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Mutual diffusion that proceeds via the vacancion mechanism with formation of a substitutional 
solid solution is investigated by computer modeling on a square lattice by the Monte Carlo 
method. The produced stochastic structures studied are the percolation diffusion front and the 
summary boundary of the clusters. It is shown that they are characterized by a fractal geometry 
and that their evolution is described by a number of critical exponents. The approach used 
permits description of the propagation of superconducting, conducting, magnetic phases and 
other phases undergoing mutual diffusion. 

We investigate here the geometry of the structures pro- 
duced by mutual diffusion in a solid, and study the laws 
governing the evolution of these structures with time. 

Diffusive homogenization gives rise to numerous pro- 
cesses in a solid, such as the onset of mechanical stresses, 
formation and growth of phases, chemical reactions, change 
of the electric conductivity, and others. These processes are 
usually described by using the macroscopic characteristics 
of the diffusive homogenization picture, viz., the concentra- 
tion profile and the motion of a plane having a given density. 
It will be shown below, however, that such an averaged de- 
scription is utterly insufficient, since it bypasses the most 
important features of the geometry of the structures pro- 
duced in the diffusion zone. These features are connected 
with the stochasticity of the diffusion process, which makes 
these structures substantially rough. Yet it is just these fea- 
tures which determine, for example, the kinetics of electric 
contact making in diffusion, the change of the electric prop- 
erties of semiconductors following the spreading of the do- 
pant (Mott transition, formation ofp-n junction), and also 
the course of many other processes in a solid. Their effect is 
particularly large in objects of small thickness. They play 
therefore an important role in the formation and degrada- 
tion of microelectronic elements. The problem plays a vital 
role also in connection with the recent advances in produc- 
tion of high-temperature superconducting materials. The 
study of the geometry and of the laws governing the evolu- 
tion of the superconducting phase obtained by mutual diffu- 
sion of sinterable components is of undisputed interest. 

We have proposed and implemented an approach, dif- 
ferent from the macroscopic one, to the description of mutu- 
al diffusion. It provides a more complete description of the 
diffusion picture in the language of scaling structures. The 
approach proposed has a bearing on a number of problems 
concerning the properties of percolation clusters. In contrast 
to the traditional problems, however, in which the static pic- 
ture is analyzed, we investigate here a case of physical impor- 
tance (mutual diffusion), for which it is important to know 
how the percolation picture evolves with time. 

Various structures formed in the course of stochastic 
processes have been actively investigated in recent years. It 
was established that these structures have geometric-self- 
similarity (scaling) properties, and their growth processes 
are described by a number of critical exponents. The param- 
eter that characterizes the geometric self-similarity of such 

structures is the fractal dimensionality,' So far, however, no 
attempts have been made to describe mutual diffusion with 
the aid of the formalism used to describe fractal structures. 
Sapoval et al.' used the algorithm developed to simulate per- 
colation clusters to describe the diffusion picture on a two- 
dimensional lattice in the case when the source of the diffus- 
ing atoms is an equal-concentration line. With the aid of the 
macroscopic relation c(x)  = erfc(x/l, ) (I, is the diffusion 
length) the authors of Ref. 2 calculated for each layer with 
coordinate x the concentration c of the diffusing atoms, and 
then placed atoms randomly in this layer, the probability of 
placing an atom in a site being equal to the calculated con- 
centration. This method is quite rapid and therefore permits 
analysis of the cases of large diffusion lengths. It is not fully 
consistent, since it combines macroscopic and microscopic 
approaches. Its adequacy therefore still remains unclear. In 
particular, according to this method the probability of ap- 
pearance of an atom in a given site depends only on the aver- 
age concentration ascribed to the layer in which this site is 
placed, and does not depend at all on the real surrounding of 
the site. Even if the potential energy of the atom is indepen- 
dent of the surrounding, such an assumption may turn out to 
be incorrect for diffusion mechanisms in which a correlated 
jump of a group of atoms takes place (e.g., for the crowdion 
mechanism). In addition, this method does not permit simu- 
lation of mutual diffusion in the case when the displacement 
energy differs from zero, nor the growth of the phase and 
other aspects of a real diffusion process. 

We have investigated, by computer simulation, mutual 
diffusion that proceeds via the vacancion mechanism. Each 
lattice measuring 1 0 0 ~ 2 0 0  atoms is divided into two 
50 X 200 atom sections. In contrast to Ref. 2, all the lattice 
sites are occupied. In one half are located atoms A, and in the 
other atoms B. A vacancy moves randomly over the lattice, 
and hops over each time, with equal probability, to the loca- 
tion of one of the nearest four neighbors. 

