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It is shown theoretically and experimentally that periodic structures are produced in domain 
walls moving at supersonic velocity. These structures are the result of the balance of surface, 
tension, and dissipative forces applied by an external magnetic field. A feature of the structures on 
a moving domain wall is the presence of singularities of the "cusp" type. With increase of H, the 
periodil of the structures decreases and tends under the experimental conditions toil = 250pm. 
The structures are stationary in magnetic fields that are not much stronger than the field at which 
the sound barrier is crossed. The value ofil does not vary as the wall moves, and the amplitude of 
the structures relaxes towards smaller values faster, the larger the H. It is shown that similar 
structures are realized also on iron-garnet film domain walls. 

1. INTRODUCTION 

The maximum speed of domain walls (DW) in ortho- 
ferrites exceeds substantially the speed of sound.' We dem- 
onstrate in the present paper that periodic non-one-dimen- 
sional structures are produced on a DW in the course of a 
transition to supersonic motion. These structures are gener- 
ated at the location of the negative differential mobility pro- 
duced by the action of a dissipative force of magnetoelastic 
origin. The structure formation is more pronounced the 
higher the DW mobility. It is important that the effect takes 
place in a homogeneous medium and in an external field that 
is uniform in the DW plane, so that one can speak of self- 
organization of the system.' 

The formation of a structure on an immobile DW is 
usually attributed to its magnetostatic interaction with mag- 
netic poles on the surface of the sample and on the wall itself. 
It is known that a planar DW is unstable to flexural pertur- 
bations. It can be stabilized with the aid, e.g., of a non-uni- 
form external magnetic field with sufficiently large gradient 
H :, where z is the direction of the easy-magnetization axis. 
Such a gradient can be produced artificially for an isolated 
DW in the investigated sample. It always exists in a stripe- 
domain structure and is determined by the demagnetizing 
fields of the neighboring domains. Hagedorn3 has shown 
that if the easy-magnetization axis is perpendicular to the 
sample plane, the requirement for DW stability is that the 
field gradient exceed a certain critical value (on the order of 
lo3 Oe/cm for YFeO,). When the field gradient drops below 
a critical value, the DW is bent and acquires a structure 
whose period is determined by the magnetostatic interac- 
tion. 

We show in the present paper that in the case of a mov- 
ing DW there exists a fundamentally different mechanism 
which also produces periodic structures on the wall. This 
mechanism is connected with dissipation of the energy of the 
moving DW and can be of basic importance of materials 
with low saturation magnetization, e.g., for weak ferromag- 
nets. Besides dissipation, a DW moving with superso~lic ve- 
locity is subject to instability of the planar front and to 
strongly pronounced nonlinearity, which are known neces- 
sary conditions for self-~rganization.~ Particular interest at- 

taches to the presence on the DW of "cusp" singularities 
(see Fig. 2), i.e., discontinuities of the spatial derivative of 
the coordinate of the center of the DW. 

2. EXPERIMENT 

The dynamics of domain walls and dissipative structure 
produced on them on passing through the speed of sound 
was investigated at a temperature 300 K for chemically pol- 
ished yttrium-orthoferrite plates 100 pm thick and cut per- 
pendicular to the optical axis. A stable isolated domain wall 
was obtained in a gradient 300 Oe/cm. The magnetic field 
was produced on the sample surface by attaching a pair of 
coils of 1.5 mm diameter and of nine turns each, thus ensur- 
ing a magnetic-field puse rise time 6-8 ns. 

The dissipative structures on the domains walls were 
investigated by twofold high-speed ph~tography.~ The high 
DW speeds (up to 20 km/s) restrict the duration of the light 
pulse. To obtain pulses shorter than 1 ns we constructed a 
system of two TEA lasers, a generator and an amplifier (Fig. 
1 ). The amplifier increases substantially the radiation power 
and decreases the light-beam divergence. The generator and 
amplifier are arranged in tandem and have a common 
grounded base plate. The generator and amplifier laser chan- 
nels were respectively 10 and 25 cm long. The charging 
plates were triangular and made contact through one of the 
discharge-gap electrodes. The Blumlein line was made from 
five or six sheets of aluminum foil separated by teflon films 
having E = 4 and a thickness 25 pm. This made it easy to 
change the shape and dimensions of the plates, and thus con- 
trol the duration and energy of the output pulse. The system 
had a common trigatron-type discharge unit operating at 
frequencies up to 10 Hz. The generator was synchoronized 
with the amplifier by varying the distance between their elec- 
trodes. The optimal distance d between the electrodes at a 
supply voltage + 10 kV was 2-3 mm for the generator and 3 
mm for the amplifier. 

