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An exact solution is obtained of the problem of resonant tunneling of electrons at an arbitrary 
value of the electron-phonon interaction at the resonance center. If the strain accompanying the 
formation of the polaron state on the center is large compared with the amplitude of the zero- 
point vibrations of the crystal, a substantial smearing takes place in the energy dependence of the 
resonance transparency, and intense inelastic tunneling channels are produced. Nonetheless, the 
integrated probability of tunneling for a "beam" of electrons with a broad energy distribution 
does not depend on the electron-phonon coupling. The results can be used to analyze 
experimental data on resonant tunneling of electrons through an amorphous dielectric layer. 

1. INTRODUCTION constant, M is the ion mass, and a is the lattice parameter). 

The transparency of a barrier to tunneling increases 
drastically if it contains localized states that are at resonance 
with the tunneling electron.' The probability of an electron 
of energy E tunneling "through" a localized state is deter- 
mined" by the Breit-Wigner formula2 

where E, is the energy of the localized state, and T the width 
of the level produced by this state in a barrier of finite thick- 
ness d. The value of r depends mainly on the ratio of d and 
the impurity-state radius a,: 

Being a quantum coherent effect, resonant tunneling should 
be sensitive to the loss of phase coherence of the electron 
wave function. This circumstance, postulated in the phe- 
nomenological approach,3 leads to the conclusion that the 
resonance-level width and the tunneling probability depend 
strongly on temperature. The conclusions of the phenome- 
nological a p p r ~ a c h , ~  however, do not agree with the results 
of Ref. 4, where an attempt was made at a microscopic analy- 
sis of tunneling with the aid of a model potential that varies 
harmonically (i.e., in accordance with a prescribed law) 
with time. 

In fact, electron-phonon interaction (EPI) on a center 
leads to the dynamic effect of binding the states of an elec- 
tron and phonons into a state of the polaron type. This effect 
of formation of a coherent electron-phonon state does not 
reduce to loss of phase coherence of the electron wave func- 
tion, as suggested in Ref. 3, and the result of the influence of 
the EPI on resonant tunneling is thus not obvious. The pres- 
ent paper is devoted to a consistent quantum-mechanical 
analysis of tunneling through resonant centers that interact 
with lattice vibrations. The analysis that follows shows that 
a strong EPI leads to a substantial smearing of the resonant 
T(E) line and to the onset of inelastic resonant-tunneling 
channels, but does not change significantly its integral inten- 
sity. The line shape is not Lorentzian in the presence of EPI. 

The magnitude of the EPI at the center is determined by 
the dimensionless parameter (u, /u,)', where u, = (fi/ 
Mw, ) ' I 2  is the amplitude of the zero-point vibrations and 
u, =:A/MwLa is the characteristic magnitude of the lattice 
polaron deformation due to the presence of electrons at the 
center (w, is the Debye frequency, A is the strain-potential 

The EPI at the center leads to substantial hybridization of 
the quasilocal electronic state and of the phonon degrees of 
freedom of the crystal, under the condition 

As a result, in place of a single impurity level, the electron- 
phonon states at the center are distributed over an energy 
band whose width is estimated at 

The previously mentioned modification of the picture of the 
resonant tunneling is due to the onset of wide resonance 
band ( 1.4). In contrast to ( 1.1 ), the width of the resonance 
line is determined not by T but by E,, % T. The maximum 
value of the total tunneling probability TI ( E )  as a function of 
the initial energy E is estimated by the expression 

max T I ( € )  - ~ / E A .  (1.5) 

The magnitude of the EPI does not influence the barrier 
integral resonant transparency 5 d&T1 (E). It is of the order 
of r, as before, and exceeds substantially the nonresonant 
tunneling probability which is proportional to r2. 

