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It is shown theoretically that the distribution of the field of an electromagnetic wave in a pure 
compensated metal in an external magnetic field H, applied parallel to the surface of a sample is 
of the two-scale nature. In addition to the usual anomalous skin component of the wave in a metal, 
there is also a long-wavelength component penetrating the metal to a greater depth, of the order of 
the mean free path of electrons 1. These components compete. It is remarkable that such a skin 
effect occurs when the conduction electrons are strongly magnetized, i.e., when their Larmor 
radius is much less than the mean free path 1. The two-component nature of the wave results in an 
unusual behavior of the surface impedance of the metal considered as a function of the external 
field H, , of the wave frequency w ,  and of temperature. In the high-frequency limit the penetrating 
component of the field is manifested by a weakly damped electromagnetic wave with a linear 
dispersion law. The results are in agreement with the experimental data reported by Voloshin and 
Gaidukov [Sov. Phys. 40,166 ( 1975) I .  

I. INTRODUCTION ue a,. Consequently, the skin effect becomes normal and we 

It is well known that the skin effect governs all the elec- have S(H,) ~ 6 , .  It should be mentioned that the asymp- 

tromagnetic properties of a metal. Experimental and theo- totes of 6(Ho ) in the limits of weak, strong [Eq. ( 1.4) 1, and 

retical investigation of the skin effect have been going on for extremely strong magnetic fields transform smoothly from 

many years (see, for example, Refs.'-l5 and the literature one to the other at points R = 1 and R = 6,. 

cited there). At low temperatures a pure single crystal can In a compensated metal when the spatial dispersion is 

exhibit the anomalous skin effect' when strong, i.e., in weak (6, 41(R) and strong [Eq. ( 1.4) 1 
magnetic fields H, the wave attenuation depth 6, (H, ) is the 

Here, c is the velocity of light and a, is the static conductiv- 
ity of a bulky sample. In the case described by Eq. ( 1.1 ) an 
electromagnetic wave of frequency w penetrates a metal to a 
depth 

which is much less than the electron mean free path 1 and 
greater than the classical skin depth 6,: 

In an external magnetic field H, applied parallel to the 
surface of a sample the nature of the skin effect depends on 
the value of H,. In the case of an uncompensated metal an 
increase in H, reduces monotonically the depth of the skin 
layer 6(Ho ) from 6, to 6, (Ref. 2) .  In weak magnetic fields, 
when the Larmor radius R of an electron orbit is greater than 
the mean free path I(6, 4 1 < R ), the influence of a magnetic 
field on the thickness S(H,) is small and we have 6 ( H o )  
~ 6 , .  An increase in H, enhances the importance of cyclo- 
tron returns of electrons to the skin layer and in the range 

the depth of penetration varies in accordance with the lawzs3 
6(Ho) -, ( 6 : ~ ) " ~ .  Finally, in the limit of strong magnetic 
fields (R <a, 1) the spatial dispersion is weak and the Hall 
effect begins to play the main role. In view of the electrical 
neutrality condition the effective conductivity of an uncom- 
pensated metal ceases to depend on H, and assumes the val- 

same as for an uncompensated metal: an increase in Ho 
changes from 6, to 6, in accordance with the law 

However, in extremely strong fields (R 46,  (l) ,  when there 
are no spatial dispersion effects, the skin layer depth 
SI (H,) z 6 , l  /R is much greater than the normal skin depth 
6,. The former depth increases in direct proportion to Ho 
beginning from 6, z 1 at the point R = 6,. This behavior of 
6, (H, ) is due to the fact that the Hall effect in a compensat- 
ed metal is not the dominant phenomenon and in the limit of 
very strong magnetic fields the effective conductivity of a 
metal is identical with the magnetoconductivity a$ '/12 
(see, for example, Refs. 4-6) 

The general picture of the skin effect in a compensated 
metal described above is not self-consistent, because the 
asymptotes 6, (H, ) and 6, (H, ) do not match at the point 
R = 6,. This conflict can be avoided in a natural manner by 
assuming that in the range of strong magnetic fields of Eq. 
(1.4) the scale of variation of the electromagnetic field 
6, (H,) coexists with another scale 6, (H,), which at the 
point R = 6, becomes 6, ( H , )  ~ 6 , l  /R. 

