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According to the Shockley picture, impurity centers are ionized by fast electrons that have 
reached ionization energy without colliding even once with scatterers. For a mathematical 
realization of this picture it is necessary to find for the kinetic equation a solution that is needle- 
shaped at high energies. For deformation scattering of electrons by optical phonons, Keldysh 
obtained such a solution, but it is shown that the conditions for the validity of his solutions are 
necessary but not sufficient. An additional condition for the realizability of a needle-shaped 
Keldysh distribution is established. If this condition is not met, the number of fast electrons is 
determined by the distribution of medium-energy electrons. It is shown that if this is a 
quasiequilibrium distribution, a needle-shaped beam is formed in the fast-electron region. The 
features of formation of a needle-shaped distribution function are investigated for various 
mechanisms of energy and momentum relaxation on phonons and impurities. When elastic 
scattering predominates, the distribution function is weakly anisotropic rather than needle- 
shaped, but the Townsend-Shockley distribution can be realized. This case is considered from a 
most general viewpoint. 

1. The free carriers in a semiconductor placed in a 
strong electric field E are accelerated by this field and can 
acquire enough energy for impact ionization of impurity 
centers, excitons, or other bound states of an electron. The 
ionization coefficient is proportional in this case to the elec- 
tron distribution function for an ionization energy E~ that 
usually exceeds significantly the average electron energy. 
The dependence of the ionization coefficient on the electric 
field is determined by how the electron acquires the ioniza- 
tion energy, since it loses energy in large or small batches on 
scattering. In the latter case, the energy relaxation reduces to 
electron diffusion in energy. The distribution function is 
then determined by the balance between the Joule heating 
and the diffusive electric relaxation, and takes the form1 

where the heating function B ( E )  (Ref. 2) depends on the 
energy and momentum relaxation mechanisms. 

Sh~ckley ,~  contradicting this scenario, proposed on the 
basis of a gas-ionization theory developed by Townsend, a 
different picture of the process. The electron beam is acceler- 
ated by the electric field and strives to reach high energies, 
but is continuously weakened by collisions with scatterers. 
The colliding electron is knocked out of the beam. The ioni- 
zation is effected by an electron that reached ionization ener- 
gy without experiencing even one collision with the scat- 
terers. In this picutre, the number of high-energy electrons is 
determined by the mean free path I ( & )  and has the following 
dependence on the electric field: 

e 

The validity limits of each of these ionization laws were 
given in Keldysh's known paper.4 Electron scattering by the 
deformation potential of the optical phonons was consid- 
ered, and this made it possible to write the kinetic equation in 
the form 

Here p is the electron momentum, E~ its energy, m its effec- 
tive mass, w the phonon frequency, P = fiw/2T, T the tem- 
perature in energy units, f, the electron momentum distribu- 
tion function, and f0(&, ) the same function averaged over a 
constant-energy surface. 

It is assumed here and elsewhere that 

As shown in Ref. 4, the influence of the electric field on the 
ionization is noticeable only when the energy eEl acquired 
by the electron over the mean free path exceeds the thermal 
energy T. If, however, this energy exceeds also the inelastic- 
ity energy fiw lost by the electron on emission of a phonon, 
diffusion in time takes place and leads to the ionization law 
(1) .  

Keldysh obtained the Townsend-Shockley ionization 
law (2)  for fields meeting the conditions 

In this case, the solution of (3)  is the needle-like distribution 
function 

tzo E 
jr=Aa ( c P )  ( I - s o  cos B )  -' exp (- - s o )  exp(- -2 s o )  

eEl eEl ' 

where Ao(&, ) is a weaker-than-exponential function of the 
energy, and the parameter so that satisfies the self-consisten- 
cy equation differs extremely little from unity: 
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lution ( 6 )  takes in this case the form s o = l - 2  exp ( -2eh"!eE9 .  (7)  

It is important that for high energies, on the order of E ~ ,  the 
realization of such a distribution function is based on the 
sensitive balance between the departure of electrons losing 
energy by phonon emission and the arrival of electrons hav- 
ing high energies or accelerated in the electric field. Such a 
balanced needle-like distribution differs in its concept from 
the simple Shockley p i ~ t u r e . ~  

