
w(r-r1)={; lr-rfi+l. 

The third term in the left-hand side of ( 15) takes into ac- 
count the fact that two segments of a broken line cannot 
coincide. Equation ( 15) differs somewhat in form from the 
corresponding equation for the Bethe The reason is 
that the geometry of a d-dimensional lattice differs from that 
of a Bethe lattice even at large d. 

Equation ( 13) can be obtained from ( 1 ) by using the 
following self-consistency procedure. We single out in ( 1 ) 
two arbitrary sites and describes the interaction between 
them, as before, by the first term of ( 1) .  We replace the 
interaction of these sites with the remaining ones by an inter- 
action with a certain effective medium. If site 2 corresponds 
to a matrix Q ', then the interaction Y with the medium de- 
pends only on Q and is proportional to m. The self-consisten- 
cy condition takes then the form 

Putting $( Q) = exp [ Y(q) 1 we arrive at Eq. ( 13 ) . 
In kinetics it is necessary to write the self-consistency 

condition for quantities that characterize transitions 
between globules. This is precisely why it is necessary to set 
apart not less than two sites, since single-site quantities de- 
scribe only the density of states. This approximation is close 
in meaning to the effective-medium approximation used in 
percolation theory,'' and can play the same role in localiza- 
tion theory. It is reasonable to call it likewise the effective- 
medium approximation. 

The foregoing approximation is similar to the Bethe- 
Peierls approximation used in the theory of phase transi- 

tions. The Bethe-Peierls approximation becomes exact on 
the Bethe lattice. It is therefore not surprising that Eq. ( 13 ) 
coincides with the corresponding equation obtained for the 
model with the Bethe lattice. 

4. CALCULATION OF THE DENSITY CORRELATOR 

The remainder of the calculation of the correlator K(r)  
is similar to that given in Ref. 3. The essential difference is 
that (15)  is not a recursion equation. To solve it we must 
change to the Fourier representation 

As a result of this transformation we obtain 

h 

The operator M acts on an arbitrary function p ( Q )  in the 
following manner: 

Next, expanding F(~,QJ,  as in Ref. 3, in the eigenfunctions 
p, (Q)  of an operator M such that 

we reduce the correlator K ( k )  to the form 

K(k) =2n2v2yoV Z ~ . [ 1 - h  ~ ( k )  + m ~ ~ ] - ' ,  ( 19 )  
E 

Equations ( 13), ( 19), and ( 19a) coincide with the cor- 
responding equations of Ref. 3. The entire difference 
between the considered d-dimensional lattice and the Bethe 
lattice is contained in Eq. ( 13). The behavior of the density 
correlator K ( r )  is determined by the form of the solution 
$(Q) of Eq. (13) .  

It was shown in Refs. 2 and 3 that there exists a critical 
point such that at a <a, there exists a solution $(Q) = 1 in 
the limit as w -0. At a > a ,  we get a nontrivial solution 
$(Q)  that decreases as 0, - co . The quantity a,  is the bound- 
ary between the metallic ( a  > a ,  ) and insulating ( a  < a ,  ) 
regions and is defined by equations that take, when the in- 
equality ( 12) [or the equivalent am < 1 ) is taken into ac- 
count, the form 

= l (orthogonal ensemble 

' I '  2 (2) I,, - = 1 (unitary ensemble) 
=c 

3 " 2 
x m  ($1 111 - = i (symplectic ensemble). 

a, 
(20)  

Equation (21 ) has the usual diffusive form. The diffusion 
coefficient D is expressed in terms of the solution $ of Eq. 
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In the first equation of (20), y is a number of the order 
of unity. Note that transition points a, (20) lie in the appli- 
cability region ( 12) of the zero-loop approximation if m ) 1. 
Equations (13), ( l a ) ,  (19), and (19a) yield an explicit 
expression for the density correlators in both the metallic 
and the insulating regions. 

In the metallic region, the spectrum of the operator 2 
( 17) is discreteSz4 In the limit of low frequencies, just as in 
the Bethe-lattice models, it suffices to retain in the sum over 
Ein ( 19) only the term with largest eigenvalue Eo. The equa- 
lity of Eqs. ( 17) and ( 18) to the corresponding equations of 
Refs. 2 and 3 permits the use of the value of Eo obtained in 
these references. Of greatest interest is the behavior of the 
density correlator in the region of small k and w .  Expanding 
in ( 19) with respect to k and retaining in Eo only the zeroth 
and first terms of the expansion in w ,  we get 

K(k) =4nv/ (Dk2--io). (21) 

( 13), which depends only on the matrix elements 8 ,8 ,  and 
8, [Eq. (2)  1.  The explicit form of the diffusion coefficient 
depends on the model considered, but is equal in all cases to 
the diffusion coefficient for a Bethe lattice. Using the results 
of Refs. 2 and 3 we have 

where i = 1 and 2 for the orthogonal and symplectic models, 
i = 1 for the unitary model, and b is the distance between the 
nearest sites. The function $, in (22) is the solution of Eq. 
( 13 ), taken for w = 0. In the orthogonal model, the Jacobian - 
J is equal to 

I= [ch (81-'8,) -cos 01-'[ch (0,+0,) -cos 01 -2  sin3 13 sh 8, sh 82, 

and the integration in (22) is over the region 0 < 8 <T, 
8, >O, 8,>0. 