Resonant tunneling of band electrons through localized 
states in a barrier is best analyzed by tunnel-Hamiltonian 
method (all the energies are reckoned here and elsewhere 
from the bottom of the conduction band for electrons out- 
side the barrier, fi = 1 ) : 

Here cp, a:, and d ,+ are the energies and the creation oper- 
ators of an electron in the left and right edges of the tunnel 
junction (we assume here for simplicity that H, and H ,  
obey the same dispersion law), c,, and c+ are the same for 
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the electron in the localized state, o, and b ,+ are the phonon 
dispersion law and creation operators, and N is a normaliza- 
tion factor (the number of atoms in the lattice). The matrix 
element a, is connected in the usual manner with deforma- 
tion-interaction constant A of the localized electrons (M is 
the atom mass) : 

a,=-iAq/(Mo,)". (1.9) 

The hybridization constants gca and gcd are due to the be- 
low-barrier "tail" of the wave functions of the band elec- 
trons. If the resonant impurity is located at a distancex from 
the center of the barrier, we have 

gca, g,d~exp{- (dk2x) /2a,). 

(The values ofg for an impurity with a small-radius poten- 
tial were calculated in Ref. 5). No account is taken in the 
Hamiltonian ( 1.6) of the interaction of the band states with 
the phonons. This simplification is permissible because the 
phonon renormalizations of the itinerant states are small 
compared with analogous renormalization for localized 
states to the extent that the parameter w,/q, v-s/v 4 1 (s is 
the speed of sound and v is the electron velocity). To the 
same extent that this parameter is small, we can neglect also 
the dependences of g,, and gcd on the phonon variables. 
Bearing in mind the case of a sufficiently sharp resonance, 
we assume that the hybridization constants are small com- 
pared with the characteristic energies of the electronic 
states: 

gca,  ged<&o. (1.10) 

The Hamiltonian H, is diagonalized in terms of the new 
operators fl,+ and y+:  

The operator Hc is then transformed into 

and has eigenfunctions 

cp{m, nq )= (~+)" '~ (P ,+ )ns ]O) ,  m=O, 1, n,=O, 1, 2 , .  . . 
s 

(1.14) 

It can be seen from ( 1.1 1 )-( 1.14) that in the case of one 
phonon frequency w, phonon replicas are produced in the 
density of the quasilocal states."' The hybridization opera- 
tors Ha, and Hcd correspond to transitions with creation or 
annihilation of a large number of electron-phonon states. 
With allowance for ( 1.11 ) we obtain, say for Ha, 

Ha, = Eg, (k)ak ty  {no + [a. (BD*)~-%'BD~I} + H A . ,  

It follows from (1.15) and (1.16) that at laD/c)DI%l the 
hybridization matrix element2' Vn = g(n!) L'2an is a non- 
monotonic function of the subscript n, and reaches a maxi- 
mum at 

In the region n % no the value of Vn decreases like 

V,~(n, ln)  "I2. 
Equation ( 1.13) shows that the resonant energy E,, of the 
electronic state undergoes a polaron shift. In view of the 
structure of V,, however, the hybridization of the itinerant 
and impurity states takes place effectively in an energy band 
whose center coincides as before with the resonant value E,. 
The width of this band, according to ( 1.16), is of the order of 
a, and it can be seen from (1.9) that it coincides with E,, , 
see Eq. ( 1.4). The transitions of the itinerant electrons into 
states of this band determine the smearing of the resonant 
tunneling line and its inelastic character. The cause of the 
latter is easily understood if it is recognized that the matrix 
elements of the transitions under the action of Ha, and Hcd 
between states with different phonon occupation numbers 
{m,) and in,) differ from zero. From conservation law for 
the total system energy 

follows the possibility of energy nonconservation of the elec- 
tron in the course of tunneling (E, $.E, ). The characteristic 
electron energy loss in tunneling is determined by the value 
of no at which the hybridization matrix element is a maxi- 
mum. Under condition ( 1.3 ), the energy loss turns out to be - ~ 

of the order of the polaron-shift energy E,,, : 

At finite temperature, the tunneling process is complicated 
by the contributions of processes in which real thermally 
excited phonons participate. Analysis of these processes 
calls for a more rigorous treatment, which will be carried out 
in the next section. 