We shall show that in the range defined by Eq. ( 1.4) the 
distribution of an electromagnetic field in a compensated 
metal is of two-component nature. In addition to a short- 
wavelength (anomalous skin) component with an attenu- 
ation depth 6, (H, ) of Eq. ( 1.5), there is also a long-wave- 
length (normal skin) component which penetrates the metal 
to a depth of the order of the mean free path of electrons 
(Fig. 1):  
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2. FIELD DISTRIBUTION AND SURFACE IMPEDANCE 

FIG. 1. Schematic dependence of the long-wavelength 6, (upper curve) 
and short-wavelength 6, (lower curve) depths of attenuation of an elec- 
tromagnetic field on the reciprocal of an external magnetic field 
H,(R a H ;  I ) .  The notation is explained in the text. 

It should be pointed out that neither the origin of this long- 
wavelength component of the field nor the role it plays in the 
skin effect are analogous to the Sondheimer component. ' It 
is well known that the Sondheimer component, penetrating 
in the absence of a magnetic field to a depth of the order of 
/,is due to the ballistic mechanism of field transfer by elec- 
trons. However, our long-wavelength component occurs in 
strong magnetic fields defined by Eq. ( 1.4), when electrons 
are strongly magnetized (R <I) and the ballistic mecha- 
nisms cannot ensure penetration of the field to a depth I 
equal to the mean free path. It should be stressed that both 
scales S, and S I  are very different in all external magnetic 
fields H, : 

6, (Ho) <6a<<ZG6t(Ho). (1.7) 

The two-component nature of the electric magnetic 
field with such very different "wavelengths" means that in 
strong fields H, the skin effect is neither normal nor anoma- 
lous. This is reflected in the magnitude of the surface impen- 
dance Z,  which is governed not by the local characteristics 
6, (H, ) and S, (H, ) but by the integral complex skin layer 
depth: 

Here, H ( x )  is the projection of an alternating magnetic field 
collinear with the vector H, and the x axis is directed along 
the inner normal to the surface of a metal at x = 0.  Under the 
conditions of such an unusual "mixed" skin effect the contri- 
butions of the long- and short-wavelength components H(x )  
to S,, of Eq. ( 1.8) are in competition with one another. This 
competition gives rise to a specific relationship between the 
real and imaginary parts of the impedance, and to new de- 
pendences of Z on the value of H,, wave frequency w, mean 
free path I, and parameters of the surface scattering of quasi- 
particles. It is interesting to note that at high frequencies 
w$v ( v  is the relaxation frequency) the long-wavelength 
component represents a weakly damped wave with a linear 
dispersion law and a phase velocity of the order of the Fermi 
velocity v,. In the limit of very strong magnetic fields it re- 
duces to a magnetoplasma wave (see also Refs. 4-6). 

We shall consider a half-space occupied by a metal and 
subjected to a static and homogeneous magnetic field H, 
parallel to the metal-vacuum interface. Thex axis is directed 
into the metal at right-angles to the interface x = 0 and the z 
axis is parallel to the vector H,. An electromagnetic wave of 
frequency w incident on such a sample is polarized so that its 
magnetic component is collinear with the vector H, (z axis) 
and the electric component is directed along they axis. The 
direction of propagation of the wave is parallel to the x axis. 

The tangential projections of the electric E,(x,t) 
= E(x)exp( - iwt) and magnetic H,(x,t) = H ( x )  

exp( - iwt) fields in the metal are found by solving simulta- 
neously the Maxwell equations and the Boltzmann transport 
equation for the distribution function of conduction elec- 
trons. We shall not repeat cumbersome but conventional 
procedures (see, for example, Refs. 4 and 7-1 I ) ,  but simply 
write down the results of calculations in the form 

w, 

H ( x )  2 k sin ( k x )  dk -- = - 
H (0) n k2-4nioc-'o(k) ' 

(2.1) 

E ( x )  io 2 
P- ----j cos ( k x )  dk 
H (0) c n ka-4nioc-20(k) ' 

(2.2) 

Here, u (k )  is the electrical conductivity renormalized by the 
quasineutrality condition j, = 0 ( j  is the current density ): 

~ ( k )  =ow ( k )  +o,,2 ( k )  /a,, ( k )  , (2.3) 

where ua0 (k )  is the cosine transformation of the integral 
kernel of the electrical conductivity of an unbounded sample 
(a,P = x,y). We shall simplify the subsequent analysis by 
ignoring the influence of the surface of the metal on the con- 
ductivity, so that the results obtained are not affected qual- 
itatively if we allow for the surface electron scattering. The 
exception to this rule is the case of specular reflection of 
electrons from the surface of a metal, which requires a spe- 
cial study. The last section in the present paper will be devot- 
ed to the role of the surface scattering processes. 

