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The mechanism of the onset of intrinsic dynamics in dielectric and structured glasses, due to 
"transverse" xx interaction of two-level systems (TLS) with one another, is considered. It is 
shown that in dielectric glasses this time becomes shorter than the phonon-relaxation time 
already at a temperature -0.1 K. The conditions under which a TLS loses its individuality are 
examined. 

1. INTRODUCTION 

The low-temperature properties of dielectric glasses are 
described at present by starting with the phenomenological 
two-level-system (TLS) model proposed by Anderson, Hal- 
perin, and Varmal and by Ph i l l i~ s .~  This model is based on 
the premise that low-energy two-level excitations exist in 
glasses. Owing to the low density of these excitations, their 
interaction is neglected and it is assumed that thermal equi- 
librium is produced by their interaction with acoustic phon- 
ons. At the same time, to explain nonlinear absorption of 
sound and phonon-echo damping in glasses it became neces- 
sary to take TLS interaction into account.' A detailed theo- 
retical analysis of these phenomena is contained in Refs. 4-6, 
where the corresponding experiments are cited. It was as- 
sumed in this case that both the nonlinear absorption of 
sound and the damping of the phonon echo are due mainly to 
the phase memory of two-level systems and not to direct 
transitions between their levels. The authors of Refs. 4-6 
therefo; confined themselves to "longitudinal" TLS inter- 
action, which contains terms a La :, where a : is the Pauli 
matrix for the pseudospin corresponding to the ith system. 
Since the longitudinal zz interaction conserves the spin pro- 
jections of the individual TLS, it was proposed that the tran- 
sitions between the levels are effected as before by direct 
emission and absorption of phonons. It is known,I4 how- 
ever, that the phonon-relaxation time is proportional to T - 3  

and therefore increases rapidly with decrease of tempera- 
ture. It is clear therefore that at sufficiently low tempera- 
tures the thermal equilibrium in a TLS should be due not to 
the phonons but to their interaction with one another. In this 
case thermal equilibrium is first produced in the TLS (a  
"spin temperature" is established), and then equilibrium 
sets in between the TLS and the lattice as a result of emission 
and absorption of phonons. To describe the establishment of 
equilibrium in the TLS it is necessary to take into account 
the interactions that conserve the spin projections of neither 
the individual TLS, nor the entire TLS subset. These interac- 
tions can be transverse (a :a',) and mixed (a f a ( ) .  

Unfortunately, it is impossible to solve the complete 
problem that encompasses a11 three interactions (xx, xz, zz). 
We confine ourselves therefore in the present paper to the 
transverse xx interaction, for which the nonconservation of 
the TLS spin projections is strongest. It is just this interac- 
tion which is expected to play the principal role in the dy- 
namic phenomena in the TLS. In this formulation, the TLS 
reduces to the Ising model in a random transverse field. 

It should be noted here that the problem considered has 
also a bearing on the so-called structured glasses, which con- 
tains molecular constructs with internal degrees of freedom, 
if the spacing of the levels of an individual construct is a 
quantity determined by the random atomic surrouiid of the 
construct. 

As shown in Ref. 3, TLS interaction is the result of a 
virtual phonon exchange and decreases as the cube of the 
distance. Owing to this decrease, TLS interaction cannot be 
treated by perturbation theory, for the principal role is 
played here by interaction of close systems with interatomic 
spacing, a situation with negligible probability. It is there- 
fore necessary to solve first the problem of the interaction 
between TLS with specified spacing, and then average over 
the spacing. Such a program is executed in the present paper 
for the transverse susceptibility of two TLS: the transverse 
susceptibility of two TLS is determined first, followed by 
averaging both over the distances between them and over 
their energies. The result is the first term of the virial expan- 
sion of the transverse susceptibility of a TLS in powers of 
their density. We determine inpassim the characteristic time 
of energy transfer from one TLS to another, meaning in fact 
the time to establish the spin temperature 

where Po is the density of states of the TLS at zero energy, y 
the deformation potentia1,p the density of the medium, s the 
speed of sound, and Em the maximum possible TLS energy. 
This time becomes shorter than the phonon time under the 
condition 

In other words, an intrinsic dynamics sets in at T <  To in the 
TLS. An accurate estimate, carried out in Sec. 4 for fused 
quatrz, yields1' To-0.1 K. The temperature To is in the 
range in which f contemporary experiments are per- 
formed, a fact that must be taken into account in the inter- 
pretation of the experiments. It must be noted, however, that 
for a complete theoretical description of TLS at T< To it is 
necessary to take into account, besides the pair interaction, 
also more complicated intereactions, i.e., to sum the entire 
virial series, but this is far beyond the scope of the present 
article. 

