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The stability of conoidal waves in media with positive dispersion is investigated. The stability of 
conoidal waves described by the Kadomtsev-Petviashvili equation with negative dispersion is 
rigorously proven, and the completeness of the corresponding set of eigenfunctions is established. 
For the anisotropic model [V. E. Zakharov and E. A. Kuznetsov, Sov. Phys. JETP 39,285 
( 1974). A. B. Mikha'ilovskii, S. V. Makurin, and A. I. Smolyakov, ibid. 62,928 ( 1985) 1 ,  it is 
shown that conoidal waves are unstable regardless of the sign of the dispersion. The instability 
limits and the maximum growth rates are determined in the extreme case of strongly and weakly 
linear waves. 

41. INTRODUCTION 

Wave propagation with account taken of nonlinearity 
and of weak dispersion is described for many media by uni- 
versal evolutional equations, the best known of which is that 
of Korteveg-de Vries ( KdV). A multidimensional general- 
ization of the KdV equation is that of Kadomtsev and Pet- 
viashvili ( KP ) ' 

a - (u,+~uu,+u,,) =-3B2A,u. 
ax.  (1.1) 

The function u (r, t) describes here the perturbation in the 
medium, say the velocity, A, = a2/ay2 + a2/a2,  and the 
coefficient p2 determines whether the medium as positive 
(0 (0) or negative (B > 0)  dispersion. Examples of waves 
with weak dispersion, which can be described by the KP 
equation, are ion-acoustic, magnetosonic, high-frequency 
drift waves in a plasma and gravitation-capillary waves on 
shallow water. 

In the case of substantially anisotropic media one en- 
counters another two-dimensional generalization of the 
KdV equations: 

~1+6uu.+u~~==uA~u.,  (1.2) 

obtained by Zakharov and KuznetsovZ to describe magne- 
tized ion sound (a < 0).  

The simplest and most thoroughly investigated one-di- 
mensional solutions of Eqs. ( 1.1 ) and ( 1.2) are solitary 
waves (solitons) and periodic ones (conoidal). These are 
the main subjects of the theory of nonlinear waves in disper- 
sive media. 

Soliton stability was investigated in detail in many stud- 
ies (see the review by Zakharov et and the references 
therein). It was established that in the KP model the solitons 
are stable in the case of a negative dispersion (P > 0)  and 
unstable for a positive (p < 0)  one. ' s 4  In the isotropic model 
(1.2), the soliton stability is also determined by the sign of 
the function u: in the physically important case of positive 
dispersion (u < 0 )  the solitons are thus ~ n s t a b l e . ~  

The stability of conoidal waves was first considered on 
the basis of the KdV equation by Witham,6 who obtained the 
frequencies of three stable acoustic modes. The stability of 
nonlinear waves, without assuming the perturbation to be 
small, was investigated (likewise for the KdV equation) by 
Kuznetsov and Mikhai l~v .~  In the one-dimensional case, co- 
noidal waves are stable also to finite perturbations. 

Perturbations with transverse modulation superim- 
posed on periodic waves (within the framework of the KP 
equation) were first considered by ~ n f e l d , ~ , ~  who obtained a 
dispersion equation cubic in frequency. It was concluded 
correctly in Refs. 8 and 9 that in the long-wave limit the 
conoidal waves are stable or unstable whenever the solitons 
are stable or unstable. 

The papers cited, except Refs. 4 and 7, were based on 
different perturbation-theory schemes (adiabtic approxima- 
tion7 or direct expansion in powers of small quasimoments 
and small transverse wave  number^'.^). For nonlinear equa- 
tions, however, which lend themselves to the Lax commuta- 
tion representation (particularly KdV and KP), the inverse 
scattering problem method (ISPM) lo leads to substantial 
progress in the investigation of the stability of the exact solu- 
tions to arbitrary small perturbations. This circumstance 
was used by Zakharov in Rev. 4. The connection between the 
inverse scattering problem and the problem of the stability of 
solutions in integrable models was subsequently analyzed 
and recast in a much simpler form by Kuznetsov, F8l'ko- 
vich, and the author." By way of example we determined the 
stability of conoidal waves in the KP model to perturbations 
with arbitrary quasimoments q and transverse wave 
numbers k. Exact expressions were obtained in Ref. 11 for 
the perturbations, and algebraic relations that describe im- 
plicitly the dispersion relation were obtained (see $2). It was 
established, in particular, that in the case of positive disper- 
sion the conoidal waves are unstable in the transverse wave- 
number interval k < kc,, and the threshold value of kc, was 
obtained. The frequencies of the constructed perturbations 
were found to be pure real for negative frequency dispersion. 

Our conclusion that nonlinear periodic waves are stable 
in media with negative dispersion (within the framework of 
the KP model) were criticized in a recent paper by Mikhail- 
ovskii, Makurin, and Smolyakov, " who considered also oth- 
er multidimensional generalizations of the KdV equation 
(the anisotropic, hybrid, and vector models). The question 
of the stability of conoidal waves was solved again in Ref. 12 
in the long-wave limit, in analogy with the procedure used in 
Refs. 8 and 9. Through failure to track the transition of this 
limit in the general expressions of Ref. 1 1 and through errors 
in the solution of the resultant dispersion equation (see $4). 
The authors of Ref. 12 "found" unstable perturbation of 
highly nonlinear waves in the KP model with negative dis- 
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persion. Similar errors are contained in the analysis of the 
hybrid and anisotropic ( 1.2) models. 