The Jacobian of the symplectic model is obtained from 
(22) by making the interchanges sinh is sin and cosh F? cos, 
and the integration region is defined by the inequalities 
O < 8 , < ~ , 0 < 8 , < ~ / 2 ,  8>0 .  

Finally, in the unitary model 

I= (ch el-cos 0)-', 13~>0, o c e c n .  ( 2% ) 

Equation (22) permits calculation of the diffusion coeffi- 
cient D for all a ( 13) in the metallic region. 

If a is large enough, the solution $of Eq. ( 13) takes the 
rather simple form 

$ (Q) =exp ('/la STr AQ) . (23) 

Substituting (23) in (13) and estimating the resultant er- 
rors, we can find the validity region of the solution (23) : 

Substituting (23) in (22) and integrating, we get 

ficient for the considered system of granules. In the deriva- 
tion of Eq. ( 13) it is essential to use the condition ( 12), 
which corresponds to the case a4  l/m. Of course, Eq. (25) 
is valid also in the region a 2 l/m. In the latter, however, the 
effective-mass approximation does not lead to correct ex- 
pressions for the quantum corrections to the classical 
expression (25). On the other hand, to calculate the quan- 
tum corrections in the region a 4 l /m it suffices to solve Eq. 
(13) more accurately. The explicit form of the diffusion co- 
efficient near the transition point a, was obtained with 
Bethe-lattice models in Refs. 2 and 3. The equality of Eqs. 
( 13) and (22) to the corresponding equations of Refs. 2 and 
3 allows us to write for the dependence of the diffusion coef- 
ficient on a for small a - a, ; 

wherep and q are parameters that depend on a, and on the 
symmetry of the considered model. The function (26) is 
very steep, and as the transition point is approached the dif- 
fusion coefficient D decreases more rapidly than any power 
of a - a , .  Equation (26) is valid for any high dimensionali- 
ty d, although the values ofp, q, and a, are different in each 
case. 

In the di5lectric region, a <a, ,  the eigenfunctions q, of 
the operator M ( 17) have a continuous spectrum. To calcu- 
late the correlator K(k) with the aid of Eqs. ( 19) and ( l a )  
we can use also the results of Refs. 2 and 3, where an expres- 
sion was obtained for ( 19a) in the limit of low frequencies: 

where a ( & )  is a function of a certain variable E for which an 
explicit expression is given in Refs. 2 and 3 in the form of an 
integral of a combination of the functions $ and p,. 

After some transformations similar to those carried out 
in Refs. 2 and 3 we obtain 

m 

2nv a' ( e )  e2 de 
~(t )=-  J 

- 2 0  , 1-W(k)E(e)+mEa(e) ' (27) 

where E ( E )  = r, ( a ) .  The form of the functions I', (a) was 
obtained in Refs. 2 and 3 [in Ref. 2 this function is designat- 
ed I',, (a) 1. Equation (27) solves in principle the problem 
of calculating the density correlator in the dielectric region. 

An important quantity that characterizes the decrease 
of the wave function is the functionp- (r, g) (see, e.g., Ref. 
12) 

P ( n I )  (28) 
diser 

where u, and Z?, are the eigenfunctions and energies of the 
initial Schrodinger equation, the angle brackets denote aver- 
aging over the impurities, and the summation is over the 
discrete levels. In the granule system considered, the depen- 
dence on the energy Z? reduces to a dependence on a ,  which 
is a function of 8. We replace accordingly the argument 2 
in the function p m  by the parameter a .  Knowledge of the 
density correlator permits calculation of p _  (r ,a)  : 

Equation (25) is none other than the classical diffusion coef- 
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where K ( r , t )  is the density correlator in the coordinate and 
temporal representation. 