2. DYNAMIC EVOLUTION OF ELECTRONIC STATES IN THE 
COURSE OF TUNNELING 

Calculation of the probability of resonant tunneling of 
an itinerant electron from the left to the right edge requires 
an analysis of the decay of the "pure" itinerant state k due to 
its hybridization with a set of local electron-phonon states. 
To describe the dynamics of this process it is convenient to 
introduce the amplitudes iip, ( a  = a,d) and O of the probabi- 
lities of the transition of a state a: 10) specified at the initial 
instant of time into the states d ,f 10) and c f  10). We repre- 
sent the wave function of the system with the Hamiltonian H 
[see (1.6)] in the form 

(ii,, and it are operators in the phonon variables). The fact 
that ct 10) is not an eigenstate for the Hamiltonian Hc leads 
to a nontrivial dependence of up, and v on the operators b ,+ 
and 6,. This dependence is determined by the evolution 
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equations that follow from the Schrodinger equation ex- 
pressed in the interaction representation (relative to the 
free-phonon Hamiltonian 

H$)=Z w,,bqtbq) : 
(I 

In accordahce with the considered tunneling problem, we 
choose the initial conditions for Eqs. (2 .2)  in the form 

ip,(t=O) =6pk6,, v"(t=o) =O. (2.3) 

The evolution equations (2.2) can be greatly simplified if the 
energies transferred by the scattering are low compared with 
the characteristic energies of the electrons 

This simplification is easiest to track by transforming in rela- 
tions (2.2) to Fourier components ii,, ( a )  and ir(w) with 
respect to time. After solving the first equation of the system 
(2.2) for ii,, (a )  we obtain a closed equation for the Fourier 
component D ( w  ) : 

The operator of the electron "energy" renormalized by the 
hybridization is defined by the relation 

The damping r of the electronic states at the center is of the 
form 

r,, ,mexp{-(d*2x) la,). (2.7) 

r, and r, are the partial widths of the resonance level and 
are due to electron departure to the left or right edges. Under 
the condition ( 1.10) one can neglect the hybridization-re- 
normalization of the electron energy [the term proportional 
to ,$ in (2.6) 1. The condition (2.4) allows us to neglect the 
frequency dependence of the damping r [ r ( w )  = const]. 
This neglect simplifies substantially the analysis of the dy- 
namics of the electronic states. Putting T ( w )  = r and trans- 
forming to a temporal representation, we obtain simplified 
equations for GPO ( t )  and D(t) in the form 

+ gca (p) np ( t  = 0 )  e-iept. 

P 

The solution of the first equation of the system (2.8) under 
the initial condition (2.3) takes the form 

-1e t - 
a p a  ( t )  = a,. (0) e gco ( P )  g,, (k) e-'ept 

S X dr, exp {- i (so - ep - i r )  r,) dr, exp {i (so 
0 0 

The operator 0,(r) is then the solution of the Cauchy prob- 
lem 

Equation (2.10) can be reduced to a linear differential equa- 
tion of first order by changing to the coordinate representa- 
tion for the operators b ,+ and b, (the Bargmann representa- 
tion9). Solving the last equation by the trajectory method we 
get 

1 a,= 
Do ( t )  = exp iT 2 (uqt - sin mqt) 

Nu,  
'4 * 

Relations (2.9) a n i  (2.10) make it possible to find the prob- 
ability amplitude U,,, ( t )  of the resonant tunneling: 

Calculation of the k+ p transition prokabilityrper unit time 
requires averaging over the operator U ,+,, + U,,, over the 
initial states of the phonon system at the instant of time 
t = 0. Assuming these to be equilibrium states and recogniz- 
ing that at the initial instant the local level is empty and there 
is no renormalization of the phonon modes [see ( 1.12) ] we 
obtain for the transition probability per unit time W,,, the 
expression 

1 ~ p { e x p [ - ~ ~ : '  l G L p ( t )  fik+,(t) 1 
Wk+p = lim - - .  t Sp{exp[-FH(;Ll) 

(2.13) 

