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A diagram technique in the atomic representation is used to calculate the dependence of the FMR 
frequency on the orientation of the external magnetic field for ferromagnets with strong one-ion 
anisotropy. The quantum corrections for the FMR frequency are obtained in second order in the 
parameter ( 2 s  - 1 ) D /(g,u, + I$') at arbitrary values of the spin S. Account is taken of the 
magnetodipole and anisotropic-exchange interactions. Specific calculations are made for the 
anisotropic ferromagnet NiSiF,. 6H,O, in which quantum effects due to one-ion anisotropy and 
leading to a change of the H- T diagram were observed in experiment. It is shown that in an 
external magnetic field H = 2 kOe the quantum correction for the FMR frequency of a spherical 
nickel-fluorosilicate sample reaches - 15% of the phenomenological frequency shift and can be 
experimentally observed by investigating the dependence of the FMR frequency on the 
orientation of the external magnetic field. 

1. INTRODUCTION 

A quantum-theoretic analysis of ferromagnetic reso- 
nance (FMR) and of the spectrum of long-wave magnetiza- 
tion oscillations in isotropic ferromagnets leads to the same 
conclusions as an analysis of the Landau-Lifshitz equation.' 
The situation is more complicated in anisotropic and multi- 
sublattice magnets. Thus, for anisotropic ferromagnets, the 
effective field in the Landau-Lifshitz equation contains an 
additional anisotropy field. This method of taking the mag- 
netocrystalline anisotropy in account must, of course, be 
corroborated and has its limitations, as pointed out by Lan- 
dau." The concept of the anisotropy field is valid when the 
characteristic energy of the relativistic interactions is much 
less than the exchange-interaction energy,' and this situa- 
tion obtains in ferromagnets with relatively high magnetic- 
ordering temperatures. 

As shown by O g ~ c h i , ~  the expression for the frequency 
of the antiferromagnetic resonance (AFMR) of collinear 
antiferromagnets contains additional terms of quantum ori- 
gin. Oguchi calculated the first quantum correction to the 
AFMR spectrum of uniaxial antiferromagnets. The quan- 
tum correction for the AFMR frequency with allowance for 
anisotropy in the basal plane was obtained by K~kharenko .~  
It was also shown that allowance for the quantum effects 
explains the experimentally observed nonzero longitudinal 
susceptibility of transition-metal fluorides as T-0. 

The impossibility of explaining fully the dynamic and 
static properties of anisotropic magnets on the basis of equa- 
tions of motion of the Landau-Lifshitz type stimulated the 
development of model-free theories5-' that are applicable in 
a wide temperature range. This approach has made it possi- 
ble to take fullest account of the symmetry properties of the 
system and to determine the relations between the static and 
dynamic characteristics. 

In magnets with strong one-ion anisotropy (OA), the 
states of the magnetoactive ion constitute, generally speak- 
ing, mixtures of states with different components along the 
quantization a ~ i s . ~ - ' ~  This leads, in particular, to the ap- 
pearance of longitudinal and additional transverse branches 
of the spin-wave excitation ~ ~ e c t r u m , ~ ~ ' ~ - ' ~  and also to a de- 

crease of the saturation magnetization even at zero tempera- 
ture. These effects, whose intensity increases with increase of 
the OA, have by now been experimentally observed in inter- 
metallic compounds having a strong OA.13-'' 

The quantum properties of the OA are manifested also 
by a substantial restructuring of the form of the phase dia- 
grams of anisotropic magnets, when the OA constant is larg- 
er than or comparable to the exchange intera~tion. '~-~'  In 
this context, great interest attached to nickel fluorosilicate 
NiSiF6.6H20, in which the variation of the magnetic state 
with change of the OA parameter could be traced." 

The spectral characteristics of anisotropic ferromag- 
nets also have distinctive properties of quantum ori- 
gin.& 12.22-26 If the OA energy is comparable with the ex- 

change-interaction energy, a spin-wave theory can be 
constructed with exact allowance for the OA (Refs. 8, 12, 
22,24, and 27-29). When the exchange interaction plays the 
principal role, the quantum corrections to the properties of 
the ground state and the spin-wave excitation spectrum can 
be calculated by expansion in powers of D /Io (D is the an- 
isotropy parameter and I, the exchange integral) .25,30,31 The 
quantum corrections are obtained here for arbitrary values 
of the spin S. 