In addition to the problkm of glass dynamics, the prob- 
lem of the onset of intrinsic dynamics in TLS with equal 
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energies ("resonant" TLS) is in itself of interest. The ap- 
proach developed by us permits analysis of this problem, too. 
In Secs. 2 and 3 we carry out all the calculations in a form 
suitable for the analysis of the glass problem and of the prob- 
lem of TLS with equal energies. Section 4 deals with dynam- 
ics of glasses and Sec. 5 with the problem of identical TLS. 

2. FORMULATION OF MODEL AND EXACT SOLUTION OFTHE 
TLS-PAIR PROBLEM 

We use the model of standard tunnel states,14 accord- 
ing to which the initial Hamiltonian of an ensemble of low- 
energy excitations in glasses is 

where H,, is the phonon Hamiltonian, HTLs the Hamilto- 
nian of the TLS produced as a result of tunneling in an asym- 
metric potential double well, A, the asymmetry of the poten- 
tial minima, A,, the tunnel parameter, the subscript j the 
number of the tunnel system, and HI the Hamiltonian of the 
TLS interaction with phonons. In espression (3d), y;, is 
the strain potential tensor and E,, the strain potential. It is 
assumed that the TLS are uniformly distributed in space, 
and the parameters A, and Aoj are random quantities over 
which averaging is carried out with the aid of the equation 

where Po is their density of states at E g E ,  and A,,, is the 
minimum possible value of the tunnel parameter. 

The TLS properties are described by their Green's func- 
tions, defined by the equation 

It is known that in the lowest approximation in the interac- 
tion with phonons the Green's functions for individual TLS 
are given by 

G-+ ( o )  =th ( E / 2 T )  (o-E+irPh) -', (6a) 

G,, (o )  =2iI',,, [ T  c h Z ( E / 2 T )  (0+2irph) I-', (6b) 

where G-+ are the Green's function of the operators 
a+ = (0, + iuy )/2, s,,, , the longitudinal and transverse 
sound velocities and y,,, the corresponding strain potentials 
(their connection with the components of the tensor y,, in 
(3d) is given in Ref. 5); the right-hand side of (6c) deter- 
mines the characteristic energy E,. The influence of the cor- 
rections of next order in the interaction with the phonons 

was considered in Ref. 7 (we shall not need these correc- 
tions). 

Virtual exchange of phonons leads to interaction of the 
TLS3r4: 

where the "exchange" integral is of the form 

( 0 )  D;P ( r )  =- (8npr)  -' [s,-' (6,,-r,,rpr-2) +s,-' (6,,+ r,rPr-') 1. 

Here D 2 ( r )  is the Green's function of the atomic displace- 
ments at zero frequency. An explicit expression for gj, is 
contained in Refs. 4 and 5. We do not need it here. Starting 
from the definition of gjk , it is easy to verify that the follow- 
ing holds for arbitrary y z  

J d ~ j k  ah ( r j k )  =o. (9 )  

We consider now two interacting TLS labeled below by 
the subscripts 1 and 2. We take into account in (7)  only the 
transverse interaction Hxx . By using the equations-of-mo- 
tion method we easily obtain equations for the transverse 
Green's functions of this pair of TLS. We get two sets of four 
equations each. The first set relates the Green's functions 
GI = G- +,,,I;; = G+ + ,, and the functions 

a 

( 7 )  J ( 2 )  ( 1 '  (') 
L ,  ( o ) = - i  dt e ' " ' ( [o ,  ( t ) ~ ,  ( t ) ,  o+ ( 0 )  1). (10) 

0 

It takes the form 

where 

A= (Aot AozIEiEz) J i z .  

The second set of equations relates the Green's functions 
G12 = G- +,,, F12 = G+ + 12, and 

This set takes the form 

where Q, = ( U ~ " U ~ ~ ) ) .  
These sets are easily solved, and the result is 
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~ , = { 2 h ~ o ( a , ( " > + h ( o - E , )  [(~+E~)K+--(~-E~)Q++I)D-~, 

(1%) 

L1(-'=[2h20 (Q++-K+-)+(02-El2) (o+EZ)K+- 

+h(o+E,)  ( o + E 2 )  (a," ' )  ID-', ( 1 5 ~ )  
L,(+)= [-2h20(Q++-K+-)+ ( a 2 - E t 2 )  ( 0 - E 2 ) Q  + 

+ h ( o + E I )  (o -Ez)  ( ~ z " ' ) ] D - ' ~  (15d) 

The common determinant of systems ( 11 ) and ( 13) is here 

and can be written in the form 

D= (02--0+2) (02-0-2)r 

Obviously, the w: are always real. For a complete descrip- 
tion of a TLS we need eight more functions G, = G-+,,, 
G,, = G-+,,, etc. They are obtained from (15) by inter- 
changing the subscripts 1 and 2, since K+ - is real. 