The mean values in (2.13) are calculated in the same manner 
as in the theory of the Mossbauer effect.'' Taking (2.11 ) and 
(2.12) into account, we obtain ultimately from (2.13) 
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v ( t l ,  t,, t ,)  = exp {- 1 (1  - e-iaqh) 
P 

where 2, is the energy of the resonance level with allowance 
for the polaron shift ( 1.17) : 

F , , = E ~ - - E ~ ~ I .  (2.16) 

[The factors 1/N preceding the sums over q in (2.14) and 
elsewhere will henceforth be omitted; we assume these fac- 
tors to be included in the definition of the summation proce- 
dure.] It is easy to verify that in the absence of EPI (a, = 0) 
the relations (2.14) and (2.15) determine the elastic-tunnel- 
ing probability described by the Breit-Wigner formula. At 
a, f O  the inelastic-processes probabilities become different 
from zero. For T  = 0, Eq. (2.15) takes the form 

V ( t l ,  t 2 ,  t3 )  = exp {- [ a  ( ta ,  t3) - b ( ta ,  t3) e iwqt l ] ] ,  
P oq2 

a(&,  t , )  =2-e'"q '~-e-'" q '3, 

b ( t , ,  t , )  = (e-IDq l2-1) (eimq ' $ - I ) .  (2.17) 

Expanding formally V in powers of exp(iwqt,) we obtain 
terms of the form exp (inw, t,), but with integer positive n. It 
is seen from (2.14) that this leads to W,,, = 0 at E, > E,. 

This property agrees with the general premise that there is 
no phonon absorption3' at T = 0. 

Relation (2.14) permits calculation of the partial pro- 
babilities of the tunneling: 

and the total tunneling probability. We present here equa- 
tions for each of these quantities. 

a) Total tunneling probability 

Integrating (2.18) over the energy transfer, we obtain 
the total probability for tunneling of an electron of given 
initial energy E: 

- - 2 -  rlrr 1 dt exp (- I? I t  I + i  (L - i,) t )  
,r1+ r7 -- 

x exp (- 2 [(2nq + I )  - (nq + l )  d i ( " q t  

'3 mqa 

where 
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nq= [exp ( o q / T )  -1 I-' .  
At la, I <w, the contributions to T ,  (E)  with participation of 
n phonons decrease like laq/wq 12". Taking only one-phonon 
processes into account, we get 

In the case laq 1 %  w, the multiphonon contributions are im- 
portant. The integral (2.19) can be determined by asympto- 
tic expansion of the argument of the exponential in powers of 
w, t - I wq/a, l 2  < 1 up to second-order terms. Under the con- 
dition 

we obtain 

T t  ( E )  =242n'h ( r l r r / r ~ n ( T )  ) exp {- ( E - - E O ) ~ / ~ E A ~ ( T ) } .  

(2.22) 

As seen from relation (2.22), the electron-phonon interac- 
tion leads to a substantial broadening of the resonance. It 
will be shown below that this is due to inclusion of inelastic 
scattering channels. It is important to note that such radical 
changes of the character of the scattering do not change the 
integrated transparency of the barrier. Using (2.19), we can 
directly verify the correctness of the following sum rule: 

j d ~  ~ , ( e )  = j a. T... ( E )  =r.r,r.i (r,+r.), (2.23) 

which is obtained for any value of the parameter laq I/wq. 

b) Probability of elastic tunneling 

We can separate in the total probability T ,  (E)  a term 
T,, ( E )  corresponding to the contributions of elastic pro- 
cesses that conserve the electron energy, and the partial con- 
tributions of the inelastic processes: 

T ( E + E I ) = T ~ I ( E ) ~ ( E - E I ) + T ~ ~  ( E + E ~ ) .  