We designate the lattice boundaries parallel to the inter- 
face as, respectively, boundaries A and B, and we call the two 
others the lateral boundaries. Boundaries A and B are made 
reflecting. To decrease edge effects, the two other boundar- 
ies are "joined" (cyclic boundary conditions). After every 
10' hops of the vacancy we analyze the instantaneous loca- 
tions of the atoms A and B. In the course of the computer 
experiment, the vacancy executed 3.6.10"ops. 

We introduce now the concept of a diffusion front. We 
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explain this concept by ascribing to the atomsA and B differ- 
ent electric properties. Let, for example, A be metal atoms 
and B insulator atoms. Let an electric contact between them 
be realizable via the nearest four neighbors. Prior to the start 
of the diffusion the outer boundary of the cluster of atoms A 
electrically connected with the boundary A coincides with 
the line separating the atoms A and B. This boundary should 
be displaced as a unit in the course of the diffusion, and its 
shape should change by virtue of the stochasticity of the 
diffusion process. We shall show, in particular, that it be- 
comes essentially rough. We call this boundary the percola- 
tion diffusion front. This definition accords with the defini- 
tion given in Ref. 2 for the diffusion front. In fact, the 
percolation diffusion front is the interphase boundary. It 
separates the conducting phase from the nonconducting one. 
(We shall refer henceforth, for brevity, to conducting and 
nonconducting phases, although the analysis applies equally 
well to a number of other problems for which the connecti- 
vity of the atoms is important, e.g., in the propagation of 
magnetic and nonmagnetic phases, etc.). The location and 
form of the front are determined both by the distribution of 
the atoms over the lattice sites and by the connectivity radi- 
us. In our model, the connectivity radius is equal to unity, 
since the connection is only via nearest neighbors. It can, 
however, also be larger. Thus, for the Mott transition the 
connectivity radius is of the order of the Bohr radius, which 
amounts to tens of lattice periods in semiconductors. 

Clearly, the diffusion-front geometry and the laws gov- 
erning its displacement should play the primary role in pro- 
cesses such as the diffusion-induced contacts between con- 
ductors or the change of the electric properties of 
semiconductors following the diffusion of the dopant. There 
are in fact the diffusion-front characteristics studied in the 
present paper. When the marker moves along the front, cer- 
tain atoms are passed-through more than once. This means 
that the diffusion front is a zig-zag line. It is easy also to show 
that the front is a line without self-crossings. 

The form of the front at various instants of time is 
shown in Fig. 1. The characteristics of the front were investi- 
gated by two methods: 1) the front length L ( A )  was mea- 
sured with different deviations A; 2) the points of the front 

were next numbered in such a way that each was taken into 
account only once. We then obtained, for different values of 
d, the average number N(d) of front points inside a circle of 
diameter d drawn around the front point. Plots of L(A) and 
N(d)  after 2.4. lo6 vacancy hops are shown in Fig. 2, from 
which it is seen that the diffusion front is a fractal curve (i.e., 
a rough self-similar structure) up to a scale -40. The values 
of the fractal dimensionality were determined for various 
instants of time from the relations L(A ) cc A' - DL and 
N(d)  cc d ,". Both DL and D, have a weak tendency to in- 
crease with time against the background of the fluctuations. 
In the course of the computer experiment, DL rose from 
1.56 f 0.02 to 1.67 f0.02, and DN from 1.48 fO.O1 to 
1.60 f 0.01. The inequality DL > D, was satistifed at each 
instant of time, since the dead ends were taken into account 
in the determination of DL. 

For each analyzed front we determined also the distri- 
bution of the front points over layers parallel to the boundar- 
ies A and B, the displacement x, of the average front posi- 
tion, and the mean squared deviation from the central 
position, a,, which characterizes the front width. The distri- 
bution of the front points over the layers turned out to be 
close to Gaussian. 

In the course of the diffusion, the front of the atoms A 
moved in towards the boundary A, and that of atoms B 
towards the boundary A. We investigated the time evolution 
of the front characteristics obtained by averaging the charac- 
teristics of the fronts A and B. As seen from Fig. 3, the front 
motion was given initially by x ,  a t 0.51  * and later by 
xF a 1.5k0.1 . The second regime set in because the diffusion 
process became such that the limited size of the lattice came 
into play. The value of the critical exponent in the first re- 
gime, corresponding to diffusion in a semi-infinite sample, 
suggests that the exponent is exactly equal to 0.5. This means 
that the central line of the front moves like a line of constant 
concentration cF. 