Equation ( 15) contains four quantities (a:"), K+ -, 
Q+ + and Q,. They are obtained by the following procedure. 
We introduce temperature Green's functions defined as T- 
products, taken with a minus sign, of imaginary-time opera- 
t o r ~ . ~  Using the commutation rules for Pauli matrices, it is 
easy then to obtain the equations 

( o , ( " > = - [ ~ G ~  (T=-6) + I ] ,  

K+-=2Lt'-'(.t=-6), Q++=N-2F12(t=-6), 

Qo+(aZ(">=-2Ll, ( t=-6) .  (18) 

To determine the right-hand sides of these equations we 
must use the easily verified equality 

CC 

where N(w) is the Planck function and R(w) one of the 
retarded Green's functions defined by ( 15). The imaginary 
parts are calculated from the rule 

Using ( 15)-(20) we get 

where w , are determined from ( 17). If E, = E,, Eqs. ( 15 ) 
and (21) coincide with the results of Ref. 9. The complete 
system of Green's functions includes also the functions 
G+-, G--, etc. It is easy to verify that they are obtained 
from ( 15) by simply replacing w by - w.  As a result we have 

G,,,=G,,,=G, ( o )  +GI ( -a )  +pi ( o )  +Fi ( -o) .  (22) 

At T = 0, Eqs. (21 ) are greatly simplified and yeild 

<a,"'>=- ( E 1 + E 2 ) / ( o + + o - ) ,  

It follows from (23 ) that since 

we get I (a:'p2') I < 1 even at T = 0. 

3. CONCENTRATION CORRECTION TO TRANSVERSE 
SUSCEPTIBILITY. AVERAGING OVER THE DISTANCES 

We have thus determined the transverse Green's func- 
tions Gxx, and GXx,, of two TLS. The first of them describes 
the behavior of one TLS in the presence of the other, and the 
second the transfer of excitation from one TLS to the other. 
The linear response of TLS to an external interaction is de- 
scribed by the Green's function 

where N is the total number of TLS. In particular, it's just 
this Green's function which enters in the polarization opera- 
tor II of the phonon Green's function D: 

where the angle brackets denote averaging over a TLS en- 
semble, and the subscript n indicates that the irreducible 
part of G must be used. This part is defined by the condition 
that it contain no contributions representing products of 
Green's functions from nonoverlapping aggregates of TLS 
connected by only one interaction line A,, . The irreducibi- 
lity is analyzed in greater detail below, with two TLS as the 
example. In the present article we are interested mainly not 
in the actual forms of Gxx and n, but in the determination of 
the conditions under which the transverse interaction of 
TLS becomes substantial. The point is that if these condi- 
tions are met it is necessary to sum the entire virial series in 
powers of Po. This has not yet been accomplished. We con- 
fine ourselves therefore to the correction of first order in Po 
for the Green's function (24), and since the concentration 
Po is assumed small, we calculate the most singular terms 
whose divergence can compensate for the smallnes of P,,. 

We begin with Gxx, . In the zeroth approximation we get 
from (6) and (22) 

An exact expression for G,,, is easily obtained from ( 15), 
(21), and (23). At A = 0, i.e., when the distance r , ,  is infi- 
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nite, this exact equation must obviously coincide with Gg! . 
It is clear therefore that to calculate the corrections to Gxx, it 
is necessary to consider the difference 
AGxx, = Gxxl - G::'. It is convenient to express it in the 
form 

We have neglected here the phonon damping. We shall ex- 
plain below when this is permissible. 

To calculate the concentration increment to Gxxl we 
must first average over all the distances between the two 
TLS. To this end we must multiply Eqs. (28) by Po and 
integrate over all the r,,, . As a result, taking into account 
(8),  ( 12), and the fact that Gxx, depends only on A ', we get 

where the angle brackets denote averaging over the compo- 
nents of the tensor y E .  

