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The force on an immobile particle in a liquid in the presence of a constant temperature gradient is 
calculated. The force is proportional to the temperature,gradient and to the particle size raised to 
the 3/2 power. The possibility of observing the effect in experiment is discussed. 

The motion of solid parti~les under the influence of heat 
flow (called thermophoresis) has been thoroughly investi- 
gated in gases, where it is the result of Maxwellian thermal 
slip (see, e.g., Ref. 1). The force acting on a particle im- 
mersed in a gas in which a constant temperature gradient is 
maintained is proportional to the temperature gradient and 
to the first power of the particle size. 

The nature of thermophoresis in liquids is different. It is 
one of the fluctuational phenomenona in hydrodyna- 
mic~.*- '~ The force acting on the particle is the result of its 
interaction with thermal acoustic fluctuations. It will be cal- 
culated on the basis of general liquid-dynamics equations 
derived by the author earlier,2 in which account is taken of 
thermal fluctuations. The result reported below shows that 
the force acting on a solid particle in a non-uniformly heated 
liquid is proportional to the particle size raised to the 3/2 
power, i.e., it is the fluctuational mechanism which governs 
for macroscopic particles. 

Consider an immobile liquid in which a small constant 
temperature gradient is maintained and in which a spherical 
solid particle of radius R is immersed. The usual hydrodyna- 
mics equations show that at constant pressure the particle 
remains immobile if no external forces are applied to it 
(there is no thermophoresis), and an inhomogeneous tem- 
perature distribution is produced around it": 

where G is the temperature gradient at infinity, 
y = (x, - X, ) /(2x, + x,), x,, X, are the thermal-conduc- 
tivity coefficients of the liquid and solid, respectively, and 
the origin is at the center of the sphere. 

The phenomenon of interest to us comes into play when 
fluctuational corrections to the hydrodynamic equations are 
taken into a c c ~ u n t . ~ - ' ~  In this case, just as in Refs. 2 and 9, 
only acoustic fluctuations play any role, since they are the 
only ones having a "propagating" character, in contrast to 
the purely dissipative nature of all the other types of hydro- 
dynamic perturbations (shear and thermal waves). 

When acoustic fluctuations are taken into account, the 
dynamics equations for the liquid constitute (see Ref. 2) a 
closed system for the hydrodynamic variables (velocity v, 
pressure P, . . .) and the nonequilibrium distribution func- 
tion f of the acoustic fluctuations. In ordinary classical li- 
quids it is convenient to so normalize f that the quantity 

equilibrium part of the usual phonon distribution function, 
multiplied by the energy of the phonons. Under stationary 
conditions the function f satisfies the kinetic equation 

where s = k/lkl, I = (Rk ') - '  is the mean free path of the 
acoustic perturbations with wave vector k, 

p is the density of the liquid, c is the speed of sound, 7 and 7' 
are respectively the first- and second-viscosity coefficients, 
and c,, and c, are the specific heats. It is necessary to substi- 
tute in the right-hand side of (2)  the temperature gradient 
( 1 ) calculated without allowance for the fluctuations. 

The distribution function f must satisfy Eq. ( 2 ) ,  the 
usual condition that it be finite everywhere including infin- 
ity, and also some boundary conditions on the surface of the 
solid particles. These conditions are determined by the inter- 
action of the acoustic oscillations of the liquid with the sur- 
face of the solid. The character of this interaction was inves- 
tigated in detail (see Ref. 12) in connection with the 
question of the Kapitza jump. The results of the investiga- 
tions show that at not too low temperatures the most realis- 
tic condition is that of total accommodation of the phonons 
with the solid surface. This is equivalent to the condition 
f = 0 for the reflected acoustic oscillations, i.e., Irl = R at 
s * r > O .  

The additional terms in the equations for the hydrody- 
namic variables are expressed in terms of the distribution 
function. In the approximation in which the liquid is incom- 
pressible we have under stationary conditions 

div v=O, VP=qAv+p. (3  ) 

Here 

and P stands in fact for the sum 

Jzr ck, TI,  
where Po is the local equilibrium pressure of the liquid and a 

(2n)' is the entropy per unit mass. 
Introducing, for a specified s, the coordinates 6 = r s 

(k is the wave vector of the fluctuations) is the average ener- and p = r - s (s  r ) ,  we rewrite the kinetic equation ( 2 )  in 
gy density of the fluctuations. In fact, f is equal to the non- the form 
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where g = G/G. 
The subsequent calculations can be substantially sim- 

plified by using the following artifice. We seek the solution of 
Eq. (4)  in the form of a sum f, + f,, where f, and f, are 
solutions of Eq. (4)  in the case when the right-hand side 
contains only the first or respectively the second term. We 
assume here that the boundary conditions for f, and f2 are 
the same as forf, i.e., they are finite everywhere (including 
infinity), and the condition f ,,, = 0 at r = R if s . r > 0. 