The connection between the stability of nonlinear 
waves and the sign of the dispersion of the medium is thus of 
principal importance. Returning to this question, we consid- 
er only the KP equation ( 1.1 ) and the anisotropic model 
( 1.2), which are the real cases of physical importance. 

We show initially in $3 that the general relations ($2) 
lead in the long-wave limit to Witham's results6 on the stabil- 
ity of one-dimensional perturbations. 

We analyze next in detail in $5 4 and 5 the stability of 
conoidal waves in the KP model. In the case of negative 
dispersion we prove rigorously the stability of these waves, 
establishing that the constructed perturbations with real fre- 
quencies constitute the complete set of eigenfunctions of the 
linearized KP equation. 

Knowledge of the complete set for any equation (say 
KdV or KP) permits construction of a rather compact per- 
turbation theory, compared with the standard scheme, for 
the equation with small increments. This is demonstrated in 
$6 where we consider the stability of conoidal waves in the 
anisotropic model ( 1.2). For perturbations with large-scale 
transverse corrugation (small wave numbers k)  the right- 
hand side of ( 1.2) can be regarded as a small addition to the 
KdV equation, and the solution of the linearized equation 
( 1.2) can be sought in the form of an expansion in the eigen- 
functions of the linearized KdV equation. The resultant dis- 
persion equation is analyzed in detail in limiting case of 
strongly nonlinear (close to solitons) and weakly linear 
(close to sine) waves. In the anisotropic mode (1.2), the 
conoidal waves are unstable at all signs of a .  We determine 
the instability boundaries and the maximum values of the 
growth rate. 

$2. GENERAL SOLUTIONS OF THE LINEARIZED KdV 
EQUATION 

The KdV equation and its non-one-dimensional gener- 
alizations ( 1.1 ) and ( 1.2) have solutions in the form of a 
plasma periodic stationary wave 

u, (x-Vt) ='/,V-2p (x- Vt+iof 1 o ,  a ' ) ,  (2.1) 
where 9 (zlw, w') is a Weirestrass elliptic function with real 
(2w) and imaginary (2iw') periods ( 9 (x + iw') is real and 
bounded for real x )  . 

The KP equation ( 1.1) linearized against the back- 
ground of the stationary solution (2.1 ) takes the form 

We have transformed to a reference frame that moves with 
the velocity V of the initial wave, using the substitution 
x - Vt-x. In view of the homogeneity in the transverse co- 
ordinates and time, the small perturbation 6u was chosen in 
standard form: 

6u(x, rL, t )  =u(x) exp( -iQt+ikr,) . (2.3) 
The eigenfunctions of the KP equation for small perturba- 
tions (2.2) were obtained in Ref. 11: 

d o(x+io'+a)o(x+io'+b) 
u(x)=- 

dx{ 02(x+io1)o(a) o (b) 

where u(z)  and ( ( z )  are Weierstress functions. The pertur- 
bation u(x)  have the Bloch form, u(x + 2o)/u(x) = e2iq", 
with quasimomentum 

The relation between the spectral parameters a and b is 

P (a)-p(b) =-iSk, (2.6) 
the oscillation frequency is expressed in their term as fol- 
lows: 

Q=-2i[p1(a)+p' (b) 1 .  (2.7) 

The velocity of (2.4)-(2.7) can be verified directly by sub- 
stituting the solutions (2.4) in Eq. (2.2). 

Note that the solution u(x)  (2.4) and the frequency fl 
(2.7) are doubly periodic functions of the parameters a and 
b, so that we can confine ourselves everywhere to considera- 
tion of the value of a and b inside the rectangle of the periods. 

The requirements that the solutions be bounded in 
space necessitates in turn that the quasimomentum be real, 
Im q = 0, or 

Re [ t ( a ) + t  (b)-b(o)(a+b)/ol=O. (2.8) 

The two complex parameters a and b are subject to real (2.8) 
and complex (2.6) constraints, which are equivalent to three 
real conditions. The parameters a and b vary therefore on the 
complex plane along those curves on which the frequency 
(2.7) is specified. 

Equations (2.5)-(2.7) specify thus in implicit form the 
dispersion relations-the dependences of the frequency fl on 
the quasimomentum q and on the transverse wave number k. 

$3. ONE-DIMENSIONAL PERTURBATIONS OF NONLINEAR 
WAVES 

For one-dimensional oscillations, k = 0, it follows from 
the spectral relation (2.6) that b = f a. If b = - a, the fre- 
quency fl and the quasimomentum q are zero, and the solu- 
tion u(x)  is a neutral stable shear mode: u(x) 
= 9 ' ( x  + i d )  -uOt(x) . The parameter a is arbitrary in 

this case. 
If b = a the frequency and quasimomentum are respec- 

tively 

Q=--4ip' (a) ,  (3.1) 

The parameter a must now be specified on the vertical lines 
Re a = nw, and only on these lines is the quasimomentum q 
(3.2) real. But the derivative q l ( a )  is pure imaginary on 
these lines, and it follows from (3.1 ) that the oscillation fre- 
quency fl is pure real. 