To continue the analysis, we introduce the diffusion 
length 1, = 2(Dt) ' I 2 .  For diffusion by the vacancion mech- 
anism on a square lattice with unity mesh, the diffusion coef- 
ficient is D = fc, v, /4, where c, and v, are the concentration 
and frequency of the vacancy hops, and f ~ 0 . 4 6 5  is the corre- 

FIG. 1 .  Form of diffusion front at different instants of 
time. The number of vacancy hops is lo7 ( a )  and 
2.4.10' (b) .  The points 0 are the end points of the 
initial boundary between the atoms A and B. 
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lation f a ~ t o r . ~  Hence I, = ( fn, / N )  ' I 2 ,  where n is the num- 
ber of vacancy hops and N is the number of lattice sites. 

Assuming that in the first regime the critical exponent 
for x, is exactly 0.5, we get 

The width of the front had a power-law growth: 

The number NF of atoms belonging to the front also in- 
creased with time. This growth, however, was against the 
background of strong fluctuations, so that it was impossible 
to determine the NF (1, ) dependence reliably from the com- 
puter experiment. It is nevertheless easy to show that this 
dependence should also follow a power law. Indeed, since 
the front is a fractal all the way to scales -OF,  it can be 
represented as a linear chain consisting of squares -aF on 
the side, with the front fractal inside each square. The num- 
ber of such squares is - l / a F  and the number of atoms in 
each squares is -up. Hence NF -a?- ' - 1 D ". 

The values of the fractal dimensionality in our case are 
somewhat lower than in Ref. 2, where a value 
D, = 1.76 + 0.02 was obtained for a diffusion length 
I, = 12 800. This is seemingly due to the fact that our lattice 
was smaller in size. Indeed, in Ref. 1 the fractal dimensional- 
ity for I, = 50 is D, = 1.62. The concentration on the aver- 
age line of the front, and also the values of the critical expo- 
nents for x ,  and a,, agree with the data of Ref. 2, where it is 
shown also that a, = v/(v + 1 ) -0.57 1 (v  = 4/3 is the 
critical exponent of percolation theory). The difference 
between the factors preceding the power is due to the differ- 
ent initial and boundary conditions. 

Since, as noted above, the average position of the front 
at each instant coincides with the line of constant concentra- 
tion c,, the question of the value of this concentration arises. 
From general considerations one can expect it to be close to 
the critical concentration cp -0.593 of percolation on a 
square l a t t i ~ e . ~  With the aid of the relation c, = 0.5 
erfc(xF/lD ) we obtain from ( 1 ) 
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FIG. 2. Scale properties of diffusion front. 

It can thus be regarded as established that c, = cp within the 
limits of error. This result agrees with that of Ref. 2. Assume 
that the relation c,  = cp holds for all types of lattice. This 
suggests some conclusions regarding the variation of the 
electric resistance for diffuse homogenization. Since cF - 0.6 
in our case, and the plane c = 0.5 is immobile, the front 
moves away from the initial position to "its own" lateral 
boundary. [This circumstance is reflected by the minus sign 
in Eq. ( 1 ) . ] Therefore in the case of two semi-infinite sam- 
ples having a square lattice, at unity connectivity radius, no 
electric contact is produced in the course of diffusion. On the 
contrary, connectivity is lost in the sample. For a triangular 
lattice we have cp = 0.5 (Ref. 5).  This means that c,  = 0.5, 
i.e., in the case of mutual diffusion of two semi-infinite sam- 
ples with triangular lattices the line of the front will not 
move as a unit. A contact should be made, however, as a 
result of the front's own expansion which is characterized by 
the function OF ( t ) .  

On a three-dimensional lattice, the diffusion front 
should move forward and lead ultimately to a contact, since 
c, < 0.5 for any three-dimensional l a t t i ~ e . ~  In the case when 
the diffusion of an impurity in a semiconductor leads to a 
Mott transition, the shape and time behavior of the bound- 
ary of a phase having metallic electric conductivity can also 
be described by the foregoing approach. It is clear here be- 
forehand that the diffuse percolation front will move for- 
ward much more rapidly, since the critical percolation con- 
centration for a Mott transition is much less than unity (of 
order lop4 and lower). 

3 12 ? 

FIG. 3. Displacement of average position upon diffusion. 
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Analysis of the percolation diffusion front permits thus 
a new look at the laws governing the variation of the electric 
properties of a body with diffusion. For large diffusion 
length, when x, )a,, the contact is produced at an instant 
when the x, plane, having a concentration c,, reaches the 
opposite boundary. At small dimensions of the diffusion 
zone, when a, is comparable with x,, it must be taken into 
account that the front has a width uF of its own, so that to 
make contact it suffices to have the opposite boundary reach 
the plane x, + kg,, where k is a certain coefficient of order 
unity. For a description of the development of the percola- 
tion diffusion front it is important that x, and a, have dif- 
ferent time dependences. Indeed, in a macroscopic descrip- 
tion, the diffusion in an unbounded solid constitutes a 
self-similar problem, since the diffusion picture is deter- 
mined completely by the dimensionless variable x/(Dt) ' I 2 .  

