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An analysis is made of the rate of cooling of a carrier plasma in accordance with a simple model in 
which carriers are assumed to transfer their energy to LO phonons and these in turn undergo 
anharmonic decay. Analytic expressions are obtained for the cooling rate and these predict a 
considerable difference between the energy loss rates under static and dynamic conditions. 

Cooling of an electron-hole plasma in semiconductors 
after excitation with high-power short light pulses is a topi- 
cal subject (see, for example, Refs. 1-4). The main result of 
the published studies is that the cooling time increases con- 
siderably on increase in the plasma concentration. The rea- 
sons for the slowing down of cooling are screening of the 
electron-phonon interaction5-' and heating of optical phon- 
onsS8 

We shall consider the conditions under which the 
screening is unimportant and slowing down of the plasma 
cooling rate is due to the fact that optical phonons establish 
an equilibrium with the plasma in a certain range of wave 
vectors Aq. 

We shall consider a model in which a plasma interacts 
only with longitudinal optical phonons. These phonons in 
turn decay into two acoustic phonons because of the anhar- 
monicity. The interval Aq is defined by the inequality T,, 

< T,, where T, is the anharmonic decay time of a LO phonon 
and rq, is the decay time due to the interaction of this 
phonon with the plasma. At low plasma concentrations this 
inequality is not obeyed for any value of q, but when the 
concentration increases sufficiently so that the minimum 
value of rq, becomes less than T,, an interval Aq is estab- 
lished and the cooling time begins to lengthen. High concen- 
trations are defined as those for which rqCmin is much less 
than T,. The boundary separating low and high concentra- 
tions depends weakly on temperature (it decreases some- 
what as a result of cooling) and it amounts to - 1016 cmP3 
for GaAs. 

At high plasma concentrations and temperatures 
( T, 2 h ,  where w is the LO phonon frequency) the interval 
Aq is wide and its upper limit is of the order of (mT,  ) ''2/fi. 
Under these conditions the cooling process is dominated by 
phonons near the upper limit of Aq. In the case of these 
phonons the screening is static. Estimates indicate that the 
contribution of the plasma to the permittivity (qi /q2,  where 
q, is the Debye wave vector) is small up to concentrations of 
5 X 1018 cmP3 (in GaAs), so that up to these concentrations 

oscillations. We shall assume that the plasma electrons and 
holes are characterized by the same temperature and, as usu- 
al (unless otherwise specified), the plasma will be regarded 
as nondegenerate. The main contribution to the cooling 
comes from holes so that one can frequently ignore the elec- 
tron contribution and the electron degeneracy at low tem- 
peratures does not alter significantly the rate of energy 
losses. 

In fact, a Maxwellian carrier distribution cannot be es- 
tablished in the cooling time at all the concentrations under 
dis~ussion,~ but the effect can be ignored because the main 
attention is on high plasma concentrations when the cooling 
time is long. 

The rate of energy losses of a plasma was shown in Ref. 
Ito be less under dynamic conditions than in the static case. 
This may be explained also by the theory developed below 
and it is due to the fact that under dynamic conditions the 
rate of energy losses affects only the plasma, whereas in the 
static case the plasma and phonons are involved. A similar 
situation was found in Ref. 10 on the basis of numerical cal- 
culations. 

We shall postulate (bearing in mind GaAs) that the 
interaction with optical phonons is of the polarization type. 
However, it is known that there is also the deformation inter- 
action of holes with transverse optical phonons. It is weaker 
and can be analyzed as described below, but we shall ignore 
it. 

We shall establish an analytic formula for the depen- 
dence of the rate of cooling on the parameters of a material, 
its temperature, and plasma concentration in the two main 
temperature ranges (T, 2 h, T, < f iw).  All the illustrative 
numerical calculations will be made for GaAs. 