Equation (2.1 ) for the distribution of the magnetic field 
of the wave allows for the fact that the effective conductivity 
o ( k )  tends to zero in the limit k+  a,. It follows from Eqs. 
(2.1 ) and (2.2) that the surface impedance Z of the metal is 
given by the expression 

m 

4 n E ( O )  4niw 2 z---=----j dk . (2.4) 
c H(O) c2 n k2-4nio~-Zcr(k)  

In the case of a compensated metal containing two groups of 
carriers the conductivity tensor uaB (k )  is a sum of two 
terms: electron (k )  and hole a$ (k)  . Following Refs. 4 
and 7, we shall simplify the treatment by assuming that the 
dispersion laws of electrons and holes are quadratic and iso- 
tropic. It should be pointed out that the equality of the radii 
p, of the electron and hole Fermi spheres in a compensated 
metal does not imply the equality of the mobilities of elec- 
trons and holes, i.e., the masses and relaxation frequencies of 
quasiparticles (and, consequently, the mean free paths) may 
differ. Therefore, the adopted model may simple but it still 
retains all the individual features of each type of carrier. 

In the isotropic model the electron contribution to the 
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conductivity is9 
n/z 

3a n7 J de  Zal (kR sin 8) sin3 0, O m ~ e  (k) = - --- 
4 sh(ny), 

Here, 

J, ( q )  is a Bessel function of the first kind; me is the mass of 
an electron; Re is the cyclotron frequency of electrons; ve is 
the electron relaxation frequency; n is the density of elec- 
trons; e is the absolute value of the charge; p, is the Fermi 
momentum and R is the Larmor radius, both of which are 
the same for electrons and holes. 

We can find the electrical conductivity tensor of holes 
db (k )  by replacing the electron characteristics me and v,  in 
Eqs. (2.5) and (2.6) with the hole parameters m, >O and 
v,, and by reversing the sign in front of the parameter y. 

1. We shall first analyze the low-frequency situation 
when in the absence of an external magnetic field Ho we have 
the quasistatic anomalous skin effect, i.e., 

The first condition in Eq. (2.7) generalizes the condition of 
anomalous behavior of Eq. (2.1) to a compensated metal 
with two different groups of carriers. It sets the lower limit to 
the frequency of an electromagnetic wave a. The classical 
skin depth 6, is described by the previous formula [(Eq. 
1.1) ] where the total static conductivity of a bulk sample uo 
is 

The mean free paths of electrons I, and holes I, will be as- 
sumed to be of the same order (1, - 1, - I), so as to make the 
case more definite. Therefore, in writing down the inequal- 
ities we shall omit the indices of I, and 1, and assume that 
these inequalities are satisfied by both mean free paths. The 
second condition in Eq. (2.7) ensures that the electromag- 
netic field in the metal is quasistatic, which sets the upper 
limit to the wave frequency w. 

We shall need asymptotic expressions for the conduc- 
tivity u (k )  for different values of the wave number k. In 
calculation of u (k )  under the conditions of a strong spatial 
dispersion (kR) 1 + 1 yl ) the Bessel functions in Eq. (2.5) 
can be replaced by asymptotes at high values of the argu- 
ment. We thus obtain 

o, (k) = - 3n [ a h  (a $ )+ clh (a F)] (2.9) 
4 k (l,+lh) 

for kR ) 1 and kl) 1. The expression for the conductivity 
u(k)  in the weak spatial dispersion range (kR ( 1 ), when 
strong and very strong magnetic fields are applied ( lyl( 1 ), 

is obtained by replacing the products of the Bessel functions 
with asymptotes which are valid in the case of low values of 
the argument q: 

if kR < 1 and R < I. Equation (2.10) has two terms and each 
of them corresponds to two different mechanisms of the qua- 
sistatic conductivity in the weak spatial dispersion case. The 
first is due to the diffusion of centers of electron orbits in a 
strong magnetic field (conventional magnetoresistance 
mechanism). The second mechanism is related to the drift of 
electrons because of a weak inhomogeneity of the electric 
field. No restrictions on the relationship between the two 
terms in Eq. (2.10) are imposed when 0, (k)  is calculated. 

The asymptotes of the conductivity described by Eqs. 
(2.9) and (2.10) are governed only by the first term in Eq. 
(2.3) for u (k ) .  The Hall renormalization of the conductiv- 
ity can be ignored in the cases of strong and weak spatial 
dispersion. The smallness of the second term in Eq. (2.3), 
compared with the first, in the weak spatial dispersion case is 
ensured by the anisotropy of the compensated metal model. 
However, even in the anisotropy model this term exceeds the 
diagonal conductivity uyy (k) .  Therefore, the structure and 
order of the asymptote of Eq. (2.10) are retained also in the 
general case of an anisotropic compensated metal. 