According to (2.14) and (2.18) we obtain for T,, (E)  

T., ( E )  =4I',I'. j d t ,  j d t ,  e r p { i ( e o - E )  ( t 2 - t l )  

where 

From expression (2.15) for the function V(r,tl,t2) and from 
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Eqs. (2 .24)  and (2 .25)  it follows that 

Ael (e) = dt exp (- rt - i ( e  - $) t )  1 

- (nq + l )  e-'%'-. nqeimqt1). ( 2 . 26 )  

Comparison of ( 2 . 19 )  with ( 2 . 26 )  allows us to express the 
total probability T ,  ( E )  in terms of the elastic-tunneling 
probability amplitude: 

this being a consequence of the optical theorem.' 
The difference between ( 2 . 26 )  and the Breit-Wigner 

formula is determined in the weak-EPI limit by small correc- 
tions of order la, l2 /w; ,  which correspond to a decrease of 
the probability of elastic tunneling on account of inclusion of 
parallel inelastic channels. 

In the multiphonon scattering regime ( 1 a q / w q  I ' % 1 ) , 
when inequality ( 2 . 21 )  is satisfied, the elastic cross section 
can be represented in the form 

It follows from ( 2 . 27 )  that under conditions of strong EPI 
the relative contribution of the elastic processes to the total 
tunneling probability at I E  - & , I  5 E ,  ( T )  is small in terms of 
the parameter r / ~ ,  ( T )  ( 1 and the principal role is played 
by the elastic channels (see Fig. 1 ) . 

The transformation of T,, ( E )  with increase of the EPI 
force is easily seen. At Iaq/w,  I ( 1 we have a resonant Breit- 
Wigner peak at EZE, ,  with wings corresponding to resonant 
tunneling with participation of virtual phonons. With in- 

FIG. 1 .  Energy dependences of the resonant-tunneling probabilities. 
Curve ( 1 )  corresponds to the Breit-Wigner formula, which is valid in 
the absence of EPI; curves (2)  and ( 3 )  correspond to the total and 
elastic cross sections T, ( E )  and T,, ( E )  for strong EPI,  T, = T,. 

crease of la, I the intensity of the wings increases and the 
position of the resonance peak shifts in accord with the in- 
crease of the polaron shift E,,, . For strong EPI, the main 
contribution ( 2 . 27 )  to T,, ( E )  is due in fact to the wings. The 
"memory" of the Breit-Wigner peak remains only in the 
form of the correction 

This correction is integrally small. Under the condition 
l a q / o q  1') In(&, ( T ) / l ? ) ,  which differs from the strong- 
EPI condition ( 1.3) only by a logarithmic factor, the ampli- 
tude of the correction ( 2 . 28 )  is also small compared with the 
maximum value of ( 2 . 2 7 ) .  

c) Partial cross sections in inelastic channels 

The quantity Tin ( E - E ,  ) depends on the detuning 
E - E,  and on the energy E = E - E ,  transferred to the phon- 
ons. In the case of strong EPI the Tin are largest when the 
absolute value of the detuning does not exceed E ,  ( T ) .  The 
characteristic energy transfers E are due to multiphonon 
processes and therefore exceed w ,  substantially. We there- 
fore present first an expression for Ti,, ( E - & I  ) obtained for 
the values E = E, and E )  w ,  . Using the saddle-point method 
and the last inequality to calculate the integrals in ( 2 . 14 ) ,  we 
get 

Here 

The saddle-point asymptote in ( 2 . 14 )  and expression ( 2 . 19 )  
are valid under the condition (2.21 ) and for energy transfers 
IE I ( E ~ , ,  . In the case of a sufficiently short electron lifetime 
at the center (r - '  g o ;  I )  there is not enough time for po- 
laron renormalization of the quasilocal-state energy and the 
characteristic value of IE I is determined by Eq. ( 2 . 3 0 ) .  In 
the opposite case T g w ,  the characteristic lE / ZE, , ,  . At 
these values, the saddle point method cannot be used in 
( 2 . 1 4 ) ,  but an order-of-magnitude estimate of the cross sec- 
tion Ti ,  ( E - E , ~ ,  ) can be obtained as before with the aid of 
Eq. ( 2 . 2 9 ) .  The "tail" of Tin is exponentially small for large 
energy transfers E > 2epo, and is determined at r ( w ,  by the 
relation In Tin ( E )  - - ( E  - 2&,,, ) /E , ,  ( T ) .  Note that the 
cross section ( 2 . 29 )  is asymmet;ic in E all the way to tem- 
perature T-E,,,  that exceed the Debye temperature sub- 
stantially. d his is due to the decisive contribution of multi- 
phonon processes to the scattering. At small energy transfers 
E S  w ,  and low temperatures T g w ,  the correct relation is 
not ( 2 . 29 )  but 