We shall show now that conditions ( 5 )  are necessary 
but not sufficient for the solution ( 6 ) ,  and one more condi- 
tion must be added. This is simplest to show in the following 
manner. We solve, according to Ref. 4, Eq. ( 3 )  by treating 
the right-hand side as an inhomogeneity: 

m 

f (&p-eEr+%~) ' A  eR  
f O  ( E , - ~ ~ ~ + A O )  exp - - 

2 c11 p 1 , 
It  should be noted, in passim, that the solution can take the 
form ( 8  ) only for angles outside the range 0 < sin 8 < (&a/ 
E~ ) whereas within this range the solution has a different 
form. To arrive at the approximate expression ( 6 )  from the 
exact one ( 8 )  we need confine ourselves to the argument of 
the exponential to terms linear in t .  The sum of these terms is 
t Iph-1m1/2  (2.5) ' I 2 (  1 - so cos 8 ) ,  and specifies the t interval 
in which the integral of ( 8 )  converges. Expanding the 
quadratic terms, we determine the conditions under which 
they are small compared with the accounted-for term ( 6 ) .  
The sought inequality is rewritten in the form 

fio Aw 
- < 4 - exp (-2e"'eE'). 

E eEL 

The inequality ( 9 )  is quite stringent: the right hand-side of 
( 9 )  is equal to 3. lo-" even at &a/eEl= 2, i.e., for the limit 
of inequality ( 5 ) . 

Keldysh4 considered also a combination of elastic scat- 
tering by optical phonons and elastic scattering by acoustic 
phonons. The latter is identical with scattering by pointlike 
impurities with a &function potential and will be designated 
as such hereafter. The left-hand side of ( 3 )  acquires accord- 
ingly an additional term ( 2 " 2 ~ p " 2 / 1 , , m 1 1 2 )  ( fp  - f,(&, )). 
It is important to note that in the solution ( 6 )  the expression 
for the parameter so is now different: 

Its influence on the structure of the needle can be substan- 
tial, even for weak impurity scattering, under the condition 

e - f i o / e E l  < - - - < I .  ' p h  ( 1 1 )  
1,, 

The expression for the parameter so is correspondingly sim- 
plified. The additional condition for the existence of the so- 

It can be seen that the presence of elastic scattering by point- 
like impurities makes it easier to obtain a self-consistent 
needle-like distribution of the electrons at high energies. 

2. We consider now some modification of the Keldysh 
model-let the deformation scattering by the optical phon- 
ons be accompanied by scattering from ionized impurites. 
TO this end we must add to ( 3 )  a term that describes the 
elastic impurity scattering by the Coulomb potential. This is 
predominantly small-angle scattering, so that the expression 
can be simplified in the manner used by Landau to simplify 
the expression for electron-electron collisions5: 

Here ni, is the impurity density, x the dielectric constant, 
and r, the Debye radius. Expression ( 13) ,  naturally con- 
serves the energy, meaning also the modulus of the momen- 
tum, and is identical with 

9- and q, are angles in a spherical coordinate frame in momen- 
tum space. Choosing the t axis along E, we obtain the de- 
pendence of fp  on p. 

We assume impurity scattering to be weak compared 
with phonon scattering: 

The impurity-scattering term contains thus a small quantity 
a that is multiplied, however, by a derivative with respect to 
cos 13, the latter substantial at small angles. Transforming 
the function fo(cP ) : 

8 

and neglecting, as before, terms small in eEIph / E ,  we arrive at 
a simplified equation for the distribution function: 

1, = x9 erp (- Ja der  ), 
,a eELPh 

The definitions ( 16) and ( 17) are made self-consistent by 
the equality 

1 
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The electric-field interval of interest to us is specified by in- 
equalities ( 5 ) .  It can be shown that the structure of the 
needle-like distribution function is determined by weak im- 
purity scattering, inasmuch as at small angles its role in- 
creases. The function s ( ~ )  becomes then larger than unity: 

Of course, no such self-consistent solution is obtained for 
arbitrarily weak impurity scattering, since for a = 0 it must 
go over into the solution ( 6 ) .  The solution is valid when a ,  
albeit small, still exceeds a certain value. Comparison of the 
discarded derivative with respect to x ,  which contains the 
small parameter eEl,, /E, with the accounted-for derivative 
yields 

(eElph) ( 4 h )  '" 
a >  

E " a [ $ -  (afio/eElph) "'1 '' ' 
( 2 1 )  

When weak scattering by ionized impurities is added to the 
phonon scattering, this inequality is the only condition sup- 
plementing ( 5 ) .  The condition ( 9 )  is not required in this 
case. 