The results will be compared with the experimental 
data and shown to be in good agreement with the latter. This 
applies to the rate of energy losses under quasistatic condi- 
tions, the difference between the rate of energy losses under 
static and dynamic conditions, and the relative participation 
of electrons and holes in the energy losses. 

we can ignore the screening effect. 1. PRINCIPAL EQUATIONS 
At high plasma concentrations and low temperatures 

(T, < h )  the interval Aq is narrow and lies close to Under the above assumptions the plasma energy bal- 

q, = (mw/fi)"2. Under these conditions the screening is ance is described by the equation 

largely dynamic and the plasma contribution to the permit- 
-= dE -- d3q ho,[Il,.-iz-,~-W~,,c+ (N,+1) ]+ G .  

tivity (estimated at temperatures T, > 50 K )  is small up to di S ( 2 n ) 3  (1) 

concentrations of - 5 x 10" cmP3 (in the case of GaAs) . where E is the energy per unit volume of the plasma; q is the 
This determines the concentration up to which we can ig- phonon wave vector; &aq is the phonon energy; Nq is the 
nore the screening effect and the mixing of phonon-plasmon occupation number of a phonon state with a wave vector q; 
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W,; and W :  are the probabilities of the absorption and 
emission of one phonon by the plasma in a unit time; G is the 
energy reaching a unit volume of the plasma per unit time 
from an external source. 

The occupation numbers N, can in turn be described by 
the equation 

where Wq- and W,+ are the total probabilities of the anni- 
hilation and creation of a phonon per unit time. We shall 
allow for two channels of the change in N,, for the interac- 
tion with the plasma, and for the anharmonic interaction 
with acoustic lattice vibrations. 

We thus find that W $  = W z  + W $  , where the sec- 
ond term is due to the interaction with acoustic phonons. 

Equations ( 1 ) and (2)  are self-evident and well-known 
(see for example Ref. 4) ,  but the conclusions which can be 
drawn from them have not yet been sufficiently clear. 

It follows from the principle of detailed equilibrium 
that the relationship between the probabilities of forward 
and reverse processes are described by 

where N,, and N,, are the equilibrium phonon occupation 
numbers at the plasma temperature T,  and at lattice tem- 
perature T,, respectively (more exactly, these are the occu- 
pation numbers of longitudinal acoustic phonons), given by 

The expressions in Eq. (3) introduce r,, and r,, for the 
decay times of phonons with a wave vector q due to the inter- 
action with charge carriers and with acoustic phonons. The 
first interaction makes the phonon temperature approach Tc 
and the second interaction causes it to approach T,.  Using 
the relationships in Eq. (3),  we can rewrite Eqs. ( 1 ) and (2)  
in the form 

Equations (4)  and (5)  determine the kinetics ofcooling 
of the coupled systems comprising the plasma and the phon- 
ons. 

The values of q of importance in this problem are con- 
siderably less than the reciprocal lattice vector, so that we 
can ignore the dispersion of optical phonons. Consequently, 
we shall omit the index q in w,, N,,, N,,, and r,, and use w ,  
= w, Nqc = N, , Nqa =Nu,  and rqo = ra . 

The time 7 ,  was calculated in Ref. 11. This time de- 
pends on the lattice temperature To and it follows from Ref. 
11 that 

The value of r, can be determined experimentally from 
the Raman scattering. According to Ref. 12 and 13, r, = 7 
ps at T, = 77 K and ra = 5 ps at T, = 300 K for GaAs. 
According to Ref. 14, r, (0)  5 30 ps. 

In the illustrative calculations for GaAs we shall use 
r, (0)  = 21 ps, which according to Eq. ( 6 )  gives 7 ,  (300 
K )  =: 7 ps. 

The time r,, is due to electrons and holes: 

We shall now give the expression for r,, (a  similar expres- 
sion applies to r,, ) . 