In the case of weak EPI the formula for T ( E  + E ,  ) can be 
simplified by expanding V in ( 2 . 1 5 )  in powers of the small 
parameter l aq /wq  1 2 .  Greatest interest attaches to the limit 
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r (a,, when the central peak is much narrower than the 
resonance-line wings. The cumbersome equation for 
T(E -reI ) takes then the simpler form 

The quantities A,, B, , and C are defined in (2.20). 

3.TUNNELlNG THROUGH AN AMORPHOUS DIELECTRIC 
LAYER 

We have clarified above the character of the influence of 
the EPI on the elementary resonant-tunneling act. The 
manifestations of the EPI in experiments depend on the spe- 
cific method of formation of the tunnel layer and the reso- 
nance states. On the basis of the experiments of Beasley et 
~ l . ' ~ . ' ~  we consider resonant tunneling through an amor- 
phous dielectric interlayer containing a large number of lo- 
calized.states. Their energies are distributed in a wide inter- 
val. The states participating in the transport of the charge 
through the junction are those whose energies are close to 
the Fermi level within the limits of the temperature-spread- 
ing or of the energy unbalance due to the voltage 9 applied 
to the junction. 

We consider first the manifestations of the resonant 
tunneling in the conductance Gof the junction in the absence 
of EPI. The states actively participating in resonant pro- 
cesses are those localized near the midpoint of the barrier 
( 1x1 S a,) and located (for T = 0) within an energy band 
-r near the Fermi level. The two-dimensional density of 
such states is n, - N(E, )a,r, where N(E, ) is the density of 
states in the amorphous layer and E, is the Fermi energy 
determined by the edges of the junction. The conductance 

FIG. 2. Different regions of the characteristic areas Sof  the junction and 
the dielectric thickness d. The conductivity is determined by direct tun- 
neling in the region a and by resonant tunneling in region b; the fluctu- 
ations of G are large in region c. The dashed line separates the regions b 
andcat T=O. 

concept has meaning for junctions of area S )  n, I .  In the 
opposite case the characteristics of the junction depend on 
the specific arrangement of the impurities in it (the fluctu- 
ations of G are large). Taking into account the order-of- 
magnitude estimate r- (fi2/mai )exp( - d /a,), we obtain 
the conditions that the parameters S and d must meet for the 
fluctuations of G to be small (see Fig. 2):  

At a finite temperature T >  r the fluctuations are small for 
samples with area S >  ( N ( E ~ ) ~ ~ T )  -I. 

Consider now the case of large-area junction, when the 
fluctuations of G are small. For the resonant component of 
the current 

Z,rnSn,.nexp (-dlao) 

to predominate in G over the usual tunnel component 

the insulator thickness should satisfy the condition4' (see 
Fig. 2) 

d>d,, do=ao ln ( S , ~ F ~ ) .  (3.2) 

If the inequality is reversed, direct tunneling through the 
barrier prevails. Thus, for a set of junctions with increasing 
value of d and fixed area S >  S: k a crossover should be 
observed, viz., a transition from a relation In G(d)  a - 2d / 
a, at d < do to In G(d) a - d /ao at d > do (the crossover cor- 
responds to passage through line 1 of Fig. 2).  

We illustrate now the modification of the junction be- 
havior by the EPI. The contribution from each resonant 
state to the current through the junction is given by 

( f, is the Fermi distribution function of the electrons at the 
edges). For a large junction area [see ( 3.1 ) 1 the fluctuations 
are small and a reasonable mean value of I( '3 ) is the value 
of Ti (E,  + E ~ )  averaged over the locations and energies E~ of 
the defects: 

It can be seen from (3.3) that at temperatures T<max 
(E,, ,mD ) the order of magnitude of G is determined by the 
elastic part ( T ( E ~  ) ),, of the transition probability: 

G x  (eZ/nA) (T(EF+EF) ) e l .  