It must be emphasized that the quasimomentum q 
specified by Eq. (3.2) or (2.5) is defined in a system of irre- 
ducible Brillouin zones and can assume arbitrary real values. 
Thus, when the parameter a is varied along the vertical sides 
of a rectangle with corners at the points 
( - iw'), (w - iw' ), (a + i d ) ,  (iw') the quasimomentum 
q (3.2) runs through all values from - w to + W ,  while q' 
remains continuous when the parameter a changes jump- 
wise: 

At these points, the frequency fl (3.1) is also continuous 
(and equal to zero, since 9 ' ( a )  = 0 precisely at 
a = + iw', w + iw', and also at a = w, where q = 0. 
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The foregoing means that a plot of the function R (q) 
defined by Eqs. (3.1) and (3.2) is continuous, but has kinks 
at the points q = + n-/w (see Fig. 1). In this case 
R(0)  = R(  + T/W) = 0. It remains to note that at the kink 
points Iql is precisely equal to the reciprocal-lattice period. 
Three acoustic oscillation modes are produced therefore in 
the reduced Brillouin zones, and their frequencies can be 
easily obtained by expanding the relations (3.1) and (3.2) 
near the corresponding values of the parameter a. Let 

It follows then from (3.1) and (3.2) that 

where q(w,) = 0, q(w, ,  ) = f T / W ,  and Sq is the reduced 
quasimomentum: 

Eliminating Sa, from (3.4) and (3.5), we obtained the 
sought-for frequencies 

Here and elsewhere e, = 9 (w, ), = ( 9 (x + iw') ) 
= - c(w)/w. It is convenient to express finally the disper- 
sion relations in terms of Jacobi elliptic functions with pa- 
rameters connected with the values of e, and [(w) as fol- 
i o ~ ~ ~ ~ :  

vZ=e,-e3, sZv2=ez-e3, e,+b (o ) /o=v2h ,  

where s and s' are the moduli of the elliptic functions 
(s2 + st2 = I ) ,  A = E(s)/K(s) is the ratio of the complete 
elliptic integrals of the first and second kind; we have 
A=:l -s2/2-s4/16, at s < l  and / 2 ~ 2 [ l n ( 1 6 / s ' ~ ) ] - '  at 
s' 4 1. The derivatives P " (w, ) are 

p " ( a )  =2v4sr2, p (o+ i 0 ' )  = - ~ V ~ S ~ S ' ~ ,  p" ( i 0 ' )  =2v4s2. 

In the upshot we obtain the following expressions for the 
frequencies of the one-dimensional long-wave oscillations: 

which agree fully with the results of Refs. 6 and 12. 

FIG. 1. Frequency of one-dimensional oscillations vs the wave number 
(in the irreducible band model). 

54. LONG-WAVE OSCILLATIONS IN THE KP MODEL 

It follows from the spectral relation (2.6) that at small 
wave numbers k the parameter b is close to a or to - a  
(b  = * a at k = 0) .  The situation with a small quasimo- 
mentum (2.5) is covered by the second case. We put 

In the leading order we have [see (2.6) ] 

A=-ipk/2p1(ao). (4.1) 

The quasimomentum q (2.5) and the frequency R (2.7) are 
respectively 

q=-2i[p(ao)-?l~ ,  (4.2) 

Q=-4ip1' (ao )  A. (4.3) 

Eliminating A from relations (4.1 )-(4.3), we obtain the 
connection between the frequency R and the parameter a,: 

and an equation that defines a,: 

Bk 
f "  (a01 = - - 9 [b (a,) - PI. 

Squaring both halves of the last equation, we arrive at an 
equation cubic in 9 = 9 (a,) : 

Each of its three roots specifies, in accordance with Eq. 
(4.4), one of the frequencies of the small oscillations. 

We plot the right- and left-hand sides of (4.5) (Fig. 2)  
and take it into account that 9 (x  + iw') is contained in the 
interval (e,, e,). It bedomes obvious from Fig. 2 that in the 
case of negative dispersion (8 > 0)  Eq. (4.5) always has 
three real roots. The corresponding frequencies (4.4), are 
also real and attest to the stability of the long-wave perturba- 
tions. 

For positive dispersion (8 < 0) ,  when the branches of 
the parabola in Fig. 2 are directed downward, two roots of 
Eq. (4.5 ) acquire imaginary increments if the ratio ( k  /q)2 
exceeds the critical value (see below). The frequencies R 
(4.4) also becomes complex (instability of periodic wave in 
the case of positive dispersion). 

We show now that the system (4.4) and (4.5) is equiva- 
lent to the dispersion equation obtained in Ref. 12. It is con- 
venient to introduce in place of 9 (a,) the quantity x given 
by P (a,) - = v2x. Equation (4.5) takes then the form 

FIG. 2. Graphic solution of the dispersion equation (4.5) for small oscil- 
lations in the KP model. 
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(x-h) ( x - h + ~ ' ~ )  (x i -  1-h) =rx2 (4.6) 

or x3 + c2x2 + clx + c, = 0. We introduced here the nota- 
tion r = (/?k /2qv12, and the coefficients ci are given respec- 
tively by 

~ o = h ( h - s ' ~ )  (1-h),0,  c,=3A2-W ( l+s z )+s '2c0 ,  

c,=F2-r, c",=1-3A+~'~. (4.7) 

The frequency SZ (4.4) takes the form 

Q = ~ ~ Y ~ ( ~ x + ~ ~ ~ + c , / z ) .  (4.8) 

To obtain a closed equation for the frequency, we must solve 
Eq. (4.8) which is quadratic in x, substitute the expression 
for x in (4.6), and eliminate the irrationalities. We obtain 
the equation 

coya+1/2(3coc2+c,")2+c,?c,y+3/,(3c,-c,cz)e+*/1c13=o, 

where y = fi/8qv2 - Z2. Apart from the notation, Eq. (4.9) 
coincides, coefficient by coefficient, with that obtained in 
Ref. 12 for the KP model. The generalized relations obtained 
by us in Ref. 11 duplicate thus in the long-wave limit the 
dispersion equations obtained in Refs. 8 and 12 by perturba- 
tion theory. 