We can study the distribution of an electromagnetic 
field in a metal and calculate the surface impedance if we 
determine those characteristic values of the wave number k 
which define the intervals that make the dominant contribu- 
tions to the integrals (2.1), (2.2), and (2.4). We should 
therefore find and analyze zero of the denominator in the 
integrands in Eqs. (2 . l ) ,  (2.2), and (2.4): 

Using the asymptote of Eq. (2.9), we can readily obtain 
the short-wavelength root of the dispersion equation (2.11 ) 
in the form 

4 6,' (l.+C) [z cth(xRl4) + oth (nRib) ] 'I' . 

It follows from the system (2.12) that this root is related to 
the short-wavelength penetration depth 8, (H, ) and it exists 
for weak and strong [Eq. ( 1.4) ] magnetic fields (6, ( R ) . 
The short-wavelength length S, ( H ,  ) decreases monotoni- 
cally on increase in H, (Fig. 1) from the value S, (corre- 
sponding to 8, (I (R ) given by 

to the value (4/3) "'6,. The value of 6, ( H ,  ) remains much 
smaller than the Larmor radius R or the mean free paths I, 
and I,. In strong magnetic fields [Eq. ( 1.4) ] the short-wave- 
length penetration depth is given by the formula 

The second (long-wavelength) root of the dispersion 
equation of (2.11 ) can be found with the aid of the asymp- 
tote (2.10) : 
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in i 
k1=6,-' (H.) exp ( - - - arclg- 58nz \ for R<Z, 

2RZ 1 
(2.15) 

This root determines the long-wavelength scale of the 
change in an electromagnetic field 6, (H, ), which exists in 
strong [Eq. (1.4) 1 and very strong magnetic fields. The 
depth of penetration 6, (H, ) remains practically constant in 
the range of strong magnetic fields [Eq. ( 1.4) ] : 

61 ( H , )  = (21,1,/5)'" for 6,KRKI3 (2.16) 

and rises monotonically on increase in H, in the limit of very 
strong fields (Fig. 1 ) : 

Throughout the range defined here (R 4 1) the function 
6, (H, ) is much larger than the Larmor radius R or the clas- 
sical thickness 6, (Fig. 1 ) . 

Our analysis of the dispersion equation (2.11 ) demon- 
strates that the distribution of an electromagnetic field in a 
metal is determined mainly by the contributions made to the 
integrals of Eq. (2.1) and (2.2) by integration domains 
characterized by k-61 '(H,) and k-6; ' ( H , ) .  Each of 
these two contributions exists in its own range of external 
magnetic fields H,. Since in weak (6, (14 R ) and very 
strong (R 46, 41) magnetic fields Eq. (2.1 1 ) has only one 
root, it follows that the electromagnetic field has in this case 
only one scale of variation (6, = 6, when 6, 4 1 4  R and 6, 
obtained from Eq. (2.17) when R 46, 41). In contrast to 
these known familiar situations, both contributions are im- 
portant in the intermediate range of strong fields [Eq. 
( 1.4) 1. Therefore, the electromagnetic field is of two-com- 
ponent nature and the mixed skin effect is observed. It is 
important to stress that the values of the functions 6, (H,) 
and 6, (H,) differ from one another for any value of 8, 
(Fig. 1 ), so that 

[see also the inequalities of Eq. ( 1.7) 1. Consequently, the 
contributions of large (k- 6; ' )  and small (k- 6; ' )  wave 
number can easily be distinguished. We shall consider in 
greater detail the distributions of the electric E (x )  and mag- 
netic H ( x )  fields under the mixed skin effect conditions of 
Eq. (1.4). 

Using the asymptotic behavior of the conductivity 
6, ( k )  described by Eq. (2.9) and of 6, ( k )  described by Eq. 
(2. lo),  and bearing in mind the specific nature of the sine 
Fourier expansion of Eq. (2.1 ), we obtain the magnetic field 
distribution in a compensated metal: 

k2 sin ( k x )  dk 
(2.19) 