It is now easy to calculate the averages, over r,, , of all 
three AG g', defined by Eqs. (28 ). We begin with AG i:', . 
We are interested in a region close to resonance, when 
w Z d E  :. It is then obvious that the major role in the inte- 
grand is played by small 2 - wZ - E: and therefore (a:')) 
= - tanh (E1/2T). The integral with respect to 2 is easily 
evaluated, but it must be remembered that w always has a 
positive increment is, so that at large Iwl the sign of the 
imaginary part of the denominator of the integrand coin- 
cides with the sign of w. As a result we get 

The radicands are taken here to be positive if w2 > E :,, . As 
w2+ E :,, the calculated correction is more singular than the 
free function (27) is at T,, = 0. 

It is very complicated to average AG::; over r12 for 
arbitrary temperatures. It will be seen, howeveh, that it suf- 
fices to average at T = 0. In this case, using (28c) and (23), 
we obtain 

It is easy next to verify, by considering T = 0, that the 
contribution from AG::: near resonance is proportional to 

o ( E l + E 2 ) - i [  ( a 2 - E l 2 )  (a2-E ,2 )  I-'", 

i.e., it is small compared with (30) and can therefore be 
neglected. 

We proceed now to an analysis of G,,,,. Using ( 15e), 
(15f), (21), and (22) we get 

a+ W -  
G,iz=4hE1E&-' th-th - , 2T 2T 

El E2 
G:),',,=~LE,E,[ ( a 2 - E l 2 )  ( a 2 - E 2 )  I-' th- th - 

2T 2T ' 

We have to integrate GXx,, with respect tor,,. Since2 - r, 3, 

the corresponding integral must be additionally defined. We 
consider G::;, for this purpose. In the corresponding 
expression, 2 stems from the pbonon propagator at w = 0. 
Assuming w # O  for the phonon, G g i Z  describes the transi- 
tion of a phonon from one resonance center to another. Just 
this quantity, averaged over the parameters of the centers, 
yields the square of the contribution, linear in Po, to the 
phonon Green's function. This contribution is taken into 
account by introducing a polarization operator linear in Po 
and therefore needs not be considered. It is thus necessary to 
average the difference AG,,, = GXx,, - G::',, . This is what 
was meant by separation of the irreducible part, referred to 
above. Using (8),  ( 12), (15e), ( 15f), and (21 ) for thecorre- 
sponding mean value, we have 

For small R this expression converges well, but for 

it has a logarithmic divergence cut off by the condition 
2 < Ig121rr;;ii, where r,, is the interatomic distance. As a 
result, expression (33) for T = 0 can be written in the form 

where @(x)  -x2 at x <  1 and decreases at large x; in addi- 
tion, in view of condition (9)  it is not important how (g12( in 
the second term is made nondimensional. 

4. AVERAGING OVER Ej AND E2, AND THE DYNAMICS OF 
GLASSES 

The results of the preceding section must be further 
analyzed differently for glasses and for systems containing 
TLS of equal energy. The present section is devoted to 
glasses, and it is therefore important for our purposes that 
El #E2. 

Near resonance, expression ( 30) is the principal correc- 
tion to the free Green's function (27). Averaging (30) in 
accordance with (4)  over the parameters of the second sys- 
tem as w + El ,  we obtain 
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A theoretical analyis in Ref. 10 yields for all glasses the esti- 
mate Em - 1-10 K. Obviously, the second term in (35) must 
be taken into account if it is of the order of or larger than 
unity at Iw - El  I - r p h ,  where r,, is the phonon width 
(6c). It is convenient to rewrite this condition in this form 

- Em 
E1[ct11(E1/2T) ]"<Po Igl,l E ,  In -. 

Ei 
(36) 

For thermal TLC with E l  - T the condition that the phonon 
damping be small takes the form 

Inequalities (36) and (37) determine the region of TLS en- 
ergies and temperatures in which the xx interaction is 
stronger than the interaction with phonons, and the phonon 
dynamics is replaced in the TLS by a regime which we call 
below intrinsic dynamics. 

If condition (36) is met we get from ( 35) the following 
estimate for the TLS line width due to its interaction with 
other TLS: 

In addition, it follows from (35) that the line should be very 
asymmetric and certainly not Lorentzian. We note also that 
for POI - P0$/ps2 - 1 the width I?,, becomes -El and 
the TLS lose all their individuality. 