In the case of a nondegenerate plasma irrespective of 
the nature of the interaction, we can write down15 

When the interaction with longitudinal optical phon- 
ons is of the polar (Frohlich) type, we have 

The following notation is used in the above expressions: 
E -  is the high-frequency permittivity of the investigated 
crystal; 7 = 1 - w : / 0 2 ;  w ,  is the frequency of a transverse 
optical phonon; n is the electron density. In the case of GaAs 
we shall assume that 7 = 0.15, w = 5.8X 1013 s-I, m, 
= 0.5m0 and me = 0.07m0. Equation (8)  ignores a factor 
(amounting to about 2) obtained when an allowance is made 
for the complex structure of the valence band.I6 

The dependences of T,, on q are very different at high 
( Tc k f iw)  and low ( T, g h )  temperatures. 

At high temperatures there is a wide range of values ofq 
where r,, z r$ . This interval of the effective interaction of 
phonons with holes is defined by the inequality q,,, < q  
< q,,, , where 

q , i , , ~ ( m h 0 ~ / 2 T ~ )  Ib, qmo& (8mhTe/h2)'h.  

The value of r,, rises exponentially outside this interval. The 
minimum r,, is obtained near the lower limit of this interval, 
it depends weakly on temperature, and it is approximately 
equal to 

In the case of GaAs, we have rqh ,, = 4. 10I7/n, if time 
is measured in picoseconds and n is in reciprocal cubic centi- 
meter. For electrons, we have T,, = 0.6. 1017/n, so that 
the minimum value of the resultant time T,, is governed by 
the interaction of phonons with electrons. 

On increase in the concentration, when rqc ,, becomes 
less than r,,  the phonons with certain values of the wave 
vectors assume the plasma temperature under steady-state 
conditions [second formula in Eq. (4)  1. The cooling of the 
plasma due to interaction with such phonons occurs only in 
the course of their decay. In the case of GaAs this occurs 
when n k 1016 ~ m - ~ .  A further increase in the concentration 
widens the range of values of q where the phonons are heated 
and its upper limit qo is now given by r , ,  = r,. Figure 1 
shows the dependence of qo/qm,, on the density n when r, 
= 7 ps. The electron degeneracy is allowed for by means of a 

formula which generalizes Eq. (7)  to the case of degenerate 
gas.I7 Clearly, details of the electron-phonon interaction are 
important only if q k go. A calculation of the contribution of 
free carriers to the permittivity shows that for these values of 
q the contribution is small compared with E ,  and this is true 
up to concentrations of n - 5 x 10" ~ m - ~ .  Therefore, up to 
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FIG. 1. Dependence of the maximum momentum of heated phonons q, 
the plasma concentration at T, = 300 K: 1 ) T,  = 500 K; 2) T,  = 1000 K. 

these concentrations, the screening of the electron-phonon 
interaction and mixing of plasmon-phonon modes does not 
play a significant role in the plasma cooling process. It 
should also be noted that in the case of large values of n for 
q 2 go the main contribution to the energy losses by the plas- 
ma comes from holes. For example, when the concentration 
is 1018 cmP3, the ratio T q,,e /T,,, amounts to 32, 9, and 4, 
respectively, at temperatures 300, 500, and 1000 K. 

At low temperatures (T, gfiw), we find that T,, has a 
sharp minimum at q = q ,  z (2m, w/f i ) ' I2  and we can see 
from 

that in this case T~~ ,in decreases as a result of lowering of the 
temperature Tc, so that at low plasma temperatures the 
phonon heating begins at somewhat lower plasma concen- 
trations than at high temperatures. We must bear in mind 
however that at low plasma temperatures the electrons first 
become degenerate and then this happens also to holes. 
Moreover, at low temperatures an important role in plasma 
cooling is played by acoustic phonons and we are ignoring 
the interaction with these phonons. 

Eq. ( 12) that GaAs is characterized by cooling rates of 230 
and 500 meV/ps at Tc = 500 and 1000 K, respectively, 
when T, = 300 K. If Tc = 100 K and T, = 0, we obtain J, 
= 20 meV/ps. An allowance for the complex structure of 

the valence band (mentioned above) yields values which are 
half those just quoted. 