It is clear from these expressions that a considerable reduc- 
tion in the amplitude of the magnetic field occurs already at 
the anomalous skin depth 6, -- (6; R ) ' I 3  In the range x - R 
the short-wavelength component (2.19) becomes compara- 

ble with the long-wavelength component (2.20), but a 
further increase of the coordinate x results in predominance 
of the exponential decay of H(x) .  The long-wavelength 
component of the magnetic field (2.20) is (R /6, ) 2 $  1 times 
less than H(0) .  However, it penetrates a sample to a depth 
6, = (Ie I, ) ' I2  which is of the order of the mean free path of 
carriers and is considerably greater than 6,. Therefore, the 
contributions of the asymptotes (2.19) and (2.20) to the 
integral depth of the skin layer of Eq. ( 1.8) are in competi- 
tion. The same competition appears also in the case of the 
electric field E(x)  in the range x 4 R, since it represents an 
integral of the magnetic field: 

m 

E ( x ) =  -* 1 d x ~ ~ ( x / ) .  (2.21) 
I 

In fact, a direct calculation ofE(x)  by the substitution of the 
conductivities of Eqs. (2.9) and (2.10) into the cosine ex- 
pansion of Eq. (2.2) shows that the electric field consists of 
two components: 

The first component in Eq. (2.22) is determined by the con- 
tribution of large wave numbers k-6; ' to the integral of 
Eq. (2.2). It represents the short-wavelength component of 
the electric field which exists for x 4 R  and is damped out at 
the anomalous skin depth 6, z ( 6 ; ~ ) " ~  given by Eq. 
(2.14): 

m 

E8 ( $ 1  -- k  cos ( k x )  dk  

H(O) 
(2.23) 

The second long-wavelength component El (x)  is due to the 
contribution of small wave numbers k-6, '. This compo- 
nent penetrates the metal to a great depth S, z (Ie 1, ) ' I2 [see 
Eq. (2.16) ] which is considerably greater than the depth 6, 
[see Eqs. ( 1.7) and (2.18) ] : 

As pointed out in the Introduction the presence of the field 
El (x) in a metal is not associated with the ballistic electron 
transport mechanisms, which in the case of the conventional 
anomalous skin effect are responsible for the Sondheimer 
component.' The appearance of the long-wavelength com- 
ponent El (x )  in our situation can be explained as follows. 
According to Eq. (2.10) for the conductivitiy a, (k) ,  the 
response of a metal to an inhomogeneous electric field can be 
described by the following expression in the x representa- 
tion: 

We can easily show that the substitution of the field El (x)  of 
Eq. (2.24) into Eq. (2.25) causes the currentj(x) to vanish. 
This means that there is a strong compensation of the mag- 
netoresistance by the drift conductivity in a weakly inhomo- 
geneous electric field El (x)  . In other words, the long-wave- 
length component of the electric field described by Eq. 
(2.24) is essentially of the zero-current nature. A character- 
istic self-consistent pattern is then established: the electric 
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FIG. 2. Schematic dependences of the real (continuous curve) and imagi- 
nary (dashed curve) parts of the impedance 6 = c 2 Z / 4 r u  on the recipro- 
cal of the external magnetic field H, ( R  a H, I )  in the case of diffuse 
reflection of electrons. 

field E, (x )  varies with the coordinate x in such a way as to 
cause the current to vanish; on the other hand, the smallness 
of the current density is the necessary condition for such a 
slow decay of the electric field with depth in the sample. 

These special features of the skin effect in a compensat- 
ed metal are reflected in the magnitude of the surface impen- 
dance of Eq. (2.4). Figure 2 shows schematically the behav- 
ior of Z(H, ) in a wide range of magnetic fields H,. In weak 
magnetic fields (6, g I (R)  an electromagnetic field is rep- 
resented solely by the short-wavelength component which is 
damped out over the anomalous skin depth 
6, = 6, z [62, ( Ie + Ih ) ] 'I3. ~t follows from ~ q s .  (2.4), 
(2.9), (2.12), and (2.13) that the impedance of the metal is 
then given by 

To avoid misunderstanding, we must mention that we are 
not considering here nonmonotonic variation of Z, (H, ) ob- 
served in weak fields when (8R6, ) 'I2 -1 and known in the 
literature as the background ~ igna l . ' ~ ' ' ~  

A second long-wavelength component of the electric 
field E ( x )  appears in strong magnetic fields defined by Eq. 
( 1.4) However, the total current and the alternating mag- 
netic field are still concentrated in the anomalous skin depth 
6, z (62, R )  'I3, which now begins to depend on H, [see Eq. 
(2.14) 1. It follows from Eqs. (2.4) and (2.22)-(2.24) that 
under the conditions of the mixed skin effect the impedance 
Z(Ho ) is equal to the sum of the short- and long-wavelength 
impedances: 

The competition between the long- and short-wavelength 
components of the electric field is manifested particularly in 
the real part of the impedance Re Z(H,):  