In the limit of large distances, r )  b, the calculation or 
pm ( r , a )  is greatly simplified, since only small values of E 

become significant. Expanding in terms of E and k in (27 ) , 
and using ( 2 9 )  and the fact that a ( & )  is finite for E - 0 ,  we get 

2nv [I?, (a)  I "ba2 (0) 
p.. (1; a) = c*l* 

x j  [ e 2 + ( 4 1 ) - 2 ] ( d - " " G { r [ ~ r + ( 4 ~ ) 2 ] " ) ~ 2 d s .  ( 3 0 )  

where 

1-mro (a )  
c=--- "'f k!"' I ._, , (41)-' = r o b )  bz 

The function G( p )  in ( 3 0 )  satisfies the equation 

where A, is the d-dimensional Laplacian. 
Solution of the equation 1 - m r , ( a )  yields the transi- 

tion point a, (20).'" The length lin ( 3 0 )  therefore becomes 
large as the transition point is approached: 

In the regions r )  I and b < r  < 1 it is possible to obtain 
explicit asymptotics of the function pm ( r , a ) .  For r $ l  the 
integral ( 3 0 )  is governed by large values of the argument 
r(E2 + 1 2 ) 1 / 2  of the function G and by the small quantities 
E -  ( l r ) '  < I  -2.  Expanding (E' + 1 - ' ) I i 2  in powers of E 

and using the asymptotic form at p$ 1: 

we get 

Comparison of ( 3 3 )  with ( 2 8 )  leads to the conclusion 
that the wave functions are localized, with I the localization 
length. Equation ( 3 3 )  with I as defined in ( 3 0 a )  is valid for 
all a<a, .  

In the region b <r<I ,  which exists if la, - a1 <a,, the 
quantities 1  - 2  in the integral of ( 3 0 )  can be neglected. In this 
limit we obtain - 
p- ( r ,  a )  = A r d - ' ,  A =.'nve-"r," (a) aZ (0) J I% (z) d ~ .  

0 

( 3 4 )  

Equations ( 3 4 )  and ( 2 8 )  show that at distances much 
shorter than the localization length the wave functions un- 
dergo a power-law decrease. At the transition point a, the 
localization length becomes infinite, and this leads to a pow- 
er-law decrease of the wave functions for all distances r )  b. 

The function p m  ( r , a )  r  d- IS,, where Sd is the volume 
of a d-dimensional sphere of unit radius, is proportional at 
r$  b to the probability that a particle located at the origin at 
the instant t = 0  will end up at a distance r  after an infinite 
time. The quantity p ,  ( 0 , a )  determines the probability of 
remaining in place and coincides, in the considered effective- 

medium approximation, with the corresponding value in 
Bethe-lattice models. As shown in Refs. 2  and 3 ,  p ,  (Oa) 
remains finite at the transition point a,. The integral of 
pm ( r , a )  over the volume converges for all a(a,  and re- 
mains finite as a +a, .  The moments of this quantity, how- 
ever increase without limit when a+a,, as seen directly 
from ( 3 4 ) .  The second moment determines the polarizabili- 
t Y 

where e is the electron charge. 
To calculate the integral in ( 3 5 )  it is convenient to 

transform to the momentum representation. Using Eqs. 
( 2 7 )  and ( 2 9 )  and recognizing that small E are significant at 
a, - a <a, ,  we get 

Expression ( 3 6 )  shows that the polarizability near the tran- 
sition point is proportional to the localization length I whose 
growth is described by Eq. ( 3 2 ) .  The dielectric constant co- 
incides in this region with the polarizability. 

5. DISCUSSION OF RESULTS 

The effective-medium approximation developed in the 
preceding sections has made it possible to describe complete- 
ly the kinetics of a quantum particle in a granulated disor- 
dered metal. The existence of an Anderson metal-insulator 
transition was proved in this approximation and the density 
correlator was calculated. In the metallic region this correla- 
tor has the usual diffusive form (21 ), while in the dielectric 
region it is described by expression ( 2 7 ) ,  which is also the 
usual one for localized states. In the insulator region we ob- 
tained the function pm ( r , a )  ( 2 8 ) ,  ( 2 9 ) ,  whose exponential 
decrease over distances r  larger than the localization length I 
proves the exponential localization of the states. In the me- 
tallic region, p m  ( r , a )  vanishes, as seen directly from ( 2 1  ) 
and ( 2 9 ) .  Comparison with ( 2 8  leads to the conclusion 
that there is no discrete spectrum of localized levels against 
the background of the continuum of the conducting states. 
The foregoing properties do not call for time-reversal sym- 
metry or central symmetry, and agree with the universally 
accepted premises of localization theory. 