The steady-state relaxation time of the plasma energy 
can be defined as follows: 

where Ec and E, are the values of the plasma energy at tem- 
peratures T, and T,, respectively. In the case of a nondegen- 
erate plasma we have E, - E, = 3n ( T, - T, ) and, if we use 
Eq. ( 12), we find that T,, is independent of the concentration 
and for GaAs it is 0.36 and 0.22 ps for T, = 1000 and 500 K, 
respectively, when T, = 300 K. If Tc = 100 K and T, = 0, 
Eqs. (12) and (13) give T,, = 1.3 ps. 

An increase in the plasma concentration reduces T, ,, 
to a value below T, and in a certain range of values of Aq the 
phonons become heated and the interaction with them 
ceases. Then, the loss rate Jbegins to depend on the concen- 
tration (it decreases on increase in n ). Figures 2 and 3 show 
the cooling rate J,, and the steady-state cooling time T,,, 
calculated from Eqs. ( 1 1 ) and ( 13) using Eq. (7)  and gener- 
alized to the case of carrier degeneracy at temperatures T, 
= 500 and 1000 K and T, = 300 K. The results of these 

calculations can be approximated by analytic formulas. This 
can be done by ignoring the contribution of electrons and 
assuming that q,, < q < q,,, in the range rqC = T$, and 
rqc = cu outside this interval. Then, the integral in Eq. ( 11) 
is readily calculated and in the case of nondegenerate holes, 
we obtain 

The approximation represented by Eq. ( 14) is reasona- 
ble if q,,, %qmin, i.e., it is reasonable when T, > fiw and 
m, % m e .  A comparison with the results of numerical calcu- 
lation given in Fig. 2 shows that Eq. ( 14) describes well the 
steady-state rate of cooling throughout the investigated 
range of concentrations and temperatures in this figure. 

At low concentrations we find that Eq. (12) follows 
from Eq. (14), apart from a small factor in the logarithm 
and apart from the electron contribution. These two contri- 
butions partly compensate one another. At high concentra- 
tions Eq. ( 14) gives 

2. BEHAVIOR OF A PLASMA AND PHONONS UNDER 
QUASISTEADY CONDITIONS. STEADY-STATE RELAXATION 
TIME 

If the characteristic time of a process is considerably 
longer than r,, we can assume that the instantaneous value 
of Nq is identical with N r ' .  Substituting this value in Eq. 
( 5), we obtain the plasma energy balance under quasisteady 
conditions: 

Here, J,, is the steady-state rate of plasma cooling per 
one electron-hole pair. At low concentrations, when the 
minimum value of rq, is greater than T,, we can ignore r, in 
the denominator and a calculation of the integral [using Eqs. 
(7)  and ( 8 ) ]  yields the usual expression for the energy 
losses experienced by a plasma because of the Frohlich inter- 
action 

where KO is a modified Bessel function. [It  should be noted 
that if Bg  1, then Ko(B /2) = ln(2.24/P) .] It follows from 

FIG. 2. Steady-state rate of cooling per one electron-hole pair plotted as a 
function of the plasma concentration. The continuous curves are calculat- 
ed as a result of numerical integration of Eq. ( 11) and the dashed curves 
are calculated using the approximate formula (14). T,  = 300 K; 1)  T,  
= 1000 K; 2) T, = 500 K. 
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FIG. 3. Steady-state cooling rate plotted as a function of the plasma con- 
centration. The continuous curves are calculated using Eqs. ( 11 ) and 
(13).  T, =300K;  1 )  T, = 1OOOK;2) T, = 5 0 0 K .  

This expression has a simple physical meaning: the en- 
ergy is lost by a plasma only because of decay of optical 
phonons in the wave-vector interval between q,,, and q,, 
(phonon bottleneck). Under these conditions the rate of 
losses per electron-hole pair is inversely proportional to the 
concentration. Under the conditions of Figs. 2 and 3, this 
regime has not yet been attained. 

We shall now consider low temperatures characterized 
by Ciw & T, . Figure 4 gives the dependence of J,, on n for T ,  
= 100 or 50 K, when Ta = 0 K ;  the calculations are made 
using Eq. ( 1 1 ) . A comparison of Figs. 2 and 4 demonstrates 
that the reduction in the cooling rate on increase in the plas- 
ma concentration becomes larger on lowering of the plasma 
temperature. 