3. We consider now the Keldysh model in the case when 
conditions ( 5 )  are met, but the condition (9)  or ( 1 2 )  is not. 
As shown by expression ( 8 ) ,  we cannot confine ourselves 
now to consideration of high energy, and must know the 
nature of the distribution function at energies of order h 
and lower. For dispersion-free phonons of energy lower than 
h, electron-phonon collisions do not lead at all to relaxa- 
tion-a region called passive is formed. The Keldysh model 
is in a certain sense not closed. The simplest situation, at first 
glance, is one in which there is not relaxation at all in the 
passive region. It was considered by Dmitriev and Tsendin6 
Under these conditions, a needle-like distribution function is 
formed even in the passive region in view of the acceleration 
of the electron by the electric field and of the absence of 
relaxation. According to Ref. 6 ,  the needle-like distribution 
extends also to the high-energy region, leading to the Town- 
send-Shockley ionization law. 

We consider now the opposite situation: we assume that 
effective energy and momentum relaxation mechanisms are 
active at low energies, so that the distribution function has a 
rather smooth form, say, 

where n is the electron density, and the effective temperature 
T, is taken to be of the order of the equilibrium temperature. 
The anisotropic part, if present in the distribution function, 
is assumed small and is left out. A Boltzmann distribution 
function was assumed to simplify the calculations, but the 
main results that follow do not depend on the actual form of 
the function, and T, yields simply the average energy scale. 
Expressions ( 8 )  and ( 2 2 )  lead at high energies to the follow- 
ing needle-like expression for the distribution function: 

This distribution is indeed needle-shaped if T, 4eE l .  As al- 
ready noted, expression (8 )  is valid only for angles for which 
sin 9. > ) ' I 2 .  For smaller angles, the distribution is 
given by the ionic expression 

t" COB d + exp [ (-eP/T,) sin2 61 
* j { exp[ -Rw (IIT-IIT.) ] 

T. ( n o - e p  slnr 0 )  I P ~  

+ ( E ' + E ,  sinZ 6 )  " } ( 8 ' )  -" de'. 
I,"? 

( 2 4 )  

We present also an expression for the averaged distribution 
function: 

)2fts2-%n% exp ( - f to lT)  
f " ( r p ) =  (mTc)XeEEp IPh [f20Ts 

2'" exp (-2fio/l ' ,) 
+T,"(nho)'"+Te2n] + [ (ho)" ' (nTe)"  

I p h  

cxp ( -ho/T , )  
+2AoTe+2 ( n h o )  "T,"] + [ ( h o )  " (nT, )  '" 

I,", 

The distribution function ( 2 3 ) - ( 2 5 )  is the mathematical re- 
alization of the Shockley picture. The power of this needle- 
like distribution function is determined by the values off, at 
low energies, and differs thereby from the balanced Keldysh 
distribution. 

The pre-exponential factor for the balanced Keldysh 
distribution was also ~a lcu la ted .~  This factor can be deter- 
mined by taking into account both the correction term of the 
expansion in S(E) and the correction to ( 6 )  in terms of the 
parameter eEl /E. In this case A, ( E ,  ) turns out to be a power 
function of the energy: 

We see that the total power of an electron beam drawn out by 
the strong electric field from the quasiequilibrium distribu- 
tion function is small compared to the power of the balanced 
beam that would correspond to the same value of the electric 
field if such a beam could be formed. 