In the case of strong EPI ( 1.3) we easily obtain with the aid 
of (2.15), (2.21), and (3.4) 

(T(E,+E~)   el=^( E F ) S ~ O  I ~ ( E A I ~ )  r2/&, (3.5) 
and consequently In G(d) a - 2d /ao, just as in the case of 
nonresonant tunneling (only the pre-exponential factors in 
G differ), and there is no crossover. 

Crossover as a function of In G(d) was distinctly ob- 
~ e r v e d ' ~ . ' ~  in samples with S- lop4 cm2. An estimate of do 
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from Eq. (4.2) using the valuesI4 a , z 8  A, N ( E ~ )  z lOI9 
e V - ' . ~ m - ~  agrees very well with the experimentally ob- 
servedI4 value5' do z 70 A. The crossover is evidence of suffi- 
ciently weak EPI in the experiment of Ref. 14. We restrict 
ourselves to this case. Using (2.32) and (3.4) we get 

It is seen from (3.6) that the conductivity agrees, apart from 
small corrections - (a/wD )', with the value of G in the ab- 
sence of EPI, G, z (e2/&) N(E, ) T a s .  It is just these cor- 
rections, however, which determine the temperature depen- 
dence of G(t). Being interested in the region of sufficiently 
low temperatures T<wD, we take into account in (3.6) only 
acoustic phonons. The sign of the increment SG( T) r G( T )  
- G(0) is not obvious beforehand, since the increase in the 

number of inelastic channels with rise of temperature can be 
offset by the decrease of the intensity of an elastic channel on 
account of the temperature dependence of C(T) in (3.6). 
Simple calculations enable us to verify that there is no com- 
plete cancellation and that SG( T) > 0. The quantity SG(T) 
can be represented in the form 

6G ( T )  /G (0) - ( u D / ~ ~ D )  ( T l h o D )  '. (3.7) 

The characteristic value of a, is determined here by the 
relation 

( ~ D l f i o ~ )  " A 2 / M l i S 3 q ~ .  

The conclusion that G(T) is a quadratic function at low 
temperatures agrees with the experimental results of Ref. 13. 
The temperature dependence of G(T) in the case of strong 
EPI differs substantially from (3.7), for it follows from 
(2.31) and (3.4) that 

Another manifestation of EPI is its influence on the 
behavior of the current-voltage characteristics (IVC) of the 
junction. For large-area junctions, at small displacements 
e%, thenonlinearity is dueentirely to the EPI. At e 8  <hD 
the nonlinearity of the conductivity can be estimated from 
(3.7) by replacing Tin it bye% . More interesting manifesta- 
tions of EPI appear, however, in the case 

when the IVC of the junction reflects a definite realization of 
a random distribution of the resonant states in energy and in 
space. Let us assess the influence exerted on the IVC at low 
temperatures ( T S  T )  by one resonant level for which 
E~ - EF --A > 0. In the absence of EPI it would lead to the 
appearance on the IVC of a step of height 

at a voltage % = 2A/e on the junction. The width of this 
step is - T/e, and the derivative dZ/d% is equal to zero both 
ahead of and behind the step (see Fig. 3). Weak EPI, while 
hardly changing the size of the step (3.8), determines the 
change of I( 8 ) past the step. With the aid of expressions 
(2.32) and (3.3) we easily obtain 

FIG. 3 .  I(  ?2 ) dependence for one resonance center: 1 )  I ( %  ) for 
a, = 0; 2 )  I(  % ) for weak EPI with acoustic modes and a local one. 

It follows from (3.9) that acoustic phonons lead to a smooth 
growth of 6Z( 8 ) at e 8  > 2A. If the resonance level is close 
enough to the Fermi level (2A < h, ), the current jump S I  
is accompanied by a derivative jump 

(see Fig. 3).  Under the condition 2A > hD the last factor in 
(3.10) mustbereplacedby (e% - 2A)/hD,i .e . ,d  2Z/dQ2 
also has a jump. An increase of the derivative dZ /d8  after 
each step on the I( 8 ) plot was experimentally observed in 
Ref. 14. 