A good approximation to Eq. ( 1 1 ) can be achieved at 
low temperatures if we bear in mind that in this case, for q 
close to q,  , we have 

and the integral of Eq. ( 11) can be estimated as the product 
of the volume of a spherical layer of radius q ,  and of thick- 
ness 

and the integrand taken at T,, = 0. We then obtain 

FIG. 4. Steady-state cooling rate plotted as a function of the plasma con- 
centration on the basis of numerical calculations made using Eq. ( 1 1  ) for 
To = 0 K. The continuous curve corresponds to T,  = 100 K and the 
dashed curve to T, = 50 K. 

FIG. 5. Comparison of the steady-state and dynanic cooling rates as a 
function of the plasma temperature. The dashed line represents J ,  Eq. 
( 12) ] and the continuous curves represent J,, Eq. ( 1 1  ) ] : 1 ) n = 1016 
~ m - ~ ;  2 )  n = 2~ lOI7 cmp'; 3) n = 4 x  lOI7 ~ m - ~ .  The symbols repre- 
sent the values of J,, calculated for n = 4X loL7 cm-' using the approxi- 
mate formula (16) and the chain curve gives J,,, [Eq. (2611 for 
n = 4 x  lOI7 cm-'. 

where rq, ,,, is given by Eq. ( 10). The system ( 16) is in good 
agreement with numerical calculations based on Eq. ( 11) 
(see Fig. 5) in the range where Tc < liw and T,, ,,, < ra . It 
shows that at low temperatures the cooling rate per one pair 
is inversely proportional to the concentration. We can there- 
fore have the phonon bottleneck regime and nJ,, is equal to, 
in accordance with Eq. (16), the product of T:' and the 
energy of heated phonons(i.e., of phonons with the values of 
q in the spherical layer mentioned above). It is interesting to 
note that according to Eq. ( 16), the dependence of J,, on the 
nature of the interaction of electrons and holes with phonons 
is very weak at low temperatures and for high plasma con- 
centrations. 

3. DYNAMIC REGIME. WEAK HEATING 

We shall now consider relaxation of the plasma and 
phonon energy after the beginning of pumping. This process 
is described by Eqs. (4)  and (5)  when G = 0. If the heating 
is weak, so that T, differs little from T a ,  the system of equa- 
tions (4)  and (5)  can be linearized and we can substitute the 
time dependence of the solutions in the form 
exp( - At) (A - ' represents a dynamic relaxation time). 
Then, Eq. (4)  yields 

where AN, = Nq - Na , AN, = Nc - Na = AT, 
fiwN, ( 1  + N, ) / T : ,  and the notation r,* = T , / (  1 - 2 7 ,  ) 

and AT, = T, - Ta is employed. Substituting Eq. ( 17) into 
Eq. ( 5 1, we obtain the following equation for A: 

h w A N c S  " q  
1. 

= - ---- ---- 
AE ( 2 ~ ) "  .re'+~,, ' (18) 

where AE = E( T, ) - E( Ta ) = CA Tc and C is the specific 
heat of the plasma. We note that rS; ' [T,, is the steady-state 
energy relaxation time used in Eq. (13)]  is equal to the 
right-hand side of Eq. ( 18) provided we replace T,* with T , .  

This side of Eq. ( 18) is real in two ranges of A: 1 ) A < T ,  ' 
and 2) A >  T ,  + T;:,, In both cases it falls monotonically 
on increase in A. In the former case it falls from T; ' at A = 0 
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to zero for A-r: ', whereas in the latter case it falls from 
infinity in the case A = T; ' + ~gc,!,~,, to the value T, defined 
by Eq. ( 13) if J = JF.  Consequently, Eq. ( 18) has two real 
roots A, < T; ' representing a slow process and A ,  > 7,- ' rep- 
resenting a fast process. 