We discuss now the physical reason for the onset of the 
dampling r,, . It follows from ( 16) and ( 17) that at a fixed 
energy E, any frequency w close to E ,  is at resonance with an 
entire ensemble of remote TLS whose parameters E2 and A 
are such that w- or w+ is equal to w. In other words, the 
external action on a selected TLS causes, albeit with low 
probability, transitions in the entire ensemble of the TLS. 
Transitions in these TLS are accompanied in turn by transi- 
tions in other TLS. ensembles. As a result, the energy of the 
selected TLS is redistributed in small batches among all the 
TLS and the quantity T,, defines the characteristic time of 
this process. It must be emphasized here once more that the 
xx interaction does not conserve the z projections of the indi- 
vidual TLS and of their ensemble as a whole, and leads there- 
fore to a real mixing of the states in the system. At the same 
time, the zz interaction considered so far causes only inho- 
mogeneous broadening of the spectra of individual TLS and 
relaxation of their p h a ~ e . ~ . ~ . "  It cannot lead to a mixing of 
their levels. Therefore, particularly in discussions of the 
echo in a set of TLS in glasses (see Refs. 4 and 5), the time 
that sets the upper bound of the echo signal was taken to be 
rPh [see (6c) 1. If, however, the conditions (36) and (37) 
are met, this time should be T,, defined by Eq. (38). 

The values of POI and TO for fused quartz can be 
determined by using the data of Refs. 4 and 12. Thus, ac- 
cording to Ref. 4, .rrP1l < 1.6. erg.cm3 and2' 
Po = 2.2.10'' (erg.cm3) -I. Furthermore, according to Ref. 
12, p = 2 . 2  g/cm3, s, =3.8.105 cm/s, s, =5.1.105 cm/s, 
y, = 1.5 eV and = d/2 .  As a result, taking (6c) into ac- 
count, we obtain Eo = 40 K (Ref. 7).  Less certain is the 
value of Em in the logarithm. We assume in accordance with 
Ref. 10 that Em ~5 K. We obtain then 

We see thus that the temperature To of the transition to 
the intrinsic dynamics of a TLS in fused quartz lies in the 
region in which experiments are being performed at present. 
This must be taken into account without fail in the analysis 
of those experiments in which an important role is played by 
the time to establish equilibrium, such as in echo experi- 
ments. It should be noted that r,, just as T,, , is propor- 
tional to (A0/El2. It is just this factor which leads to the 
existence of a broad spectrum of relaxation times for TLS in 

Thexx interaction introduced with the aid of (7)  
has therefore no influence on the existence of such a spec- 
trum. The response of a set of TLS to an external action is 
obtained after averaging gxxl also over the parameters of the 
first system. We obtain then from (27) for a free TLS 

Substitution of this expression in (25) yields the well known 
results for damping of sound and for renormalization of its 
velocity 14: 

where il = I, t, a, = POd/(psf, ); the approximate equality 
on the right side takes place at w $. T, and the logarithm is 
defined to be real at w > 0. We find now the corrections of 
order PG to this expression. The main contribution comes 
from averaging Eq. (28c) for AG ::{ . Using (3  1 ) and (4) 
with T = 0, we get 

Am,/ (sAq) =#-aA[ln(Em/o) +in/21 

In the derivation of this expression we took it into account 
that the xx interaction of a phonon with a TLS is proportion- 
al, in accord with (3c), to Ao/E, so that the considered cor- 
rection for n, (q)  contains (Aol/El)3. In addition, we have 
assumed that I El does not depend on the components of 
the tensor y:!. Equation (42) is valid with logarithmic ac- 
curacy. A correction proportional to P i ln  (Em /w) is due to 
the averaging of Eq. (28b) for AG:.:. We shall not need it 
hereafter. If w 4 T, it is necessary to replace, in the logarithm 
of (42), o by Tand i r /2  by a quantity porportional to iw/T. 

The coefficients of the first and second powers of the 
logarithm in (42) are of opposite sign. This indicates appar- 
ently that in the limit as T-0 no phase transition takes place 
in the TLS, and the speed of sound changes by a finite 
amount. For ordinary glasses, in view of the smallness of 
POI G I ,  this question is only academic. In structured glasses 
where the TLS is due to the presence of different equilibrium 

- 
positions of individual molecular complexes, POI g,, 1 can be 
arbitrary and the xx interaction influences the speed of 
sound in a wide temperature range (see, e.g., Ref. 13). 