4. In ionic semiconductors, the interaction of electrons 
with optical phonons is of the polarization type, and the ki- 
netic equation is of the form 

where Vis the total volume, and x, and x m  are the dielectric 
constants at zero and infinite frequencies, respectively. The 
mean free path in such an interaction is not constant but 
depends on the electron energy: 
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To solve this equation, Chuenkov7 attempted to generalize 
the Keldysh method and reached the conclusion that the 
conditions (5)  are sufficient to find a distribution of type (6)  
that leads to the Townsend-Shockley ionization law. This 
conclusion, however, is based on an unjustified, in our opin- 
ion, modification of the collision integral. We shall show in 
Appendix 1 that it is impossible to find for polarized elec- 
tron-phonon interaction a self-consistent needle-shaped dis- 
tribution function of type ( 6 ) .  We arrive by the same token 
at a situation similar to that when the additional condition 
(9)  is not met for the deformation interaction; just as in the 
latter case, to determine the distribution function at high 
energies we must know the distribution function at low ener- 
gies. The latter was obtained in the already cited paper16 for 
the case when there is no relaxation at all in the passive re- 
gion. If, on the contrary, the relaxation at low energies is 
substantial and leads to a quasiequilibrium distribution 
function, we obtain at high energies a distribution function 
of type (23); some modifications of the latter are due to the 
energy dependence of the mean free path. 

If scattering by pointlike impurities is present in addi- 
tion to the electron-phonon scattering, a balanced needle- 
shaped distribution can be obtained. We assume that the 
scattering by the impurities is weak, so that its contribution 
is significant not so much for the determination of the mean 
free path as for the formation of the needle-shaped distribu- 
tion structure. Since, however, the polarization interaction 
itself scatters predominantly into small angles, the condi- 
tions for such a treatment of the impurity scattering of elec- 
trons differ from ( 11 ) and take the form 

When conditions (5),  (29), and of course also the supple- 
mentary condition ( 12), are met [all the expressions contain 
I ( & )  1,  the self-consistent distribution (6)  that leads to rela- 
:ion (2)  is realized. 

5. At low temperatures, energy and momentum scatter- 
ing by acoustic phonons can become stronger than scattering 
by optical phonons. It is necessary to include in the kinetic 
equation (27) the constant I Cq l 2  = ~'fiq'/2pw, V (A is the 
deformation-potential constant and p is the density) of the 
deformation electron-phonon interaction, and take into ac- 
count the dependence of the frequency wq of the acoustic 
phonon on the wave vector q, viz., wq = wq, where w is the 
speed of sound. This calls for modification of the conditions 
(4)  and ( 5 ) ,  and it is readily understood that the role of the 
phonon energy h should be assumed under these condi- 
tions by the energy 2w(2m&) 'I2. We regard this substitution 
as made in the text that follows. 

We consider temperatures that are not infralow, i.e., 
T% mw2. All the experimental situations must then be divid- 
ed into two classes, depending on the relation between 
T and 2w(2me)'I2. In a situation of the first class 
( T% 2w(2m&) 'I2), for electrons interacting with phonons of 
arbitrary wave vectors, the number of phonons is large and 
they have a Rayleigh distribution function. The electron 
mean free path is therefore independent of energy. If the 
energy acquired by an electron over the mean free path in 

situations of the first class exceeds the thermal energy, it 
exceeds all the more the inelasticity energy for the emission 
of a phonon of any possible frequency. It is thus possible to 
meet the conditions for diffusion scattering of the energy, 
but not the condition (5).  In diffusion scattering of the ener- 
gy the distribution function is the known Davydov func- 
tion,' which yields Eq. ( 1 ) for the ionization coefficient. 

In situations of the second class ( ~ 4 2 w ( 2 r n ~ ) ' / ~ )  the 
electron mean free path is determined by spontaneous 
phonon emission and is therefore energy-dependent: 

This was noted in Chuenkov's article.' It is also stated there, 
however, that in diffusion energy scattering the same length 
should be contained in the definition of the heating function. 
As a result, the expression for the distribution function 
differs from that of Davydov. 

It is stated in the same article that when conditions (5)  
are met it is poissible to find a solution of type (6) .  It is 
shown in Appendix 2, however, that no self-consistent nee- 
dle-shaped solutions can be found for energy and momen- 
tum scattering by acoustic phonons. 