We obtain the function f, by simple calculations: 

where 

the superscript in denotes that the corresponding equation 
holds at <> (R ' - p2) ' I2  and p < R, while out is used for 

2 112 p > R o r f o r p < R a n d < < - ( R 2 - p )  . 
We introduce an auxiliary function $(k,r) that satisfies 

the same boundary conditions asf, f,, and f,, as well as the 
equation 

d$/dc+$/l=- (sV) (-yR%/r). (6)  

The function $is thus the distribution function of the acous- 
tic fluctuations in the case of a spherically symmetric distri- 
bution of the temperature T(r)  = - yR 3G/r. Comparison 
of the first parts of Eqs. (4)  and (6)  shows that the function 
(g . V)$ satisfies the same equation as f,. These two func- 
tions differ therefore by a certain solution of the homogen- 
eous equation. To find the latter, we note that the function $ 
is discontinuous at p = R and [ > 0. The operator (g - V) 
transforms these discontinuities into &-like singularities that 
should not be possessed by the function f,. 

From Eq. (6)  we have 
l' 

(g . V)$ is equal to 

where n = r/r. 
The sum (g . V)$ + $,, where 

.D 

has no 6-function singularities and satisfies the condition for 
f2, but it does not vanish at r = R if s n > 0. By virtue of Eq. 
(6)  andthecondition $=Owehavefor r=  R ands.n>O 

As a result, 

where the function $,, which satisfies the homogeneous 
equation (4)  with the condition $, = yR (G  n)  at r = R 
and s n > 0, is determined by the equations 

The artifice used is effective for the following reasons. 
To solve Eqs. ( 3 )  it is in fact necessary to know only the non- 
potential part of the vector p. The potential part can be ex- 
cluded by renormalizing the pressure P, and therefore does 
not enter in the solution. Iff is replaced in the equation for p 
by $, a potential expression is obtained, for in this case, by 
virtue of the symmetry of the problem, the vector p is direct- 
ed everywhere along n and the coefficient is a certain func- 
tion of the distance r. Nor is the potential character dis- 
turbed by applying the operator (g . V) to the vector p. 
Recognizing also that by virtue of Eq. (2 )  we have 

a 
,yt=yR3Ge-UL J d g ~ ~ ~ . u  -(P'+G") -%. where the grad symbol means that the corresponding equa- 

- rn a g' lity is accurate up to a certain potential term, we have 

The discontinuity A$ of the function $ is defined at p = R d3k s 
p= -- 

and <>O as ( 2 r ~ ) ~  .t (~p,+$,+$~) +grad. 

a 
This yields, after simple transformations 

A$= ($'ul-$L") 1 a=a=-GyR3e-Ill 1 de'e-K'llG' (RZ+c") -", 
O ro t~=[Gn lQ( r ) ,  

from which we find that the singular part of the function where 

nhr)-'/' 
hl (r) = 

32 
(I-R~/T:)'~% 
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(nhr)-'/s 
h2 (r) = - S 32 

(l-R:/r:)'/s 

3n R yh 
h, (r) = ;-- - --- 32 r (nhr)"lz 

(l-~:/r~)~lz 

We proceed to solve the system of hydrodynamic equa- 
tions (3).  The first of these equations shows that the velocity 
of the liquid is given by v = curl A, where the pseudovector 
A is defined, by virtue of the symmetry of the problem, as 

A= [GVa] =a' [Gn] 

Here a is a certain scalar function of the distance r, so that 
div A = 0. The prime denotes differentiation with respect to 
r. Eliminating the pressure by taking the curl of the second 
equation of (3),  we obtain, taking (9)  into account, 