In the case of negative dispersion, all three roots of 
(4.9) are real, refuting the erroneous statement in Ref. 12. 
Recall that all the roots of a cubic equation with real coeffi- 
cients, reduced to the standard form y3 + py + q = 0, are 
real if its discriminant (q/2) + (p/3) is negative. The dis- 
criminant of (4.6) or (4.5) is negative, as follows from the 
graphic solution (Fig. 2). On the other hand, the discrimi- 
nant of (4.9) can be represented as a product of two factors, 
one of which is the discriminant (4.6) and the other is the 
square of a real quantity. 

We consider next the perturbations of strongly linear 
waves, sI2<il < 1. We note here that in Ref. 12 in the limit 
sI2< 1 the equation analogous to (4.9) retains the terms - (sf2/il),, but leaves out the larger terms -A, and this is 
the cause of the erroneous conclusions. We start out from the 
system (4.6), (4.8), which is easier to analyze than Eq. 
(4.9). If the parameter r is not too small, we can neglect in 
(4.6) the quantity sf2 compared with A. The roots of (4.6) 
are then quantities of first or zeroth order of smallness in R 
(if r is not close to unity, see below). In the leading orders we 
obtain 

~ ~ , ~ = h ( l * r ' " ) - ' ,  x,=r-1. (4.10) 

The values of the frequencies, in the initial variables, are 

~ , ? ~ = 1 6 ! 3 ~ k ~ v ~ ,  SZ3=-4qv2+3~Zk2/q. (4.1 1) 
It should be noted that the frequencies fl,,, coincide with the 
soliton oscillation frequencies, and the frequency 0, is equal. 
to the natural frequency for the linear KP equation 
( u ,  = 0) .  This is easily understood by recalling that the co- 
noidal wave (2.1 ) can be represented as a sum of soliton 
solutions: 

At sf2& 1 the real period of the wave 2w (the distance 
between the soliton crests) is much larger than the imagi- 
nary one 2w' (the characteristic scale of variation of the solu- 
tion near the crests), meaning that the solitons do not over- 

lap. The perturbations with frequencies n,,, are then 
localized in the vicinities of the soliton crests, while those 
with frequencies n3 are localized in the extended regions of 
the constant background. 

Unlike the corresponding "one-dimensional" expres- 
sions (3.7), Eqs. (4.11) take into account the transverse 
dispersion of the oscillations. Comparison of the expressions 
for the frequencies n,,, in (4.22) and (3.7) shows that for 
very small wave numbers (when r -  (sI2/A ) 2, account must 
be taken of the terms cc st2 in Eq. (4.5) whose roots must be 
sought in this case in the form x = A  + Bs". Putting 
r = C(S'~/A)~,  we obtain 2B = - 1 f ( 1 + 4C) ' I 2 .  Equa- 
tion (4.8) yields now the following frequency values: 

Q+,2'== ( ~ Q V ~ S ' ~ / A ) ~ + ~ ~ ~ ~ ~ ~ V ~  (4.12) 
(expression (4.1 1 ) for the frequency S Z ,  remains in force). 
Expression (4.12) shows the manner in which a transition 
takes place from the one-dimensional oscillations (3.7) to 
the transverse ones (4.11 ) with increase of k. For a medium 
with positive dispersion (/? < 0) we get from (4.12) the 
threshold value 

I p I Y k / q ) , ~ = v Y s ' 7 W ,  
above which the conoidal waves become unstable if st2 4 1 
(the same value was obtained in Ref. 12). 

Finally, we obtain the frequency separation near the 
degeneracy point. It follows from Eqs. (4.10) for the roots of 
(4.5) that they no longer hold if the parameter r is close to 
unity, r - 1 -A 'I2. We emphasize that this is possible only 
for a medium with negative dispersion,P > 0. The two roots 
are now of order A ' I2  (the third root x = R ( 1 + r1I2) -' and 
the frequency R = - 8 9 2  remain the same as before). Put- 
ting r - 1 = 2CA 'I2 and substituting x = Ail ''' in (4.5) we 
obtain A = C +_ ( C 2  + 2)It2. Of course, the roots remain 
real in this case, too: 

Q=4gv2 {2r* [ (r -1)  2+8h]'"). 

Conoidal waves in the KP model with negative disper- 
sion are thus stable to long-wave perturbations. We shall 
extend this statement in $5 to include oscillations with arbi- 
trary quasimomenta and wave numbers. 

$5. ARBITRARILY SMALL PERTURBATIONS IN THE KP 
MODEL 

We consider in this section only media with negative 
disperison, /? > 0, and put henceforth P = 1. We ascertain 
first, for small k, the course of curves a and b on which the 
frequency is specified. As already noted, Eq. (2.6) has at 
small k two types of solution ( ( A  ( < (ao( ) : 

with A given by Eq. (4.1 ) for both cases. For the first solu- 
tion, the quasimomentum q [Eq. (2.5)] has the same form 
(3.2) as in the one-dimensional case (with a replaced by a,). 
It is real if a,  lies on the vertical segments: Re a, = 0, + w. 
The derivative P r ( a o )  is then pure imaginary and, as fol- 
lows from (4.1 ), A is real. The parameter a, varies therefore 
along a curve close to the indicated vertical segments. 

For the second solutions, as seen from Fig. 2, the quan- 
tities 9 (a , )  [the roots of (4.5)] belong to the interval (el, 
+ co ) or to the segment (el, e,)  . This means that the param- 
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FIG. 3. Level lines Im 9 (a)  = - k /2 on which the frequency R (5.4) is 
specified. Curves 1,2, 3: k,  < k, < k,. 

eter a, lies now on one of the horizontal segments 
Ima, = 0, f w', so that A (4.1) is pure imaginary, and the 
curve a passes near these segments (Fig. 3) 

Note that in the case of positive dispersion the curves a 
and b have a qualitatively different behavior; this case was 
studied in detail in Ref. 11. 