If initially the plasma is heated by a short light pulse and 
the phonons are cold, the relaxation process occurs in two 
stages: first the plasma cools and phonons are heated for a 
short time A ; ', and then the plasma and phonons cool slow- 
ly in a time A; '. In the case of low plasma concentrations 
the time for the fast process is A ;' Z T ~ ,  and that for the 
slow process is A ; ' ET,. Under these conditions, we find 
that A; ' > T,, . 

When the concentration is reduced, the fast process ac- 
celerates (A ; ' - rqc ,, ) and the slow process slows down, 
and also the time constant of the slow pocess tends to T,, 

(which also increases). 
Overheating of the plasma at the beginning of the slow 

process AT,, can be estimated roughly as the initial over- 
heating AT(0) multiplied by the ratio of the specific heat of 
the plasma to the total specific heat of the plasma and over- 
heated phonons. Moreover, we can calculate AT,, by solv- 
ing the linearized equations (4)  and (5)  using the Laplace 
transformation [subject to the initial conditions AN, = 0, 
and AT, = AT, (O)] 

ATc ( t )  = 
ATc (0) 
2ni 

and calculating the asymptotic behavior of AT,(t) from a 
residue at a point s = - A,: 

AoAN, d'q ] (19) 

In this expression we can now substitute 
T$ = ~ , / ( 1  - &T,). 

We rhall consider an approximate solution sf Eq. ( 18) 
for the slow process and we rhall do this separately for high 
and low temperatures. At high temperatures we shall em- 
ploy a model used to derive Eq, ( 14) and we shall assume 
that 7:) qk,, /nv, (which is justified), which yields 

1 
a 
maa hz I -C/- 

r, q:,; +18xan 

In the case of GaAs we have qk,, /1 8r2 = 6- 1019 ( T, / 
1000 K)3'2 SO that at all temperatures throughout the inves- 
tigated range and for all the plasma concentrations under 
discussion the dynamic cooling time A ; ' is slightly longer 
than 7,. 

At low temperatures we shall obtain an estimate similar 
to that which yields Eq. ( 16). Then, the equation for A, can 
be reduced to ( T, < lio) . 

1 a 403 ha = A 
T~ ( l + a ) '  Tqh min  

In the case of GaAs, we have 
(21 

2 . 1 0 ~ ~  T: c 
= - ( ) " ( )  a-fia!Te, 

n Tqh min 

where n is measured in reciprocal cubic centimeters. The 

value of a is small and A I' exceeds greatly T, only at the 
lowest temperatures. 

We shall show later that the dynamic cooling time may 
be considerably longer than T, if the heating is not too weak. 

4. DYNAMIC REGIME. SLOW RELAXATION STAGE 

We shall bear in mind that during the slow relaxation 
stage the characteristic time is longer than T,, so that an 
expression can be obtained for the plasma energy losses dur- 
ing the stage when the heating is weak. We shall do this by 
obtaining Nq from Eq. (4)  and substituting it into Eq. (5) .  

We then obtain (for G = 0) 

since the phonons are cooled during the slow stage, it 
follows that dNq /dt < 0 and, consequently, the plasma cool- 
ing rate during the second stage of the dynamic process is 
less than the rate of cooling under static conditions. Using 
the slowness of the relaxation process, we substitute N, 
= N r' on the right-hand side of Eq. (22) [compare with 
the second formula in Eq. (4)  1, which gives 

Equation (22) can now be written in the form 

where we have introduced the dynamic rate of plasma cool- 
ing J,,, per one electron-hole pair and the quantity A is de- 
fined by 

(24) 
where Cis the heat capacity of the plasma. 