The purpose of the present paper is a calculation of the 
dependence of the FMR frequency of a uniaxial ferromagnet 
on the orientation of the external magnetic field, with 
allowance for quantum effects. It is assumed that the mag- 
netic field is stronger than the anisotropy field. The problem 
contains therefore, as in Ref. 25, a small parameter D /  
(I$' + gp, H) for the expansion. We use in the calculation 
Matsubara Green's functions calculated by a diagram tech- 
nique for Hubbard  operator^.^ Account is taken of magneto- 
dipole and of anisotropic exchange interactions. The disper- 
sion equation is solved accurate to second order in D /B, and 
the quantum correction to the angular dependence of the 
FMR frequency is obtained in explicit form. 

Specific predictions are made concerning the uniaxial 
ferromagnet Ni SiF6.6H20. It is shown that the FMR fre- 
quency shift produced in this substance by quantum effects 
reaches - 15% of the frequency shift determined by the phe- 
nomenological expression. 
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2. HAMlLTONlAN OF THE PROBLEM where 

Consider a uniaxial ferromagnet in an external magnet- 
ic field H making an angle 8, with the anisotropy axis. The 
Hamiltonian of such a system can be written in the form 

where the first term describes the anisotropic exchange in- 
teraction, and the second takes into account the uniaxial- 
symmetry crystal field and the Zeeman-interaction energy. 
The last term describes the magnetodipole interaction be- 
tween localized magn2ic moments.32 The zero superscript 
means that the matrix Iyg and the vector H0 are written in a 
coordinate frame in which the z axis coincides in direction 
with the anisotropy axis. Then, without loss of generality, we 
can assume that 

HO=(H sin O H ,  0, Hcos OH).  (2)  

For f u t ~ r e  convenience, we introduce a three-dimensional 
matrix FY- such that the magnetodipole interaction energy 
operator X,, has the following structure: 

A 

The matrix Fjg is then given by the expression 

In a homogeneous magnetic phase, the spontaneous- 
magnetization vector (S) makes a certain angle 8 with the z 
axis of the initial coordinate frame, and lies in the ZOX 
plane. To simplify the calculations, we change to a frame in 
which the magnetization vector is directed along a new axis 
z' (the prime will be omitted hereafter). This is done by 
rotating the coordinate frame through an angle 8 around the 
y axis. The change to the new coordinate system means a 
unitary transformation of the Hamiltonian operator: 

In the new frame, after separating the self-consistent field 
(SCF), the Hamiltonian of our system can be written as a 
sum of the one-ion part and a term that takes the correlation 
effect of the pair interaction into account: 

ao(f) ='/zAo33~2- (St)a~Sf-2Dz(Sfz)2-g~~(HSf) 9 

S,"Sfz cos 0-St sin 0 ,  a=<S'). (7 )  
A h 

The matrix A, is the Fourier transform of the matrix A,, 
at zero quasimomentum, and is determined from the expan- 
sion 