We verify now that a needle-shaped function of type 
(23) cannot be obtained for such an electron-phonon inter- 
action. From conditions (5)  it can be determined that the 
electrons are strongly heated at low energies. These elec- 
trons have a Davydov distribution function with an average 
energy proportional to the electric field and much higher 
than the temperature. It is easily shown that this energy also 
exceeds eElph (E), so that a function which is of this type at 
low energies cannot change into the function (23) which is 
needle-shaped at high energies. Thus, in experimental situa- 
tions of either class, the thermal dependence of the "tail" of 
the distribution function changes immediately into a de- 
pendence such as ( 1 ) in an electric field. 

All the foregoing is valid only for pure phonon scatter- 
ing. Elastic scattering by impurities can lead to formation of 
the balanced needle-shaped distribution 

e 

When conditions (5)  are met we obtain for S ( E )  a solution 
similar to ( 10) : 

We have assumed the impurity scattering to be weak, but for 
the needle structure it is more substantial than the phonon 
scattering if 

Besides the conditions indicated, this needle-shaped distri- 
bution is produced, naturally, only if the additional condi- 
tion ( 12) with an energy-dependent mean free path is met. 

6. We show now that when elastic scattering prevails, 
li, <Iph, the Townsend-Shockley ionization condition can 
be met even though the distribution is not needle-shaped but 
is weakly anisotropic. Fro the case of energy scattering by 
optical phonons this is shown in Gribnikov's a r t i ~ l e . ~  For 
energy scattering by acoustic phonons this statement was 

148 Sov. Phys. JETP 67 (1), January 1988 V. D. Kagan 148 



made earlier by Chuenko~ ,~  but we show in Appendix 2 that 
its mathematical derivation is not quite correct. 

We consider an arbitrary impurity-scattering potential 
and an energy relaxation produced by any interaction of 
electrons with optical, acoustic, or piezoacoustic phonons. 
The part of the distribution function that is antisymmetric in 
the momentum is expressed in the usual fashion in terms of 

f O ( ~ p  ) (Refs. 1 and 2) : 

dfo (8,) f,-=-eEl ( E , )  cos 6 ------ . 
de, 

Averaging the kinetic equation over a constant-energy sur- 
face, we arrive at an equation for& ( E ~  ) : 

2'l:e2E21 ( 8 ) s  df ,  ( 8 )  

el/p de 3m'la f o  (8 )  

This equation shows that fO(cp) depends on the mean free 
path I ' I 2  (E, )Iph 'IZ (E, ) and that this path is contained in the 
conditions for the applicability of both the strongly elastic 
and of the diffuse cases of energy relaxation. Diffuse energy 
scattering corresponds to expansion of the electron-phonon 
collision operator in terms of the phonon energy. The condi- 
tions (5) change into 

When these conditions are met, the arrival term of the colli- 
sion operator-the last term of (35)-is small. For optical 
phonons it is small exponentially, exp(-tiw/ 
eEl 112(~) Iph  ' I 2 ( & )  ), (Ref. 9),  and for acoustic phonons only 
in power-law fashion, (e2E 'I(&) I,, (&)/8rnwZ&) 312. The so- 
lution of (35) is then 

Substituting (37) in (34) we see that f; is (lim/lph ) ' I 2  

times smaller than fo(s, ). Note that the factor 3'12 in (37) 
does not permit a direct "conversion" of the weakly aniso- 
tropic equation (37) into Eq. (2)  that follows from the nee- 
dle-shaped distribution. 

Equation (35) has a general character analogous to 
that of the heating equation in the theory of "hot"electrons, 
and can, in analogy with the latter, be generalized to the case 
of anisotropic scattering; it is convenient to use for this pur- 
pose the method developed by Gurevich and Katilyus." 

7. The ionization coefficent y is determined by integrat- 
ing the ionization probability ( T ( E ) ,  the density of states, and 
the distribution function f0(&) over all energies exceeding 
the ionization energy 

m 

where v, is the electron drift velocity. The energy depend- 
ence of the probability near the threshold is a power-law 
function of the excess of the energy above the threshold, 
U(E) = u0 [ ( E  - E ~ ) / E ~  ] I ,  where r is an integera4 Since the 
probability varies over energy scales of the order of E ~ ,  and 
the distribution function decreases rapidly over much 

smaller energy scales, this expression can be used at all ener- 
gies. 