When diffusion is described in terms of the diffusion front, it 
becomes clear that the problem is not self-similar for small 
diffusion lengths. It becomes self-similar only in the limit of 
large lengths, when a, <x,, i.e., 1, 5 lo3. In such cases the 
problem is said to be incompletely self-similar.' If, however, 
the front is not displaced during the diffusion (x, = 0, as is 
the case for a triangular lattice), the contact-making kinetics 
is determined by the function u, ( t ) ,  i.e., in this'case the 
problem is similar but with a different time scale x ( t )  deter- 
mined by the critical exponent for u, ( t )  and not for x, ( t ) .  
Since x, ( t )  and u, ( t )  fluctuate strongly, one should expect 
also electric-resistance fluctuations (noise) at the instant of 
contact making. These fluctuations should be stronger the 
smaller the sample, and even temporary loss of the already 
produced contact is possible. 

Besides the diffusion front, we investigated also the ge- 
ometry and the regularities in the development of the sum- 
mary boundary of all the produced clusters of the atoms A 
and B. This boundary is defined as the aggregate of bonds of 
type AB. It is just on this boundary that the mixing energy of 
the atoms A and B [E = EAB - 0.5 ( E ~ ~  + ), where EAA, 
E ~ ,  and are the binding energies of the corresponding 
atom pairs] is localized. It is therefore of interest to study the 
geometry and the time evolution of this boundary. 

In our model, the probability of a vacancy hopping in 
one or another direction does not depend on the surround- 
ing. This corresponds to the limiting case E < kT. Clearly, the 
front is related to the summary boundary of the clusters just 
as the continental shore line is related to the shore line that 
includes also the shores of islands and lakes.' The fractal 
dimensionality of the summary boundary was determined in 
the same way as for the front, from the N(d) dependence. As 
expected, it turned out to be higher than the dimensionality 
of the front. The dimensionality D, of the summary bound- 
ary of the clusters comes close to two. Thus, 
D, = 1.91 + 0.01 after 10' vacancy hops and 
D, = 1.97 + 0.01 after 2.10' hops. This gives grounds for 
assuming that in the limit of large diffusion lengths the 
boundary constitutes a fractal that fills the space. This 
agrees with results obtained by solving the problem of perco- 
lation through a lattice in Refs. 1 and 8, where it was shown 
that the fractal dimensionality of the boundary of all the 
clusters is equal to two. 

The number of points of the summary boundary in- 
creases as a power law: N, = (320 + 10) 1 y8 * 0.02. This 
suggests that the critical exponent for N, is equal to unity. 

Then 

The total alloy-mixing energy is therefore 

The relation (5)  is evidence that the assumed independence 
of the population of the lattice site on its surroundingZ is 
valid for the vacancion mechanism of diffusion if the in- 
equality &/kT< 1 is valid. Indeed, if this assumption is cor- 
rect we get, recognizing that c(x)  = 0.5 erfc(x/l, ), and the 
number of nearest neighbors is four, 

m 

Nb=41 1 c (i) ( I  - c  (i) ) dz = (81n)" 11D~1.6011., 

which corresponds to Eq. (5 ) .  We note, however, that for 
most diffusion pairs the inequality &/kT< 1 is not satisfied, 
so that the method of Ref. 2 cannot be used for them. 

The simulation and the analysis lead to the following 
conclusions: 

1 ) The geometry and the laws governing the evolution 
of a percolation diffusion front determine the kinetics of the 
diffusive growth of the phase for which the presence of con- 
nectivity (conductive, superconductive, magnetic, etc.) 
between definite types of atoms is essential. The diffusion 
front is the boundary of such phases. 

2) The percolation diffusion front is characterized by a 
fractal geometry, and its evolution is described by a number 
of critical exponents. 

3) In small samples the kinetics ofelectric contact mak- 
ing is determined not only by the kinetics of the displace- 
ment of the front as a whole, but also by the kinetics of the 
increase of its width. 

4) The evolution of the diffusion front is of the fluctuat- 
ing type, and this should lead in small samples to fluctu- 
ations of the corresponding characteristics (e.g., of the elec- 
tric resistance at the instant of contact making). 

5) In the case c < k T  the fractal dimensionality of the 
summary boundary of the clusters formed in the diffusion 
zone tends with time to two. 
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