From relations (2.32) and (3.3) follows a small value 
- /a,/h, 12( T / h D  of the temperature corrections to 
the value of (3.8), i.e., the heights of the resonance peaks on 
the plot of dZ/d% vs 8 should vary insignificantly with 
temperature. This agrees likewise with the experimental 
data of Ref. 14. 

If the phonon spectrum contains a local mode of fre- 
quency w,, which interacts with the resonance center, the 
main step on the I( % ) plot is accompanied by additional 
steps-phonon replicas (Fig. 3). Analyzing expression 
(3.9), we easily see that under the condition hl > 2 there 
are two replicas at displacements e% , = 2 ( h ,  - A) and 
e%, = 2 ( h l  + A). The height of the additional steps is 
SZ,, - la,/h, I26Z,. We point out that the positions of the 
main step e% = 2A and of the replicas are related by 

If, however, h, < 2A, there remains only one phonon re- 
plica at % = %,. 

Well resolved individual Z ( 9  ) steps and, correspond- 
ingly, peaks on the plot of dZ/dQ vs % were observed in 
Ref. 14 in samples with S- 1.8. 10W9 cm2 and d = 51 A. A 
sharp peak was observed for one of the samples at a rather 
low voltage Q,,z 3.8 mV. One cannot exclude the possibility 
that the two succeeding peaks of lower intensity, at voltages 
% , -- 10 mV and 4, -- 17.5 mV and corresponding to the 
condition (3.11) are phonon replicas of the first. The cited 
voltages lead to a reasonable value hl z 6.9 mV. The ratio 
of the peak amplitudes leads to an estimated ratio 
Ia,/h, 1 ~ 0 . 6 .  
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4. CONCLUSION 

The results of the present paper for electron tunneling 
through a barrier can also be used, following obvious modifi- 
cations, to calculate the cross section for resonant scattering 
of carriers by impurities in a conducting medium. We note in 
this context that, as shown above, strong EPI with the impu- 
rity leads to a considerable smearing of the line and to the 
appearance of inelastic scattering channels. A similar con- 
figuration of the energy dependence of the scattering cross 
section and onset of a temperature dependence of the cross 
section should influence strongly the temperature and field 
dependences of transport processes in conductors with reso- 
nant scatterers. In addition, at sufficiently high density of 
the centers (e.g., in compounds with intermediate valence), 
such a broadening should be accompanied by a temperature- 
dependent broadening of the peak in the density of the elec- 
tronic state, and be reflected by the same token in the kinet- 
ics of such systems. An experimental study of the discussed 
effect of polaron renormalization of resonant scattering is 
possible with the aid of tunnel and microjunction injection of 
hot carriers. Note that besides the contributions to transport 
effects, a specific "phonon emission" from resonant impuri- 
ties is produced and records the passage of the electron 
through scattering centers. 

The authors thank K. A. Kikoin, I. 0. Kulik, A. I. Lar- 
kin, I. B. Levinson, M. E. Raikh, A. A. Slutskin, and D. I. 
Khomskii for numerous helpful discussions of this paper. 

"Equation (1.1) is written for the case of a symmetric location of the 
impurity center relative to the barrier boundaries. 

''Note that at q ~ q ,  z l/a the parameter /o,/w, I is of the same order as 
the previously introduced parameter u, /uo [see Eqs. ( 1.3) and ( 1.9) 1. 

"Note that equations similar to (2.14) and (2.15), derived less rigorously 
(by a modification of second-order perturbation were used 
by V. V. Khizhnyakov to investigate Raman scattering of light by exci- 
tons. This circumstance was pointed out to the author by I. B. Levinson. 

4'At much larger thicknesses d- S;l2, which we shall not consider, two- 
impurity configurations become important.' 

"Under the conditions of Ref. 14, So= lo-" cm2 and the characteristic 
area (see Fig. 2) is So(Sok ;) z lo-" cm2. 
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