It follows from Eqs. (2.23) and (2.24) that this competition 

can be described by the magnitude of the following param- 
eter: 

Therefore, in the range of magnetic fields corresponding to 

Eq. (2.28) is dominated by the first (short-wavelength) 
term. When H, is increased, the two terms become compara- 
ble and in the range where 

Eq. (2.28) is dominated by the second (long-wavelength) 
term. The impedance of the metal then becomes practically 
real. In fact, its imaginary part 

is much smaller than Re Z(Ho ) throughout the full range 
defined by Eq. (2.3 1 ). Moreover, in the imaginary part of 
the impedance described by Eq. (2.32) there is again compe- 
tition between the long- and short-wavelength components 
of the electric field. The second (long-wavelength) term of 
Eq. (2.32) predominates in the range corresponding to 

Finally, in very strong magnetic fields (R 46,  41) the short- 
wavelength component disappears and only the long-wave- 
length components of the electric and alternating magnetic 
fields remain. The asymptote of Eq. (2.10) is dominated by 
the magnetoconductivity, which results in the normal skin 
depth of penetration 6, (H,) ~ 6 ,  I /R [see Eq. (2.17) 1. It 
followsfromEqs. (2.4), (2.10), (2.15), and (2.17) that the 
impedance of a metal is now described by the expression 

2. The dependence of the surface impedance on an ex- 
ternal magnetic field of frequency corresponding to the 

RcZ, rel. units 

FIG. 3. Theoretical (continuous curve) and experimental (dashed curve, 
taken from Ref. 14) dependences of the real part of the surface impedance 
on the external magnetic field applied under mixed skin effect conditions. 
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anomalous skin effect 6 , g I  was determined experimentally 
for tin in Ref. 14. Figure 3 shows the ReZ(H,) curve taken 
from Ref. 14 (dashed curve). The continuous curve repre- 
sents the results of a numerical calculation of the real part of 
the surface impedance: 

which holds applies under the experimental conditions un- 
der discussion (I, = 1, = I = 0.05 cm, 0, = 10" s-I, pF  
= 3~ 10-l9 g . c m . s ' ,  w = 4 7 ~ ~  lo5 s-I,  S, = 2 . 4 ~  

cm) . This expression differs from Eq. (2.28) because terms 
of the order of S,/R are retained. Such a modification ex- 
tends the range of its validity to the boundary R-6, 
between strong and very strong magnetic fields, which is 
reached in the experimental conditions of Ref. 14 at H, -- 80 
kOe. The Re Z(Ho ) depedences are plotted in Fig. 3 using 
arbitrary units and are normalized to ensure coincidence of 
the theoretical and experimental curves in a field H, = 22 
kOe. The minimum of the real part of the surface impen- 
dance corresponds to H, = 2 kOe, which is in agreement 
with the condition R z 3.64(S: 1 3)'/7 deduced from Eq. 
(2.35) (see also Fig. 2). The magnetic field in which 
ReZ(H, ) assumes its minimum value separates two regions: 
in lower fields the impedance is governed by the anomalous 
skin (first) term in Eq. (2.35), whereas in higher fields it is 
governed by the long-wavelength (second) term in Eq. 
(2.35). It is pointed out in Ref. 14 that in magnetic fields H, 
R 2 kOe the real part of the impedance is proportional to the 
square of the external field H,. Moreover, in the range H, 
where R e Z a H i  is obeyed, there is no frequency depen- 
dence ReZ(w) . These conclusions are in agreement with our 
theoretical predictions for the case when S, 4 R 4 (8: I 3, 'I7 

and the second term in Eq. (2.35) predominates. 
As H, is increased (and R approaches 6, ) the depth of 

the skin layer increases in accordance with the law described 
by Eq. (2.15). Since in the experiments reported in Ref. 14 
the thickness of a sample was d z 0 . 1  cm, its "bleaching" 
(when the skin layer depth S, became comparable with d )  
occurred in fields of the order of 40 kOe. This accounts for 
the discrepancy between the theoretical dependence 
ReZ(H,) of Eq. (2.35), derived for a semiinfinite metal 
( d  > S, ), and the experimental curve obtained for H, 2 40 
kOe. 

3. The long-wavelength component of an electromag- 
netic field observed by us at high frequencies 

represents a weakly damped wave. In investigating this situ- 
ation it is sufficient to modify all the formulas in the preced- 
ing section by adding to the relaxation frequencies of elec- 
trons v, and holes v, an imaginary part amounting to - iw 
( v , ,  -+we,, - iw). In the high-frequency limit the range of 
strong magnetic fields of Eq. ( 1.4) corresponds to 

whereas the range of very strong magnetic fields corre- 

sponds to 

Here, w, is the plasma frequency and I, is the effective path 
of carriers during one period 2a/w of an electromagnetic 
wave ( (1, -pF/m, w -pF/m, w). The requirement that the 
skin effect should be anomalous, 6, (I,, now sets the upper 
limit to a frequency w .  