The ionization coefficient for a self-consistent needle- 
shaped distribution function was calculated by K e l d y ~ h . ~  
We present an expression for the distribution function (25) : 

The ionization coefficient is thus governed by the 
Townsend-Shockley dependence in three cases: 1 ) when a 
needle-shaped distribution function is formed, 2)  when a 
strong field "draws out" the needle from the region of aver- 
age energies, and 3) in a superposition of strong elastic scat- 
tering of a pulse and of essentially inelastic scattering of the 
energy. In the first case the formation of a needle-shaped 
distribution is possible only if the additional conditions (9) 
and ( 12) or ( 13 ) are met. In the second case a needle can be 
formed only for definite functions in the low-energy region. 
The features of the third case are determined by Eq. (37). 
The determination of the conditions under which each of 
these cases is realized was in fact the aim of the present arti- 
cle. 

I thank V. V. Afonin, S. V. Gantsevich, and G. E. Pikus 
for a discussion of the work, and R. V. Katilyus for help with 
the article. 

APPENDIX 1 

The collision integral for electrons with optical phon- 
ons is transformed into ( x  = cos 9): 

+ ( 2eP)  
2lPh (e,) m" In ( 4 e p / h o )  

dx' 
XI-  [ f  ( E ~ + A O ,  5 )  - f  ( ~ p + h o , x ' )  1. 

- 1  12-x'1 

If the solution is sought in the form ( 17), disregarding terms 
small in eEIph /E,, we get 

( 1  - exp (-sho/eEl,,) - s x ) ~  ( x )  ( A l )  

- - exp (-sho/eElph) 
2  1n ( 4 e / h o )  x - 1. (A21 

This equation can be expressed an an expansion o f x ( x )  in 
Legendre polynomials: 

= - 
exp (-s%o/eElph) 
- n n  ( 1  (A3) 

In ( 4 ~ / h o )  n-i 

1 j - dx., 
b,, = - 

2 ( I - x ' )  - i 
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Chuenkov7 proposed to approximate the coefficients b, by a 
constant b. This approximation yields a solution of (A3) in 
the form (6). The coefficients b, can be calculated exactly 

and it can be seen that they increase without limit, albeit 
slowly, with the number m. Therefore the approximation of 
Ref. 7, in our opinion, does not agree with the problem and 
cannot serve as the basis for any conclusions concerning the 
solution of Eq. (A3 ). Moreover, one can verify directly from 
the form of (A2) that a solution of the form c/(a - sx) does 
not satisfy this equation. For not very smalls, i.e., such that 
sfiw/eEl,, is not small, the exponential in the right-hand side 
of (A2) is small, and for a solution to exist it is necessary that 
X ( X )  increase steeply at x - 1. The form of the integral in the 
right-hand side of the equation, however, cannot make such 
a solution self-consistent. This means that s=: 1 is not consis- 
tent with those eigenvalues of this homogeneous equation 
for which a nontrivial homogeneous solution exist. We were 
similarly unable to find for the kinetic equation (27) a solu- 
tion that leads to Eq. (2)  

APPENDIX 2 

For electron scattering by acoustic phonons, we seek 
the solution of the kinetic equation in the form17 

lphAzm'b 
(I -sx)  ( x )  = J 8 9  q  exp (-shwqIeEC) 

2 (2n)  (2ep)  lbp w 

The dependence of the phonon frequency on the wave vector 
assigns an important role in the arrival integral term [the 
right-hand side of Eq. (A5) ] to the small wave vectors 

eElPh 
Tiyo  = -- << (8me,) I". 

W S  

This relation was not taken into account in Chuenkov's arti- 
cle.' 

We rewrite (A5) in simpler form 

For values ofs that are not anomalously small, i.e., such that 
<s is large, the right-hand side contains a small factor 
(6s) -3 .  A solution exists if the increase of the functionx(x) 
at x - 1 can compensate for this smallness. It can be verified, 
however, that a function of the form c/(a - sx), which was 
used in Ref. 8, does not satisfy (A6). From the mean-value 
theorem it can be concluded that ~ ( x )  does not increase at 
all at x- 1. This means that s=: 1 does not correspond to 
those eigenvalues at which a nonzero solution of (A6) is 
possible. 
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