The expansion (4.1 ) is no longer valid near the corners 
of the rectangles made up the indicated segments, where 
P 1 ( a 0 )  = 0, and the next terms of the expansion must be 
taken into account. Putting a = w, + Sa, b = w, + Sb, we 
find from (2.6) and (2.8) that individual sections of the 
curve a are joined near the corners by smooth transitions 
(Fig. 3): 

~m (6a)Re (6a) =-kip" ( o l ) .  

We consider finally the curve a near zero. Recognizing that 
9' ( a )  =:ap2 and f ( a )  z a p '  for small a, we find from (2.6) 
and (2.8) that the "horizontal" and "vertical" sections of 
curve a reach zero along two branches: 

Im a= k (Re a)  '14, Re a= k (Im a)  '14. 
It remains to note that in all cases the parameter b is either 
equal to ( - a* ) or differs from it by a period). In view of the 
periodic dependences of the perturbations (2.4) and of the 
frequency (2.7) on a and b, we can put everywhere 

b=-a', (5.1) 

and then the entire a curve is given by a single formula (Fig. 
3) 

Im @(a)=-k /2 .  (5.2) 

The quasimomentum (2.5) is then automatically real: 

q=-2 Im[P(a) - b ( o ) a l o l ,  (5.3) 
as are also the eigenfrequencies 

Q=4 Im p' (a)  (5.4) 

[cf. (3. I ) ,  (3.2) for the one-dimensional case.] 
By virtue of the continuous dependence on the trans- 

verse wave number, it is natural to assume that relations 
(5.1 )-(5.4) remain valid also for arbitrary k. We shall make 
this statement rigorous by showing that perturbation of type 
(2.4) constitute a complete set for the indicated choice of the 
parameters a and b. 

In investigations of orthogonality and completeness 
properties it is convenient to deal not with the functions 
U ( X )  (2.4) themselves, but their antiderivatives: 

o  (xi-  i o f+a)  a (x i -  iof-a')  
cp, (X I  = 

o"x+ior) a (a )  a (a') 

x exp 1- (x+ i o f )  ( f  ( a )  - f  (a') ) I ,  

which satisfy the equation 

The conjugate equation differs from (5.6) only in the sign of 
R. The eigenfunctions IC, of the conjugate problem are there- 
fore obtained from (5.5) by reversing the sign of 
a:$,(x) = p - , ( x ) .  

Note that by virtue of the homogeneity in transverse 
directions, the planar Fourier harmonics exp(ik-r, ) form a 
complete set with respect to the transverse coordinates, so 
that it suffices to consider the functions $ and p for a fixed 
value of k. 

In accordance with the form of Eq. (5.6) and its conju- 
gate, it is natural to specify the scalar product of the func- 
tions of the direct and conjugate spaces as follows: 

+- 

Of course, any two Bloch functions with different reduced 
quasimomenta are orthogonal. Also orthogonal are the ei- 
genfunctions 11 and q, corresponding to different values of R. 
Thus, the eigenfunctions $,. (x),q,, (x)  are not orthogonal 
only if the following conditions are simultaneously met: 

(the presence of a part with an arbitrary integer 1 in the right- 
hand side of the last equality is due to the fact that the quasi- 
momenta q are specified in an irreduced-band scheme). It 
can be shown that the conditions (5.8) are compatible only 
at I = 0, i.e., when the nonreduced quasimomenta or, equiv- 
alently, the parameters a and a' coincide. The final form of 
the orthogonality relation is 

(Here and elsewhere, angle brackets denote averaging over 
the period 2w). Using expression (5.5) for the functions p, 
and the addition formulas for elliptic functions, we get 

~ ( 4 )  =Im {@'(a ' )  [ ~ ( a )  -3). (5.10) 

If the functions p, (5.5) form a complete set, the com- 
pleteness condition should, in accordance with the defini- 
tion (5.7) of the scalar product and with the orthogonality 
relation (5.9), should be of the form 

(the integral is taken in the sense of principal value). 
We prove this relation by direct calculation of the inte- 

gral I which it contains. We change in this integral to inte- 
gration along the contour (5.2) in the complex a plane. 
From expression (5.3) for the quasimomentum it follows 
that 
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dq=-i(p (a) - 3 d a + i ( p  (ag)-F)du', 

and the differentials da and da* are connected in turn on the 
curve (5.2) by the relation 

p' (a) da=pl (a*) da', 
from which, taking (5.10) into accougt, we get 

dq/2p (q) =-dalp' (-a'). ' 

Next, we gather into separate groups in the product p -, (x') 
p, ( x )  the factors that depend on a and a*. The sought inte- 
gral takes ultimately the form 

where 

8 $ (x+lof +a) 
u,-- 

ax 9 (XI a) 7 cp ( ~ 9  a) -- as (x+taf) d (a) 
exp 1-2x6 (a) I .  

(6.2) 
Their (non-reduced) quasimomentum q and frequency 0 
are given by Eqs. (3.1 ) and (3.2). The eigenfunctions u of 
the conjugate problem, just as in $5,  are given by the condi- 
tion ii = p(x,  - a ) .  It is now natural to define the scalar 
product as Jiiudx, so that the orthogonality condition takes 
the form 

is a doubly periodic function of its argument a with an essen- 
tial singularity at zero; the quantities x and x' are now pa- 
rameters, Ax = x - x'; the integration along the contour C 
(5.2) in the direction marked by the arrow in Fig. 3; at zero, 
the integral is understood in the sense of the principal value. 