We shall consider in greater detail the range of low plas- 
ma temperatures and assume that T, = 8. We can then pos- 
tulate that 

Using these approximations, which give Eq. ( 16), we And 
that A is described by the following expression: 

4 7 I" - - ( $ 1  ( ) ( 1  ) e T  (25 
3nan tic mtn 

It should be noted that A is indeed identical with the 
quantity a which is used to describe the relaxation time dur- 
ing the slow stage of the dynamic process under weak over- 
heating conditions. (The only difference is the replacement 
of T,* with T~ in the logarithm.) Apart from the lowest tem- 
peratures, we find that A % 1, so that J,,, 4 J,, .  Equation 
(23) for J,,,, can be deduced with the aid of Eqs. ( 16) and 
(25)  to show 

It should be noted that in the case of weak heating Eq. (26) is 
identical with the expression 3ATc/1,/2, where A, is given by 
Eq. (21) after replacement of a with A .  

It should also be noted that ifA $1, the dynamic cooling 
rate is independent of the plasma concentration [see Eq. 
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FIG. 6. Dependence of the plasma temperature on the energy of a pump 
pulse. The explanations are given in text. 

(26)], exactly as at lower concentrations, but the rate is 
much less. We must bear in mind however that Eq. (26) 
itself is valid only at sufficiently high concentrations when 

r q h  
< T~ [see Eq. ( 10) for T,, ,, 1. In the case of GaAs 

this means that the condition n) 2- lo1'( ~ ~ / f i o ) " ~ <  
should be satisfied, where n is in reciprocal cubic centimeters 
and ra is in picoseconds. 

5. COMPARISON WITH EXPERIMENTAL RESULTS 

A detailed investigation of the bleaching spectra of 
GaAs was reported in Ref. 19. The experiments were carried 
out at room temperature. The duration of a pump pulse was 
30 ps. which was considerably longer than the steady-state 
relaxation time under these conditions. An analysis of the 
bleaching spectrum demonstratedI8 that the temperature of 
a photoexcited plasma during a pulse reached 600 K and the 
concentration of electron-hole pairs was - 5 X 10" ~ m - ~ .  
The change in the transparency of a sample determined us- 
ing a probe light beam followed reversibly, beginning from 
the moment of saturation, the changes in the pump intensity 
in the course of a pulse and the delay was about 10 ps. This 
was in agreement with the above estimate, indicating that at 
high temperatures the dynamic relaxation time should ex- 
ceed somewhat the anharmonic phonon decay time 7,. It 
was suggested in Ref. 19 that the reversible change in the 
transparency was due to heating and subsequent cooling of 
the plasma and that the heating was due to intraband absorp- 
tion of the pump radiation. The rate of pumping G could be 
estimated then from G = Ua/rJ, where Uis the energy per 
pump pulse, T, is the duration of a pump pulse, S is the area 
of the illuminated spot on the sample, and a is the intraband 
absorption coefficient of the pump radiation. Figure 6 shows 
the dependence of the plasma temperature Tc on the energy 
of a pump pulse, calculated from nJ,, = G, where J,, is de- 
scribed by Eq. (14). In these calculations we assume that 
Urn,, = 100pJ, r0 = 30 ps, and S = 0.5 mm2. It was postu- 
lated that a is proportional to the concentration and it 
amounts to a = 15 cm-I for n = 10" ~ m - ~ .  Figure 6 in- 

cludes also the values of T, obtained in Ref. 18 by analyzing 
the experimental data of Ref. 19. 

The difference between the rates of losses of the energy 
by the plasma in the static and dynamic cases was demon- 
strated in Ref. 1. 

The theoretically calculated rates of energy losses in the 
dynamic and static regimes are compared in Fig. 5. The na- 
ture of the dependences and also the order of magnitude of 
the loss rates are in agreement with those found experimen- 
tally in Ref. 11 (see Fig. 6 in Ref. 11). 

We shall note one more qualitative result of the theory. 
It is clear from Eq. (16) that at low temperatures the 

energy losses are proportional to m3". This follows simply 
from the circumstance that J,, is proportional to the phase 
volume in which phonons are heated to the plasma tempera- 
ture. Such a strong dependence on the carrier mass is in 
agreement with the experimentally established circum- 
stancez0 of a much higher rate of cooling of holes compared 
with electrons in gallium arsenide. 
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