1 ~,,=b(j,:+~,:)b-~= --z A, exp{ip(Rf-R.)}. ( 8 )  
N P  

The similarity transformation with the aid of the matrix 

cos0 0 -sin0 

sin0 0 cos 0  

reflects the change of the form of the pair interaction on 
changing to the new coordinate frame. The vectorAH is then 
connected with the vector H0 by the relation H = 0 HO. The 
calculation of the Fourier transforms for the terms of the 
magnetodipole interaction is described in detail in Ref. 32. 
For a sample of finite size, bounded by a second-order sur- 
face, we can introduc: the demagnetizing-coefficients ten- 
sor. The terms of the A, matrix elements corresponding to 
the dipole-dipole interaction can then be expressed via the 
demagnetizing fields and the anisotropy of the magnetodi- 
pole interaction. This anisotropy will be neglected for two 
reasons. First, we assume that the magnetodipole-interac- 
tion anisotropy is small compared with the OA. Second, the 
magnetodipole anisotropy has a two-ion character and does 
not lead to quantum effects in the zeroth order in l / r i .  
Allowance for this anisotropy reduces therefore only to the 
appearance of an additional term in the complete expression 
for the effective anisotropy constant (24) contained in w,, . 
The contribution to the quantum corrections is then mani- 
fested by additional terms proportional to the product of the 
squared OA constants and magnetodipole anisotropy con- 
stants, which are of next order of smallness compared with 
the principal corrections (see below). Assuming next that 
the axes of the initial coordinate frame coincide with the 
principal axes of the surface ellipsoid, we get 

where M, = gp,S/v, is the saturation magnetization, v, is 
the unit-cell volume, and Ni are the principal components of 
the demagnetizing-coefficients tensor. 

3. DISPERSION EQUATION 

To calculate the spectrum of the collective excitations 
of the Hamiltonian (6)  with a nonequidistant spectrum of 
the one-ion energy levels, we use the diagram-technique for- 
malism for Hubbard operators.' We introduce the eigen- 
functions of the one-ion Hamiltonian: 

which we use to construct the Hubbard operators 

X f n m ~ I Y n ( f ) ) ( y m ( f )  I .  (11) 
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In the new representation, the Hamiltonian (6)  takes the 
form 

where hfn EX;", and the components of the vector c ( A )  are 
parameters of the representation of the spin operators in 
terms of the Hubbard operators.29 The matrix ii effects the 
transition from the vector uf(S;, Sf , SF ) to the vector 
Sf = (s;, ST, s;,: 

The dispersion equation that describes the spectrum of 
the undamped excitations is determined by the poles of the 
Fourier transform of the Matsubara Green's function 

DAA~ ( f ~ ,  gt') =-(TH,"(.c) X ,Ir  (TI)>, 

calculated in the zeroth approximation of the SCF method. 
The graphic series for D 0,8 (q,wn ) is specified by zero-loop 
diagrams, and the equation for D $ (q,w, ) is8 

The solution of this equation is based on the use of the differ- 
ence between the dependence of the pair-interaction matrix 
elements on the indices R and R ' (Ref. 29). After simple 
calculations we obtain the dispersion equation 

A 

where the matrix Lo(wn ) is defined as 

The functions u (w, ), v(wn ), ... in ( 15) can be represented in 
the low-temperature region ( T( T, ) in the form 

A 

The three-dimensional matrix V, is connected with the ma- 
trix A,  of (8 )  by the relation 

Equation ( 14) was obtained under general assumptions con- 
cerning the form of the pair interaction and the geometry of 

the problem. The specific feature of an actual case manifest- 
ed via the representation parameters y, (a) and y l  (a) and 
the oneion energy levels En ,  and also via the form of the 
matrix V,. In general form, this dispersion equation can 
hardly be investigated analytically. Examination of various 
limiting cases, however, enables us to dispense with numeri- 
cal calculations. This, in particular, is the situation in the 
homogeneous FMR case, which is of importance in re- 
search, subject to the inequalities 

which allow us to assume that the ferromagnetic sample is in 
a one-domain state. The specific forms of the representation 
parameters and of the one-ion energies can then be calculat- 
ed by perturbation theory. 

4. THE ONE-ION PROBLEM 

We express the one-ion Hamiltonian in the form 

where ?ji, is the principal part of the effective field acting on 
the ion: 

This field sets the equidistant structure of the unperturbed 
energy levels: 

and the "bare" states are the eigenstates of the operator 5''. 
The operator Vf, regarded as a perturbation, is given by 

where the effective field acting along the x axis is of the form 

1 
R , = g p , H  sin (OR-0) + - 2 (Io'--Z,I1) sin 20 

0 
- g p ~ M 0 2 3 t  ( N i - N s ) -  sin 20.  