The purpose of calculating the integral (5.12) is to find 
a closed (i.e., dependent only on a )  differential form F(a)da 
that coincides on the integration contour (5.2) with the dif- 
ferential form in (5.12) (which depends on both a and a*), 
and use next the methods of the theory of functions of com- 
plex variable. This program can be implemented and it is 
found that I = ~ [ s i g n ( x  - x') ]/2. Calculation of the com- 
pleteness integral (5.12), which is most complicated techni- 
cally, is relegated to the Appendix. The subsequent differen- 
tiation (8 /ax - 8 /ax l ) I  yields the desired completeness 
relation ( 5.1 1 ) . 

Thus, solutions (2.4) with spectral parameters of the 
form (5.1 ) and (5.2) hnd with real frequencies (5.4) copsti- 
tute all the eigenfunction of Eq. (2.2) for the$erturbations. 
This disposes finally of the question of instability of conoidal 
waves in the KP model with negative dispersion. 

86. STABILITY OF CONOIDAL WAVES IN THE ANISOTROPIC 
MODEL 
6.1. Dlsperslon equatlon 

We consider the anisotropic-model equation linearized 
against the background of the stationary solution u, (2.1 ) : 

-iQu+[ (6uo-V) u+u,],=-ak2u,. (6.1) 
The perturbations are chosen here in the same form (2.3) as 
in $2. 

Equation ( 1.2) does not have a Lax commutation rep- 
resentation, so that the method used by us in Ref. 11 for the 
KP equation cannot yield solutions of the linearized equa- 
tion (6. l ). We confine ourselves therefore to long-wave os- 
cillations. We regard, for small k, the right-hand side of 
(6.1 ) as a perturbation and seek the solution in the form of 
an expansion in the eigenfunctions of the linearized KdV 
equation. 

As indicated in $3, in the one-dimensional case (k = 0)  
the eigenfunctions are determined by Eq. (2.4) under the 
condition b = a: 

The eigenfunctions (6.2) form a complete set, with the com- 
pleteness condition in fact a particular case of the one ob- 
tained in 45 for the KP  equation. 

Since Eq. (6.1 ) has a Bloch-type solution, it follows 
that for a fixed reduced quasimomentum q the solution 
should be a discrete sum u = X c,u,, of functions (6.2) 
whose quasimomenta q differ from q by the reciprocal lattice 
vector: q, = q + ln-/w. Substituting this sum in (6.1 ) and 
using the orthogonality relation (6.3) we obtain an infinite 
system of linear equations for the amplitudes c,: 

In the general situation, when the quantities p (a ,  ) (6.3) are 
not small, only one of the coefficients c, differs from zero in 
the zeroth approximation, i.e., the solution u(x) is simply 
one of the functions (6.2). It can be shown that in this case 
the correction to the frequency (3.1) is real. 

Of greater interest is the degenerate situation in the 
presence of small p(a ,  ) (6.3) (.P1(a, ) - k).  The derivative 
q 1 ( a )  vanishesat threenon-equivalent pointsa = w ,  (3.3). 
At the same points, according to (3.2)-(3.5), the reduced 
quasimomentum of the functions q (6.2) also vanishes. De- 
generacy sets is therefore at small values q- k (here and 
elsewhere q denotes the reduced quasimomentum). As not- 
ed in $3, at small q there are three acoustic modes corre- 
sponding to the values of the parameter a near the three 
degeneracy points w,. 

For small q, the system (6.4) reduces thus in the princi- 
pal order to three equations. In the left hand sides of these 
equations, the eigenfrequency a, the characteristic frequen- 
cies a, (3.7), and the normalization parametersp, are quan- 
tities of first order of smallness in q, while the quantities p, 
(6.3) are easily expressed in terms of q with the aid of Eqs. 
( 3 . 3 ) - ( 3 . 5 ) : ~ ~  = t i qPN(w, ) .  The right-hand sides of the 
system (6.4) however, contain already the small factor k ', so 
that it suffices to calculate the mean values ( i i ,~ , , ' )  in the 
zeroth approximation, putting q = 0 (or, equivalently, 
a, = w ,  ). These mean values turn out then to be the same for 
a l l l=  1, 2, 3: 

<Elul,'>=-([Ip'(x+io')]z~=(~'2). 

Equations (6.4) for the three amplitudes c, take ultimately 
the form 
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Adding them and cancelling out the quantity Z c, f.0, we 
find the following dispersion equation, which is equivalent 
to the one obtained in Ref. 12 for the anisotropic model: 

We have used here expressions ( 3.6) and (3.7) for the quan- 
tities Q, and 9 " (a, ) and introduced in place of the frequen- 
cy R the variable y = Q/4q?. Leaving out the general 
expression, we present only the limiting values of ( P 1 2 ) ,  viz, 
( g t 2 )  =:v6s4/2,fors2< 1 and ( 9 " )  =: (8/15)v6A forst2< 1. 

It is obvious from the plot of the function F(y) (Fig. 4) 
that in the case of positive disperison, a = - 1, Eq. (6.5) 
has complex roots if the ratio (k /q)2 exceeds a certain criti- 
cal value xi (s). In the case u = 1 the oblique perturbations 
are unstable in a certain angle interval x: < (k  /q)' < x:. 
The critical values x,, x,, x, are easiest to obtain by deter- 
mining the extrema of the function F(y) . Omitting the calcu- 
lations, we present below the values of x, in the limiting 
cases of strongly and weakly nonlinear waves. 