The geometric dimensions of the plates were chosen to 
produce a "traveling wave" not only in the generator but 
also in the amplifier; this shortened light pulse substantially. 
After pumping the dye (oxazine), the light-pulse duration 
was 200 ps, as against 800 ps for a single TEA laser with a 
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FIG. 1 .  Diagram of nitrogen TEA--TEA laser: 1- generator electrodes; 
2- amplifier electrodes; 3- spark-gap discharge unit; 4- charging 
plates; 5-dielectric; 6- resistor; 7- converging lens; 8-dye-filled cell. 

laser-channel length 25 cm. The output pulse energy was 8 
p J  at a wavelength A = 0.36,um. The light-pulse parameters 
were measured with an "Agat" SF-1 camera. The light in- 
tensity, the large Faraday rotation, and the transparency of 
the yttrium orthoferrite made it possible to record the in- 
stantaneous positions of the dynamic domain structure di- 
rectly on sensitive photographic film without the use of a 
brightness amplifier. 

The light beam was split by a mirror into two. The sec- 
ond beam was delayed relative to the first by a mirror sys- 
tem. The direct and delayed light pulses passed through sep- 
arate polarizers, were incident on the sample, and proceeded 
next through a common analyzer to the photographic-re- 
cording system. The region covered by the DW between two 
light pulses is shown as a dark strip against a light back- 
ground ( Fig. 2).  

3. EXPERIMENTAL RESULTS 

It was shown in Ref. 5 that a DW becomes unstable on 
going through the sound barrier, and non-one-dimensional 
leading sections are produced on it. These sections are more 
developed the larger the value ofpAH /s (Ref. 6 ) .  Herep is 
the DW mobility, AH the width of the region of constant 
velocity of the DW on the u(H) plot for a DW at the speed of 
sound s. Theoretical calculations of AH were carried out in 
Refs. 7 and 8. In our present experiments we have observed 
that these inhomogeneities in homogeneous samples and in a 
magnetic field that is uniform along the DW are strictly peri- 
odic. Figure 2 shows several twofold high-speed photo- 
graphs of the dynamic domain structure in a YFeO, plate. 
At 300 K the DW mobility was lo4 cm/s.Oe. The dark strip 
is the region negotiated by the DW during the time between 
two light pulses. Attention is called to the spatial periodicity 
of the DW moving with supersonic velocity. Note the singu- 
larities on the moving DW, where the derivative of the dis- 
placement with respect to the coordinate becomes discontin- 
uous. Figure 2a shows how weak periodic bends, patently 
nonsinusoidal in shape, are formed on a straight DW and 
develop with time and occupy gradually the entire DW. 

FIG. 2. Twofold high-speed photographs of structures on a dynamic do- 
main wall in YFeO, in a field H a n d  at delays. At. Dark strip-region 
traversed by the DW in the time At: a-H = 1000 Oe, At = 2 ns; b- 
H = 1000 Oe, At = 2 ns; c-H = 150 Oe, At = 8 ns. 

It is seen on the photographs of Fig. 2 and on similar 
ones that the boundary conditions produced by the coils on 
the edges of the DW do not influence the structure produced 
on the DW on going through the sound barrier. The period 
of the structure depends on the magnetic field (Fig. 3). In 
our experiment it decreased with increase of H, first rapidly 
and them more slowly-from 1200 to 250 pm. In all our 
experiments the period of the structure tended, with increase 
of H, to the same value A = 250 pm, which is the limiting 
value of the period of the structure. 