S 

To separate the quantum effects, second order perturbation 
theory in Vf is sufficient. We then obtain at low temperatures 
( T 4 T c )  

The angle 8 in the considered temperature region is obtained 
from the condition that the energy E,  be a minimum, and can 
be written in the form 

The angle 6, satisfies the equation 

'/J sin 200=gp,fI sin(8,T-00), (23) 

which corresponds to the equation obtained in the phenome- 
nological treatment. The effective anisotropy constant 

takes into account the OA and the anistropy of the exchange 
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interaction and of the sample shape. 
The correction S  in ( 2 2 )  is connected with the OA 

quantum effects and is of the form 

( 2 s - 1 )  DZz sin2 err sin 208 
6 = [gp$i+2ngpBMo (N , -N , )  cos 2881 a, (u=s, e = e ~ )  ' 

( 2 5 )  

Calculating the eigenstates ( 10) by perturbation theory 

we easily obtain, at the accuracy considered, the parameters 
of the representation 

From - - Eqs. ( 1 6 )  we get then (E, ,  = En - Em, 
H =  H , ( a = S ,  e =  8 , ) )  

- S ( 2 s -  1) 4S ( 2 s -  1 )  DZ - sin" 20, 
2  ( i a n + e 2 ~ )  B~ + ( i a n - e 3 , )  H 2  

2S (28-1)  sin 28 sin2 0D: 
v ( a n ) =  ( iwn+eZI)  (ia.+e,,) ' 

It can be seen from (26) - (28)  that z ( w , )  is a quantity of 
zeroth, w(w,  of first, and v(w,  ) and u(w,  ) of second order 
in the parameter D2/H. Knowing this, we can write the dis- 
persion equation in simpler form if we restrict ourselves to 
terms of order not higher than the second in D2/H. 

5. FMR FREQUENCY 

The equation describing the lower branch of the spin- 
wave excitation spectrum takes at our accuracy the form 

The inequalities ( 18) enabled us to confine ourselves in the 
derivation of ( 2 9 )  to first-order terms in 4?TM,/H and of 
zeroth order in S  I I A - I I/H in the expressions that lead 
to the quantum corrections for the spectrum. We confine 
ourselves hereafter to the investigation of the frequency of 
homogeneous FMR. Calculating the Fourier transforms of 
the matrix elements of the pair interaction at zero quasimo- 
mentum, we get 

1 VOi2  = - ( I o L I o ~ ~ )  - 
4 

4ngPBM0 (N,-N,) sin 20, 
S 

Solving Eq. ( 2 )  accurate to terms of second order in D,/B, 
we find by making the analytic continuation iw, +w + iS 
that the frequency of he homogenous FMR can be represent- 
ed in the following form: 

Here w,, describes the usual dependence of the FMR fre- 
quency on the orientation of the external magnetic field, 
which is obtained by the phenomenological approach33: 

U , ~ = { [ ~ P ~ H  C O S ( ~ H - ~ ~ ) + D  cos 2001 [gpBH ~ 0 ~ ( 0 , - 0 0 )  
+ D  cos2 00+4ngpBMo(N2-N,)]  ) I h ,  

where i) is defined by ( 2 4 ) .  
The quantum correction Awcl consists of two terms: 

The first term is independent of the sample shape of its de- 
pendence on the angle 8 ,  is qualitatively different than that 
of w,, (see Fig. 1 ) : 

FIG. 1 .  Angular dependence of phenomenological FMR frequency shift 
and of the quantum correction for a spherical NiSiF6.6H,O sample in a 
magnetic field H = 2 kOe. 
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The second term of the quantum correction describes the 
additional FMR frequency shift due to the sample surface 
shape anisotropy: 