The approximation developed becomes exact in the lim- 
it of high dimensionality d of the space. Equation ( 1 3 )  
agrees with the corresponding equation obtained in Bethe- 
lattice models. At the same time, the form of the density- 
density correlator for d-dimensional space differs from that 
for the Bethe lattice. This difference is not a specific feature 
of the localization problem, and should exist in usual spin 
models. The main quantity that determines the properties of 
the effective medium is the function $ ( Q ) .  This function can 
be expressed in principle in the form 

~p (Q) = 1 exp (STr hQ) R ( h )  dh. ( 3 7 )  

Equation ( 3 7 )  can be regarded as a generalized Laplace 
transformation. The integration extends over all the matri- 
ces h that satisfy the conditions h = x, h + = khk and 
hA = Ah. The function $ ( Q )  depends only on the matrix 8. 
Therefore if the matrix h is represented in the form 
h = vh,C/, where V has the same structure as U [Eq. ( 2 )  1, 
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and h, is the diagonal part, R should depend only on h,. In 
the limiting case of a pure metal, $ takes the'form (23) and 
R ( h )  reduces to a &function. In this limit, the interaction of 
Q, with the remaining Q, is replaced by an interaction with 
an effective field h,, which is described by a matrix that takes 
in the diagonalized representation the form hod = Aa/4. If 
a does not meet the condition ( 14), one can speak not of an 
effective field h,, but only of a nohivial distribution R(h )  
of the fields [Eq. (37) 1. This statement is valid also near the 
transition point a,, so that the order pa~ameter should be 
regarded as a function. This property is formally the conse- 
quence of the noncompactness of the group of supermatrices 
Q. For any compact group, the role of the order parameter 
would be assumed by the zeroth harmonics in the expansion 
of $ in terms of generalized spherical function (see the last 
paper in Ref. 2). 

In the region (24), h, is proportional to the diffusion 
coefficient. It can be assumed that the need for using the 
distribution of the effective fields corresponds to the need for 
considering not the conductivity of a finite voltage, but a 
distribution of conductivities. Only in the limit of weak dis- 
order does this distribution become narrow and one can 
speak of the conductivity of the volume. Such a distribution 
must be broad in a strong-disorder region. An attempt to 
develop a theory in which distributions are used has already 
been made.I3 It is difficult to assess the validity of the pro- 
posed theory, since it is not free of strong assumptions and 
contains some contradictions, yet the undertaking of such an 
investigation seems reasonable. 

The critical behavior of the distribution coefficient D 
(26) and of the dielectric constant x (36) does not agree 
with the one-parameter-scaling hypothesis.I4 The discrep- 
ancy may be due precisely to the fact that on going from one 
scale to another it is necessary to renormalize the distribu- 
tion of the conductances, and the very concept of a conduc- 
tance that depends little on the change of the configurations 
is meaningful only in the limit of long ranges. It is seen from 
(6) that the expression for the dielectric c~nstant  contains 
not only the localization length but also the distance b 
between the granules, Of course, the effective-medium ap- 
proximation is quantitatively valid only for large d,  It ap- 
pears that there exists a critical dimensionality d, below 
which the fluctuations become significant and tHe results are 
in some way changed. It is unlikely, however, that the length 
b can be eliminated from the theory and a transition made to 

only be suggested that some nonperturbative terms make an 
important contribution in a space of dimensionality 2 + E ,  

for otherwise it is impossible to discern the difference 
between compact and noncompact models, a difference of 
importance to the results above. 

An interesting conclusion concerning the behavior of 
the wave functions u, ( r )  can be drawn from Eq. (34). Com- 
paring (33) and (34) with (28) we can posit a power-law 
decrease of the localized-states wave functions in the region 

I r - r,l 4 I ,  where r, is the localization center. At Ir - r, I ) I ,  
the power-law decrease (34) gives way to an exponential one 
(33), with a power-law pre-exponential factor in (33). At 
the transition point the wave functions obey strictly a power 
law. In the metallic region the form of the correlator K ( 19) 
also permits a qualitative description of the form of the wave 
functions. At Ir - r,l.gg, where g is a characteristic length 
proportional to the distance AE between the eigenvalue En 
of Eq. ( 18), the wave functions have exactly the same pow- 
er-law decrease as in the localized region at / r  - r,l.gl. The 
quantity AE is inversely proportion$l to the size of that re- 
gion of the parameters of the matrix 8, in which the function 
$ differs substantially from zero. From this we can obtain 
theestimateg- (a - a, )-'I2. At Ir - ro12g thecharacter- 
istic amplitude of the wave function should stop decreasing. 
With increasing distance from the transition point a,, the 
region of the power-law decrease becomes narrower. At 
a)a, where perturbation theory can be used, the ampli- 
tudes of the wave functions varies little in space. 

A power-law decrease of the wave function for not very 
large distances was recently deduced from a numerical cal- 
culation.16 The data were reduced there under the assump- 
tion that the exponent of the power-law decrease of the wave 
functions depends on the impurity density. It would be of 
interest to reduce the same data by starting from the assump- 
tion that a power-law decrease takes place in the region r < 5 
but the wave functions do not decrease in the region r > (. 
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