Figure 4 shows a sequence of high-speed photographs of 
a moving DW, taken in the DW contrast regime at super- 
sonic velocity. It shows a distinct periodic structure. At the 
instant of passage through the sound barrier the DW broad- 
ens to 25pm (Fig. 4a). This is much larger than its displace- 
ment in a time equal to the duration of the light pulse, and 
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approximately half the value previously reported for a light 
pulse duration 2 ns (Ref. 4 ) .  This is evidence that the DW is 
tilted in the sample plane on going through the sound bar- 
rier. As it moves on, the DW straightens out and its width 
decreases (Fig. 4b). These photographs show that the peri- 
od of the dynamic structure does not change with time. The 
structure amplitude first increases so long as there are linear 
sections on the DW. The amplitude is a maximum at the 
instant when neighboring non-one-dimensional formation 
collapse. This is precisely the instant when the singularities 
on the DW are most pronounced. The structure amplitude 
begins then to relax, with the relaxation rate strongly depen- 
dent on the period of the structure. 

FIG. 3. Experimental (points) and theoretical [solid 
curve- according to ( 9 ) ,  dashed-according to ( 11 ) ] plots 
of the period of the dissipative structure vs the pulsed mag- 
netic field H. 

Figure 5 shows the time evolution of the structure. For 
the period A = 1200pm the development time is 3 0  ns, after 
which the structure amplitude remains practically un- 
changed during the entire observation time. This time is sub- 
stantially longer than the magnetic-subsystem relaxation 
time (on the order of 1 0 - l o  s),  so that we can state with 
assurance that the periodic structure of the DW is quasista- 
tionary in magnetic fields that do not exceed greatly the field 
in which the motion becomes supersonic. In stronger fields, 
the structure development time is shorter. After reaching 
their maximum amplitudes, the structures relax nonlinearly. 
The ratio of their maximum amplitude to the period was 0 . 2  
in all the investigated fields. 

We have also performed an experiment in a different 
geometry. The controlling magnetic field was produced by a 
thin straight current-carrying conductor mounted parallel 
to the DW. Thus, the wall moved towards the wire in an 
increasing field. Periodic structures were produced on the 
moving DW in this case, too (Fig. 6 ) .  We point out that in 
such an experiment the wire and the DW must be very pre- 
cisely parallel and the sample must be of very good quality. 

4.THEORY 

The equations describing the dynamics of the magneti- 
zation in a weak ferromagnet such as yttrium orthoferrite 
can be obtained from the following expressions for the La- 
grangian L and the dissipation function R of the field 1 ( r , t )  
(1 is the antiferromagnetism vector), see, e.g., Ref. 9 and 10- 

FIG. 4. Photographs of structures on a dynamic domain wall in YFeO,, 
obtained in the domain-wall contrast regime in a field H = 1000 Oe: a-3 FIG. 5. Time dependence of the relative amplitude of the structures with 
ns after the start, b-15 ns after the start. different periods: S / Z  = 260,um; 0-A = 500,um, A-A = 1200pm. 
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cp -= 
1 

sin cp, 
a g  Aca, V,q)  

FIG. 6. High-speed photograph of the structure on a dynamic domain 
wall in the magnetic field of a thin straight current-carrying conductor. 

where y is the gyromagnetic ratio, Mo the sublattice magnet- 
ization, w,  = yA /2M0, A the inhomogeneous-exchange 
constant (the exchange rigidity ), H, = H + HD, HD the 
Dzyaloshinskii field, a a dimensionless damping constant, 
and E(l, V1) the system energy. In most cases the antiferro- 
magnetism vector moves in a definite crystallographic plane, 
so that it can be defined using one angle variable. This is 
precisely how 1 varies when the DW moves in yttrium ortho- 
ferrite, in which this plane is the ac plane of the crystal. In 
this case I ,  = cos p, I, = 0, I ,  = sin p. The Lagrange and 
Rayleigh functions are then 

1 Mo L=--- 
A 

$2 - - ( V q ) ' -  K sin2 cp+M,H cos cp, 
2 y0.E 2 

Mo . s  R=u - cp , 
27 (2)  

where K is the anisotropy constant in the (ac) plane and Mis 
the saturation magnetization. 