Integration of the last equation yields 

9 
a' ( r )  =c,ra+c,r+c, + - 

r  

where c , ,  c,, c,, c, are arbitrary constants. The velocity of the 
liquid is 

Assume that the solid in question is maintained at rest 
by an applied external force ( - F) . The velocity v(r)  of the 
liquid is then zero for all n not only at r = R, but also as 
r+  co . In this formulation of the problem, the sought quanti- 
ty is the force F exerted on the body by the liquid. From ( 1 1 ) 
we find that c ,  = c,  = 0, 

The force F is determined by the integral 

~ , = - $ l T , ~ r z ~  d s  

of the momentum-flux tensor I I i k  over a sphere of radius 
r +  co . In view of the rapid decrease of the function Q(r),  this 
tensor is determined at large distances r by the usual equa- 
tion 

Substituting here ( 14) and ( 15), we get 

The use of the explict expression given above for the function 
Q(r )  yields ultimately 

where I ,  0.049 and I ,  ~ 0 . 0 7  1 are numerical constants giv- 
en by 

1 

1  1 
1, = - , 2Jdxx-v1 ( i+x )  Ibn , 4 ( I - X ) ~ ~ ~  

The constant c,, as seen from ( 11 )-( 13), determines the 1 1 
asymptotic behavior of the velocity at sufficiently large r: + -1 z-% d x  (2-i-x) [ - - (I-x)' 

1 6n"' , 2 

v (r)  = c 3 [  (Gn) n+G]/r. (14) 4 + - ( 1 - x )  ( 1 - x 2 )  - j k  

From the second equation of the system ( 3 ) we obtain 9 

the pressure P (reckoned from its value at r = co ): 1 
+ - ( l + x ) ' ( l - x ) - ' h ] .  

P (r) =2qcsGn/r2. (15) 18 
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It is interesting that the sign of the force F acting on the 
splid depends on the ratio of the thermal conductivities of 
the solid and of the liquid. The force is directed along the 
heat flow (counter to the temperature gradient) at 
x,/x, < 8.0 and in the opposite direction for the inverse in- 
equality. 

A convenient method that might be used to observe, 
thermophoresis in a liquid was used in the experiments of 
Seidel et a1.I3 on the equilibrium of small hydrogen particles 
in a volume filled with helium in which a temperature gradi- 
ent was present. In the absence of thermophoresis, gravity 
places the hydrogen particles on a level where the densities 
of the hydrogen particles and of the helium are equal. The 
thermophoresis force F displaces the equilibrium position by 
an amount h given by (g  is the free-fall acceleration) 

4 F = -  ap 
3 

nRsg - Gh. 
d T 

The displacement h does not depend on the temperature gra- 
dient, and is inversely proportional to R 3'2 for the case of 
solid impurity particles. The function h (R)  determines 
therefore the difference between the equilibrium positi~ns of 
particles of radius R and relatively large particles. 

Seidel et a1.I3 investigated the equilibrium of liquid and 
solid hydrogen particles in helium. They reported observa- 
tion of the discussed effect for the liquid but not solid hydro- 
gen particles. The liquid particles are acted upon by a specif- 
ic thermophoresis mechanism due to the temperature 
dependence of the surface tension on the interface between 
the two liquids13; this tension leads to a force Fproportional 
to R ', meaning larger than R 3'2. Thermophoresis for liquid , 

particles is thus considerably stronger than for solid ones. 
The calculations for solid particles can be easily carried 

out using the equations above and the known14 data on the 
properties helium, and putting by way of estimate 
x ,  = w , A = (4/3 ) (v/pc). Under conditions close to those 

used by Seidel et al.,13 i.e., at 15 atm and 11 K, we obtain 
h =: 2 lo2 cm for R =: 1 pm. The displacement h is indepen- 
dent of the temperature gradient if the latter is small, and 
reaches quite reasonable values. The temperature gradient, 
however, influences substantially the time to establish equi- 
librium. The velocity of a solid particle acted upon by a force 
F a t  G=:K/cm, determined from the known Stokes equa- 
tion, is under these conditions F/6m7R =: lop5 cm/s. The 
relaxation time is thus of the order of 2 . lo3 s, i.e., quite 
appreciable but fully acceptable. It can therefore be assumed 
that a quantitative investigation of the discussed effect for 
solid is experimentally perfectly realistic. 

l a m  grateful to Yu. M. ~ l i m o v  who took part in the 
preliminary calculations, and to Ya. B. Zel'dovich and I. L. 
Landau for interest in the work and for a helpful discussion. 
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