The dispersion equation (2.11 ) and the conductivity of 
Eq. (2.10) yield a linear spectrum of the wave in question: 

In strong magnetic fields of Eq. (2.37) we have VA 4 VF and 
the phase velocity of the wave becomes equal to the Fermi 
velocity VF. The depth of penetration of oscillations into a 
metal is then 2VF/(v, + v, ) and is of the same order of 
magnitude as the mean free path of carriers I. In very strong 
fields ofEq. (2.38) the wave with the spectrum of Eq. (2.39) 
reduces to a familiar magnetoplasma wave7 with the Alfven 
velocity V,. However, one should point out that this is true 
only in the case of semimetals, when VA reduces to VF in 
realistically attainable magnetic fields H,. 

We shall now give the expression for the amplitude of a 
wave of Eq. (2.39) excited in a metal. It follows from Eq. 
(2.2) that 

It is clear from Eq. (2.40) that an increase in H, increases 
the wave amplitude and the conditions for observing it be- 
come easier. 

3. INFLUENCE OF SURFACE SCATTERING OF ELECTRONS 
ON THE MIXED SKIN EFFECT 

As established in the preceding section, the surface im- 
pedance of a compensated metal derived for strong magnetic 
fields of Eq. ( 1.4) is a sum of the "short-wavelength" Z, and 
"long-wavelength" Z, terms. In the preceding section the 
impedance was calculated ignoring a group of surface elec- 
trons colliding with the boundary of the sample. However, it 
is well known that the impedance Z, is sensitive to the nature 
of the interaction of electrons with the surface. In the case of 
diffuse reflection an allowance for the surface scattering sim- 
ply alters slightly the numerical coefficient in the short- 
wavelength (first) term in Eq. (2.27), whereas in the case of 
near-specular reflection the impedance Z, becomes very dif- 
ferent. It is shown in Refs. 15, 10, and 11 that in the specular 
reflection case a new group of grazing electrons appears in a 
sample and these collide with the surface boundary of a met- 
al, but still move all the time in a skin layer of depth 6,. Such 
electrons dominate the conductivity and determine the im- 
pedance Z,. According to Ref. 10, the impedance is then 

We shall now consider the influence of the surface scattering 
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of electrons on the long-wavelength term Z, of the imped- 
ance [second term in Eq. (2.27) I .  In the calculation of Z, 
we need to find the distribution of the long-wavelength elec- 
tric field El ( X I .  The equation for the cosine transform 
g, ( k )  of the electric field can be derived from the general 
expressions of Ref. 10: 

Equation (3 .2 )  is derived bearing in mind that the integral 
kernel of the conductivity Q( k,  k  ' ) has characteristic values 
k and k ' of the order of R  - '. On the other hand, the long- 
wavelength electric field $?, (k )  varies for values of ( k )  
which are considerably smaller and amount to 6,- ' For this 
reason the current of surface electrons [representing the last 
term in the brackets of Eq. (3 .2 )  ] is governed by the electric 
field at the boundary of the metal El ( 0 ) .  

The Maxwell equation in the form of Eq. (3 .2 )  is alge- 
braic and is easily solved. In the case of the long-wavelength 
impedance, we obtain the expression 

where ZjO' is the long-wavelength impedance calculated 
without allowance for the surface electrons [second term in 
Eq. (2.27) I .  The asymptotes of Q(0 ,O)  are different for the 
cases of diffuse and specular reflections of electrons. We 
shall therefore consider these two situations separately. 

1. In the diffuse scattering case the asymptote JQ(0,O) 1 
obtained from the general expression of Ref. 10 is 

Substituting Eq. (3 .4 )  into Eq. (3 .3 ) ,  we obtain the follow- 
ing expression for the impedance: 

It is clear from Eq. ( 3 . 5 )  that in the diffuse reflection case 
when strong magnetic fields are applied, the impedance Z, 
differs only by a numerical factor from Z iO' .  In the range of 
very strong fields ( R  4 6 ,  41) the skin effect is normal so 
that the surface scattering plays no significant role and Z, is 
described by the previous formula (2 .34) .  Therefore, in the 
diffuse scattering case the group of surface electrons has no 
significant influence on the short-wavelength Z ,  or the long- 
wavelength Z,  parts of the impedance, which does not 
change the conclusions reached in the preceding section. 