The DW is described by a soliton-type solution of the 
Lagrange-Euler equations corresponding to (2)  .".I2 We 
shall use an abbreviated description of such a soliton, where- 
in the DW is regarded as a two-dimensional surface (mem- 
brane) separating regions magnetized parallel and antipar- 
allel to the field. This surface is specified by the equation 
q = q(x, z, t ) ,  where q is the coordinate of the DW center. 
We assume that when the DW is at rest it is parallel to the 
y = 0 plane. The equation for q(r, , t )  can be obtained as the 
equation for slow variation of the adiabatic invariant of the 
field p (r,, t ) ,  i.e., the action, which has in this case the 
meaning of the system momentum. The adiabatic invariant 
can be defined as follows (see, e.g., Refs. 13 and 14): 

where 9 is the density of the wave pulse, { = y - q( r, , t )  
the fast variable, and q varies slowly with t and r, . At H = 0 
and a = 0 the distribution of the angle p( r ,  , t )  is defined by 
the equation 

Substituting (4)  in ( 3 ) ,  we get 

where mo = oo/c2 and oo = 4(AK) ' I2  are the DW "rest 
mass" and energy density, and c is the maximum DW veloc- 
ity. 

The conservation equation for the action density is 

a s  
7- 

aL a~ 
at div n: = - + - (py', 

a y  sip 

where the action flux density II is 

Substituting ( 3 )  in this equation and integrating with re- 
spect to the fast variable, we get 

where 

and P is defined by ( 5 ). 
If the DW velocity is close to that of sound, account 

must be taken of the resonant interaction of the magnetic 
and elastic subsystems of the crystal, and this leads to the 
appearance of an additional retarding force 
F,, (q/ [ 1 + (V,g)* - q'/c2] (Refs. 7 and 8).  Taking 
this into account, Eq. (6)  becomes 

We seek a particular solution of ( 7 )  in the form 
q = ut + X(x).  We change over in the equation for X(x)  to 
new variables $ and x', where IC, is defined by the equation 

- d X / d x  x 
sin = x = 

[ I +  ( d X / d ~ ) ~ - v ~ / c ~ ] ' ! ~  ( I - v 2 / c 2 )  '" ' 

and $ ( X I )  is the angle between the normal to the DW and its 
velocity. We obtain 

d sin I$ 
1-. = - ' [ H - H ( v c o s $ ) ] ,  

dx' 7c2 
p=2MS7: (1-v2/c2)"' lmo,  H ( u )  =zLI~-F, , , , (u )  

(8 

where H ( u )  is the inverse dependence of the velocity on the 
field for a planar DW (see Fig. 7) .  

The form of the solution of Eq. (8)  varies with the ratio 
of the velocity (which is now a bifurcation parameter) to u* 
(the root of the equation H ( u )  = H. At u > u* Eq. (8)  has 
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FIG. 7. Qualitative form of the velocity of a planar (solid curve) and a 
non-one-dimensional (dashed) DW as a function of the magnetic field. 

no solutions bounded at infinity. At u = u* the solution is 
$ = 0, corresponding to a planar DW. At u < u* Eq. (8)  has 
periodic solutions. The phase portrait of the equation and 
the forms of the solutions are shown in Fig. 8. At the minima 
of the X(x) curve, the derivative jumps from - a, to + cc , 
corresponding to a singularity of the "cusp" type on the 
DW. In the vicinity of the singularity located at the point x, 
the solution of Eq. (7)  takes the form 
X- [Mo(c2 - v2) I X  - X, I /MsH ] 'I2. Integrating (8) and 
returning to the argument x, we obtain the period of the 
structure 

n - 
cos Q d q  

cZ H - N ( u c o s q )  ' (9)  

5. DISCUSSION OF RESULTS AND CONCLUSIONS 

It can be seen from (9)  that the period of the structure 
depends not only on the controlling field but also on the DW 
velocity. By varying u we can find the minimum permissible 
period A,,, (H) of the structure for a given field. At H * cor- 
responding to the right-hand edge of the region of constant 
velocity close to that of sound, A,, (H) tends to infinity. 
With increase of field, A,,, (H)  decreases rapidly (see Fig. 
3 ) .  To ascertain which of the permissible A is realized, we 
must consider the near-sonic flexural instability that causes 
a moving planar DW to become non-one-dimensional. As 
shown in Ref. 3, for a DW to be stable it is necessary to meet 
at all values of the wave vector k. the condition 

FIG. 8. a )  Phase portrait of the equation describing singular dissipative 
structures on a dynamic domain wall. b )  Qualitative form of stationary 
periodic solution of Eq. (8).  

where 

Ko(kh) is a modified Bessel function of order zero, h is the 
sample thickness, y, = 0.5772 is the Euler constant, and a, 
is the DW surface-energy density. 