7 2 (1-t-2) 
sin' OH- -,sin2 2 0 H  

(1 +2x) I 

Quantum corrections to the angular dependence of the 
FMR frequency are necessitated by the quadrupole moment 
induced by the OA in the system and by the participation of 
additional degrees of freedom in the dynamics of the dipole 
magnetic moment. New modes appear therefore in the col- 
lective-excitation ~ p e c t r u m . ~ " ~ " ~  Thus, at 8, = 12/2 the fer- 
romagnet in question acquires a longitudinal mode due to 
oscillation of the magnitude of the average magnetization. 
New transverse modes also appear and are due to collectivi- 
zation of one-ion excitations corresponding to quadrupole, 
octupole, etc., transitions. 8, #O a distinct classification of 
the total quantum spectrum into longitudinal and transverse 
modes is impossible, but is approximately admissible for the 
investigated weakly anisotropic ferromagnet. The mutual 
influence of the different spectrum modes is manifested here 
by an additional shift of the resonant frequencies. Thus, re- 
pulsion of the lower spectrum mode from the mode connect- 
ed with the collectivization of the 1 + 3 transition leads to a 
term a sin220H in the expression for Aw,. For 0, = ?r/2 this 
FMR frequency shift vanishes, for in this geometry the 1 + 3 
shift becomes purely longitudinal and there is no interaction 
with the transverse mode considered here. 

The cause of the contribution to Awl from the term 
a sin40H is the following. Owing to the quantum character 
ofthe OA, the average moment at the site decreases at 0, #O 
[see Eq. (21 ) 1. This decrease is manifested by the onset of a 
corresponding dependence on the one-ion spectrum and the 
associated spectrum of collective excitations. 

The decrease of the magnetization as 0, increases from 
0 to ?r/2 via the mechanism of the demagnetizing fields in the 
presence of the FM surface-shape anisotropy leads also to an 
additional (on top of the usual phenomenological) shift of 
the FMR frequency. This effect is described by the correc- 
tion Aw, and depends substantially on the sample shape via 
the demagnetizing coefficients N,, N2, N, 
( N , + N 2 + N 3 = 1 ) .  

It follows from the foregoing that the OA quantum ef- 
fects can be observed by investigating the experimental de- 
pendence of the FMR frequency on the angle 8, in FM with 
sufficiently large OA. 

We examine now the predicted effects for a single-crys- 

tal uniaxial ferromagnet-nickel fluorosilicate NiSiF,. H20. 
This single crystal has by now been well investigated and 
constitutes a model compound with magnetic properties 
corresponding to the Heisenberg model with uniaxial anisot- 
ropy and with spin S = 1. This compound is also of interest 
because experiment revealed in it quantum effects due to OA 
and leading to a unique P-T phase diagram.,' 

At atmospheric pressure and low temperatures, the pa- 
rameters of the model Heisenberg Hamiltonian that de- 
scribes well the magnetic properties of NiSiF,.6H20 are 

These parameter values are discussed in Ref. 21. In the same 
reference the authors, using Eq. (35 ), constructed a theo- 
retical H-T phase diagram that agrees well with the H-T 
diagram determined for nickel fluorosilicate from the shifts 
of the specific-heat peaks with change of the magnetic field 
(see Ref. 21 for the pertinent references). 

We shall assume that the NiSiF6.6H,0 sample is 
spherical (N, = N2 = N, = + ) and is in an external magnet- 
ic field H = 2 kOe. Using Eqs. (3  1 )-(33) and the param- 
eters (35), it is easy to calculate the dependence of the FMR 
frequency on 8,. Figure 1 shows the angular dependences of 
the classical frequency shift w,, - gpBH (dashed line) and 
of the predicted quantum correction (solid). It is seen that at 
certain values of 8, the quantum effects yield an FMR fre- 
quency shift amounting to - 15% of the phenomenological 
shift, and can be experimentally observed in NiSiF,.6H20. 
It is important that the angular dependence of Aw,, differs 
qualitatively from that of w,, . This circumstance can facili- 
tate considerably the separation of the quantum corrections 
from the total angular dependence of the FMR frequency 
when the experimental data are reduced. 

Note that the presence of quantum corrections that de- 
pend on the sample shape makes it possible to investigate 
their influence by varying the geometry of the experiment 
and the type of surface of the investigated ferromagnet. 

In conclusion, the authors thank G.  A. Petrakovskii for 
a discussion of the formulation of the problem and of the 
results, and I. E. Dzyaloshinskii and V. A. Ignatchenko for a 
number of important remarks that contributed to a better 
understanding of the problem. 
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