2. In the specular reflection case the asymptote of 
1 Q(0,O) 1 is given by ' O  

where ci is the integral cosine. In view of such a high conduc- 
tivity of surface electrons [ (Q(0,O) 1 Z jO' - 1 / R  ) 1 ] the 
long-wavelength impedance of Eq. (3 .3 )  is governed mainly 
by the surface current: 

Impedance of Eq. (3 .7 )  is I / R  3 1 times less than Z jO'.  Such 

FIG. 4. Schematic dependences of the real (continuous curve) and imagi- 
nary (dashed curve) parts of the impedance 5 = c2Z/4ro  on the recipro- 
cal of the external magnetic field H, (R cc H; I )  in the case of specular 
reflection of electrons 

a reduction in the long-wavelength impedance compared 
with the diffuse reflection case occurs because of the screen- 
ing of the long-wavelength electric field El ( x )  by the cur- 
rent of surface electrons. Such screening is so strong that 
throughout the range of magnetic fields defined by Eq. ( 1.4) 
the amplitude of the long-wavelength electric field El ( 0 )  is 
small compared with the short-wavelength field E, ( 0 ) .  Con- 
sequently, the impedance of Eq. (3 .7 )  is small compared 
withZ, ofEq. ( 3 . 1 ) :  

In very strong magnetic fields the short-wavelength 
component of the electric field vanishes. The impedance is 
now practically real: its real part is described by Eq. ( 3 . 7 )  
and the imaginary part is a small correction in terms of the 
parameters ( ~ / S , ) ~ 4 1  and S,/1<1: 

Figure 4  shows schematically the dependence of the 
surface impedance of a compensated metal on the reciprocal 
of the magnetic field in the case of specular reflection of 
electrons. 

The authors are grateful to V.T. Dolgopolov and V. Ya. 
DemikhovskiY for valuable discussions. 

'G. E. Reuter and E. H. Sondheimer Proc. R. Soc. London Ser. A 195, 
336 (1948). 

*E. A. Kaner and M. Ya. Azbel', Zh. Eksp. Teor. Fiz. 33, 1461 (1957) 
[Sov. Phys. JETP 6, 1126 ( 1958) 1. 

3M. Ya. Azbel', Dokl. Akad. Nauk SSSR 100,437 (1955). 
4E. A. Kaner and V. G. Skobov, Adv. Phys. 17,605 (1968). 
51. M. Lifshitz, M. Ya. Azbel', and M. I. Kaganov, Elecrron Theory of 
Metals, Consultants Burea;, New York (1973), Chaps. 3 and 4. 

hE. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press, 
Oxford ( 1981 ) Chap. 9. 

'E. A. Kaner and V. G. Skobov, Zh. Eksp. Teor. Fiz. 45, 610 (1963) 
[Sov. Phys. JETP 18,419 (1964) 1. 

'M. Ya. Azbel' and E.A. Kaner, Zh. Eksp. Teor. Fiz. 32, 896 (1957) 
[Sov. Phys. JETP 5,730 (1957)]. 

'E. A. Kaner and V. F. Gantmakher, Usp. Fiz. Nauk 94, 193 (1968) 
[Sov. Phys. Usp. 11, 81 (196811. 

1°E. A. Kaner and N. M. Makarov, Zh. Eksv. Teor. Fiz. 57, 1435 ( 1969) 
[Sqv. Phys. JETP 30, 377 ( 1970) 1. 

llB. E. Meierovich, Zh. Eksp. Teor. Fiz. 58,324 ( 1970) [Sov. Phys. JETP 

139 Sov. Phys. JETP 67 ( I ) ,  January 1988 Makarov et a/. 139 



31, 175 (1970)l. (1974) [Sov. Phys. JETP 40,166 (1975)l .  
"D. A. Smith, Proc. R. Soc. London Ser. A 296,476 (1967). I5E. A. Kaner, Zh. Eksp. Teor. Fiz. 33, 1472 (1957) [Sov. Phys. JETP 6, 
I3O. I. Lyubimov, N. M. Makarov, and V. A. Yampolskii (Yampolski), 1135 (1958)l .  

Solid State Commun. 39, 815 (1981). 
I4I. F. Voloshin and Yu. N. Gaidukov, Zh. Eksp. Teor. Fiz. 67, 334 Translated by A. Tybulewicz 

140 Sov. Phys. JETP 67 (1), January 1988 Makarov et a/. 140 