We present one more dispersion relation for purely 
transverse perturbations, q = 0, which can be easily ob- 
tained from (6.5) by expanding the right-hand side for large 
y =  Q/4q? (1~12-1): 

The values of c, and c, are given by expressions (4.7), and 
their ratio c,/c, is always negative, since', 
( -c ,)  = 3 ( [ 9 ( x + i a 1 )  - Pl2)/2v4. 

The stability of transverse perturbations of conoidal 
waves (just as that of solitons) is thus determined in the 
anisotropic model by the sign of the dispersion u . ~ . ' ~  

6.2 Oblique perturbations of strongly nonlinear waves 
(~'~+h+l) 

The critical values of x, are 

For positive dispersion, u < 0, almost all the oblique pertur- 
bations are unstable, except the almost-longitudinal ones 
( ( k  /q12 < X: < 1 ). For negative perturbations, on the con- 
trary, instability sets in only in a very narrow angle interval 
near (k/q)2 = 15/4. 

FIG. 4. Plot of the right-hand side F ( y )  of the dispersion equation (6.5)  
for small oscillations in the anisotropic model ni = 4 q g y ,  are the fre- 
quencies ( 3 . 7 )  of the one-dimensional oscillations. 

We obtain now the roots of Eq. (6.5) for almost longitu- 
dinal waves ( k  /q12 -x: (6.6). The rootsyare of the order of 
st2/A, and it follows directly from (6.5) that 

52t2= (4qv2)  '{ (S '~ /A)  2+40k2/15qZ) (6.7) 
in accordance with the one-dimensional expressions (3.7) 
and the critical value of x: (6.6) (at a = - 1). The third 
frequency is R, = - 4qy2. 

If, however, (k /q)2%x: and is of zeroth order, Eq. 
( 6.5 ) becomes 

1 5 0  2 1 . 1  

If two roots are given as before by expression (6.7), in which 
the first term can be neglected; this coincides with the disper- 
sion relation for soliton  perturbation^.^ The third root must 
be sought in the form y + 1 = AA, hence 

Q,=4qv2 { - 1 + 2 / , s ~ k 2 h  ( q 2 - 4 / 1 5 ~ k 2 )  - ' ) .  (6.9) 

Expressions (6.7) and (6.9) are valid everywhere ex- 
cept in a narrow degeneracy region near u(k/q)' = 15/4 
(6.6) (negative dispersion, u = l ) ,  where the frequency 0, 
is close to one of the frequencies 0,,, . We put in this case (q/ 
k)2  = (4/15)(1 + 2CA 'I2) .  The roots of Eq. (6.8) should 
be sought in the form y = - 1 + (1/2)BA 'I2. I t  follows 
then from (6.8), in the leading order, that 

B+I/B=BC or B = C f  (C2-I) '" .  

Instability takes place at C < 1. The maximum of the 
growth rate is reached at C = O((k /qI2 = 4/15) and is 
equal to 

I',,,=2qv2h'" 
in contrast to the result of Ref. 12. 

6.3 Oblique perturbations of weakly nonlinear waves, sZ+ 1 

The critical values of x, are in this case 

For positive dispersion (a = - 1) only the almost trans- 
verse perturbations ( (k  /q) > x: ) are unstable, and for neg- 
ative dispersion (a = 1 ) the instability region extends from 
almost transverse perturbations ( k  /q) < x: to values ( k  / 
q12 = 3 (cf. the conclusions for perturbations of strongly 
nonlinear waves). Equation (6.5) is written, with the re- 
quired accuracy, in the form 

(6.11) 
In the case (k/q12- 1, its roots are close to y, = 1 or to 
y,,, = - 2. With the corrections taken into account, we ob- 
tain the following expressions for the frequencies: 

The last expression, in particular, specifies the stability 
boundary x i  = 3 (6.10) for negative dispersion (a = I ) .  
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The expressions obtained are not valid for almost-transverse 
waves, when ( k / q ) , - ~ - ~ .  In this case the quantities y - 1 
and y + 2 are not small and Eq. (6.1 1 ) with s2 ( 1 is trans- 
formed into 

where we have introduced the symbol r = ( ak  's4/16q2) - 1. 
The extrema of the right-hand side of (6.12) indeed deter- 
mine the critical values x: and x: (6.10). 

There are no more compact expressions for the solu- 
tions of (6.13) than the general Cardano equations for the 
roots of a cubic equation. It is possible, however, to obtain 
the exact maximum of the instability growth rate (at a = 1 ). 
Let y, ( r )  and y,(r) be the real and imaginary parts of the 
root of (6.13), y = y, + iy,. Let furthermore y,(r) be a max- 
imum at the point ro, y; (r,) = 0. The derivative y1(r0) 
= y; (ro) is then pure real. Differentiating (6.13) with re- 

spect to r we get y' = (y + 5)/(y2 + 2y - r ) .  The condition 
Im yl(ro) = 0 leads then to the relation 

ylZ+ y,2+10yl+ro+10=0. 
Two more real relations are obtained by writing down sepa- 
rately the imaginary and real parts of the initial equation 
(6.13) 

3yiZ-y,2+6yl-3ro=0, 

Expressing in the last equation the values of y: and ro in 
terms of y, with the aid of the first two relations, we obtain 
for y, the cubic equation 

y13+3yi2-9y,-i7/2=0. 
All its roots are real, but only one of them, y, = - 4.56, 
yields the necessary (positive) values for yi and ro. The in- 
stability growth rate r has thus a maximum (different from 
the one obtained in Ref. 12) 

rm,/4qv2=2.16,  
which is reached for almost transverse perturbations s: (k  / 
q ) 2  = 162/s4. We emphasize that purely transverse pertur- 
bations are stable (a = 1 ) and differ from obtained ones by 
the critical value of 7 ~ :  (6.13). 