We consider now the q-dependent transport part of 
AG,, ,, . We confine ourselves to the case T = 0. It follows 
from (34) that the corresponding correction is small near 
resonance compared with the AG :.: contribution taken into 
account in (35 ). This is natural, for at El # E, the transfer of 
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the "spin" deviation from one TLS to another is difficult. 
Using (33) and (34) for the corresponding contribution to 
the phonon energy, averaged over the parameters of both 
TLS, we get 

where the dimensionless function p ( x )  -x2 for x 4  1 and 
p'"' = 0. The imaginary unity in (43) ensures that the 
phonon propagator is real on the positive imaginary axis in 
thew plane.14 Comparing (43) with (42), we see that the q- 
dependent "transport" part makes a small contribution to 
the phonon energy. In addition, the second term of (34) 
leads to a change of the coefficient in the term quadratic in Po 
in (42). The integral S dfllfi121n Igl,l cannot be calculated, 
however, without specifying the angular dependence of the 
interaction. Since the integrand is of alternating sign, the 
integral is apparently numerically small compared with 

1 GI. 
5. RESONANT TLS 

By resonant TLS we mean here TLS having equal ener- 
gies, E l  = E2. This problem arises if the substance contains a 
small concentration of identical TLS of one type or another, 
such as Jahn-Teller centers or molecular complexes with in- 
ternal degree of freedom. In this case, obviously, the coeffi- 
cients Aol,2/El,2 in all the equations must be regarded as 
constants and included in g,,, while the averaging should be 
only over the configurations, i.e., over the relative placement 
of the TLS. In this case we get near resonance, using (27) 
and (30), 

where no is the concentration of the resonant TLS. It follows 
from this equation that the characteristic width of the reso- 
nant TLS, due to their interaction, is of the form 

Unlike Eq. (38) for r , ,  this width does not depend on the 
TLS energy. This means that if E < T, the individuality of 
the TLS is lost, and this occurs at any concentration no. 

We proceed now to the q-dependent "transport" part of 
G,, , described by Eqs. (33) and (34). In this expression we 
have now w * = ( E  + A ') ' I2  A. We consider the reso- 
nance region, as before. Recognizing that the small A in the 
integrand are significant, we obtain from (33) the q-depen- 
dent correction to G,, in the form 

where the dimensionless function $(x) -x2 ifx 4 1, is of the 
order of unity at x = 1, and decreases at large x. If 
w - E 5  r,, where T,is defined by Eq. (45), w - E in (46) 
must be replaced by r,. It turns out as a result that 
q, and that at q-q, expression (46) becomes of the 
order of the second term in (44). Thus, in contrast to ran- 
dom TLS, the transfer of excitation from one resonant TLS 
to another is no less important than the redistribution of the 
energy among the different TLS. We note also that the part 
of (33 ) which diverges at large A alters the coefficient in the 
second term of (44). With regard to this change, the same 
statements can be made as at the end of the preceding sec- 
tion. 

In conclusion, the author thanks M. A. Ivanov for help- 
ful discussions. 
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'P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 
( 1972). 

'W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972). 
3J. Joffrin and A. Lovelut, J. de Phys. 36,811 (1975). 
4J. L. Black and B. I. Halperin, Phys. Rev. B 16, 2879 (1977). 
*B. D. Laikhman, ibid. B 31, 490 (1985). 
'Yu. M. Gal'perin, V. L. Gurevich, and D. A. Parshin, Pis'ma Zh. Eksp. 
Teor. Tiz. 45, 85 (1987) [JETP Lett. 45, 107 (1987)l. 

'S. V. Maleev, Zh. Eksp. Teor. Fiz. 84,260 ( 1983) [Sov. Phys. JETP 57, 
149 (1983)l. 

'A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Quantum 
Field Theoretical Methods in Statistical Physics, Pergamon, 1965. 

9M. V. Feigel'man and A. M. Tsvelik, Zh. Eksp. Teor. Fiz. 76, 2249 
(1979) [Sov. Phys. JETP 49, 1136 (1979)l. 

'OV. G. Karpov, M. I. Klinger, and F. N. Ignat'ev, ibid. 84, 760 (1983) 
[57,439 (1983)l. 

"R. E. Walsted and L. R. Walker, Phys. Rev. B 9,4857 (1971). 
IZJ. L. Black, ibid. B17,2740 (1978). 
I3U. G. Volkmann, R. Bohmer, A Loidl, eral.,  Phys. Rev. Lett. 56, 1716 

(1986). 
I4L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Pergamon, 

1980. 

Translated by J. G. Adashko 

162 Sov. Phys. JETP 67 (I), January 1988 S. V. Maleev 162 