Under the conditions of our experiment, the gradient of 
Hz is larger than critical, i.e., the condition (10) is met, so 
that the immobile DW is flat. However, linearizing (7)  with 
respect to the one-dimensional stationary solution with 
allowance for the magnetostatic interactions with the poles 
on the sample surface, and recognizing that u2/s2 4 1 near the 
speed of sound, we can show that if 

(p, = 2Msr/m0 is the initial mobility) and the condition 
( 10) is met, a planar DW is flexurally unstable and the lar- 
gest growth rate is possessed by the mode with the wave 
vector k * corresponding to the maximum ofB(k, Hi ). Con- 
dition ( 11 ) can be met only on sections with negative differ- 
ential mobility at sufficiently high initial mobility p,. A nu- 
merical search for the maximum of the function B(k, H l ) ,  
carried out at h = 100pm, M, = 8 G,  and mo = 2. g/ 
cm, yielded A = 2r/k * = 250 pm. The condition A>&, 
under which the period A is admissible is met all the way to 
the vicinity of the right-hand edge of the sound field H *. As 
the field approaches H *, by virtue of the growth of A,, (H) ,  
the period A should increase and should become infinite at 
H = H *, in agreement with the experimental results. It can 
be seen from (9)  that the v(H) dependence for a periodic 
DW, i.e., for a finite A, differs from the field dependence of 
the velocity for a planar wall (see Fig. 7).  

Numerical estimates show that in supersonic motion of 
a DW the magnetostatic interaction is negligibly small com- 
pared with the terms contained in Eq. (7) ,  and does not 
influence the form of the produced structure. It need there- 
fore be taken into account only in the region of unstable 

FIG. 9. Twofold high-speed photograph of the structure on a dynamic 
domain wall of an iron-garnet film with perpendicular anisotropy, in a 
field H = 70 Oe and for a delay At = 0 . 4 , ~ ~  between the light pulses. 
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garnet films were published in Ref. 16, where they were ob- 

FIG. 10. Domain-wall velocity vs the magnetic field in an iron-garnet 
film. 

motion, to eliminate the uncertainty introduced by Eq. (7)  
in the values of the structure period, as was indeed done here. 
As seen from Eq. (7),  the equilibrium form of a stationary 
moving DW is determined by the balance of forces of three 
types: surface tension forces, pressure forces exerted by the 
external field, and deceleration forces due to dissipation in 
the magnetic and elastic subsystems. This corroborates the 
proposed dissipative mechanism of formation of periodic 
structures on a dynamic DW. The magnetostatic interaction 
apparently determines the period of the structures on the 
DW in magnetic fields substantially stronger than in the 
right-hand edge of the region of constant velocity (see Fig. 
3). It is probable that the dissipative mechansim of structure 
formation on DW is typical not only of weak ferromagnets. 

One more example of a structure of this type is shown in 
Fig. 9. Such a structure is realized in a (BiLaTm), 
(FeGa),O,, film with easy magnetization axis perpendicu- 
lar to the film plane. It occurs in the region H >  H, after 
passage through the Slonczewski peak velocity.I5 The cause 
of the instability of the planar DW front is here apparently 
the presence, just as in the orthoferrite case, of a negative 
differential mobility on the v(H) plot (Fig. 10). Note the 
existence of singular "cusp" points on the DW, where verti- 
cal Bloch lines accumulate. It appears that the first results of 
observation of the structures on the dynamic DW of iron- 

served, however, at above-limit velocities. No singularities 
were observed in this case on the dynamic DW. 

We have shown in this paper, experimentally and theo- 
retically, with orthoferrite and iron-garnet films as exam- 
ples, that dissipative structures are produced on a moving 
DW. A remarkable feature of these structures is the presence 
of singularities where the derivatives of the displacements 
become discontinuous. 

The onset of dissipative structures in the considered 
materials is due to the presence of a region of negative differ- 
ential mobility on the plot of the DW velocity vs the magnet- 
ic field. It seems to us that the concept of magnetic dissipa- 
tive structures is important for further development of 
ferromagnetodynamics. 

The authors thank A. M. Balbashov for supplying the 
orthoferrite single crystals. 
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