We have proved that conoidal waves are always stable 
in the KP model with negative dispersion. Thus, the stability 
of periodic nonlinear waves described by the KP equation 
( 1.1 ) (just as the stability of solitons) is uniquely deter- 
mined by the sign of the dispersion of the medium. In the 
isotropic model ( 1.2), on the contrary, unstable oblique per- 
turbations exist for any sign of the dispersion. 

In conclusion, the author thanks A. E. Kuznetsov and 
B. E. Fal'kovich for numerous helpful discussions. 

APPENDIX 

Calculation of the completeness integral (5.12) 

We return in the integral (5.12) to the notation 
- a* = b: 

but regard now b to be a function of a, implicitly given by Eq. 
(2.6). 

We must separate in the function b ( a )  a branch that 
assumes on the integration contour (5.2) (Im 9 (a )  
= - k/2)  the necessary value b = -a* (recall that the 
roots of (2.6) on the line of Eq. (5.2) are b = + a*). 

The function b ( a )  (2.6) has branch cuts at points a for 
which 

[in which case 9 (b)  = e, or 9' (6)  = 01. Each rectangle of 
the periods on the a plane has, with allowance for the parity 
of the 9'-function, six branch points. All lie on the level line 
I m p  ( a )  = - k. We draw the necessary cuts along this line, 
as shown in Fig. 5 (they are the originals of the transforms of 
the standard cuts on the w = %!? (b)  plane), viz., along the 
real axis from ( - a, ) e, and from e2 to e,. 

The complete Riemann surface on which the function 

is obtained by adding the second sheet and superimposing 
the opposite edges of the cuts of the different sheets. The 
function F(a  , ) is unique and doubly periodic on the con- 
structed two-sheet surface. It follows also from the form of 
f (a )  (5.13) that F (a )  is analytic everywhere except at the 
two points corresponding to the value a = 0 (we call them 0, 
and 0,). The point 0 ,  (0,) lies on the left (right) edge of the 
central cut of the upper sheet. At small values of a, as follows 
from (2.6), b takes on values close to + a. We therefore fix 
finally the function f (a )  (A.2), assuming that b z a  
( b z  - a )  in the vicinity of the point 0, (0,). The function 

f (a )  has then at the point 0 ,  an essential singularity of the 
form exp ( - 2Ax/a), and at the point 0, a simple pole with 
a residue equal to - i/2 (see (A . l )  and (5.13)). 

The level lines (5.1 ) can be drawn on both sheets of the 
Riemann surface. The integration paths in (A. 1 ) must be 
chosen to be those sections of these curves, on which b takes 
on the necessary value - a* out of the two possible ( + a*). 
We agree to designate as the right-hand (left-hand) loop 
that part of the curve (5.2) which lies in the first (third) 
quadrant of the rectangle of the periods. We consider on the 

FIG. 5. Branch cuts and integration path (5.2) for the completeness inte- 
gral (A. 1 ) .  Solid and dashed lines-parts of path on the upper and lower 
sheets of the Riemann surface. 
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FIG. 6. Integration path shifted to the edges of the cuts, raised to the 
upper sheet, and closed near zero by small semicircles. 

upper sheet a small section of the right-hand loop in the 
vicinity of the point 0, (it bears against the imaginary axis). 
On the one hand, for a complex number near the imaginary 
axis we have - a* --,a, and on the other hand we have b z a  
near the point 0,. The necessary equality b = - a* is there- 
fore satisfied on the indicated section, meaning also along 
the entire right-hand loop on the upper sheet (the solid line 
in Fig. 5). It can be shown in exactly the same manner that 
the left-hand loop of the curve (5.2) should lie on the lower 
sheet (dashed line in Fig. 5).  The integral of the closed dif- 
ferential form F(a)da (A.2) coincides then with the initial 
( 5.12). We emphasize that since the integral is taken in the 
sense of the principal value, the integration path is not closed 
and has free ends near zero. 

We now deform the integration path in such a way that 
it passes along the edges of the cuts. The difference between 
the integrals along the new contour and the initial ones is 
- ( d 2 ) r e s  F ( a )  = - lr/4 on the upper sheet and + 7r/4 

on the lower. These increments cancel each other. 
Next, in view of the identity of the edges of the cuts, we 

can move the entire integration path to one of the sheets, say 

the upper, and close it by two small semicircles, as shown in 
Fig. 6. The left-hand semicircle bypasses (on the upper 
sheet) the essential singular point O,, and the integral along 
it tends to zero only if Ax < 0 (the condition for the damping 
of exp [ - 2Axc(a) ] at Re a < 0).  The integral along the 
right-hand semicircle, which bypasses a simple pole, is equal 
to 7/2. We add also the integrations over the boundaries of 
the rectangle of the periods (Fig. 6). We obtain in sum an 
integral along a closed contour that encloses a region where 
the function ~ ( a )  is analytic; the integral is therefore zero. 
At the same time, the integrals over the opposite sides of the 
rectangles cancel each other by virtue of the periodicity of 
F (a ) .  

The sought integral is thus equal to - a/2 at Ax < 0. 
Similarly, transferring the integration path to the lower 
sheet, we can find the value of the integral at Ax > 0, namely 
I = a/2. In combined notation we obtain for the complete- 
ness integral (5.12) the expression 
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