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We investigate the scattering of nondispersive (acoustic) waves in nonlinear media with 
fluctuating parameters. Using the asymptotic method of multiple scales, we derive the evolution 
equation which governs the propagation of coherent pulses or periodic waves. Previously, 
problems of this type were solved using the so-called mean-field method, which was not fully 
justified mathematically. In the present paper, it is shown that this method is actually incorrect, 
and only gives the proper results for linear problems. 

1. INTRODUCTION 

The study of the scattering of nondispersive waves in 
fluctuating media is one of the key problems in the general 
theory of waves. This problem arises in acous t i~ s '~~  and op- 
t i c ~ , ' . ~  and it describes an important hydrodynamic problem 
dealing with the propagation of long surface waves over an 
uneven sea floor,4 as well as a number of problems in seismo- 
logy5 and plasma physics (see Ref. 6,  for example). In short, 
whenever a uniform medium is described by a classical linear 
wave equation, the problem of wave evolution in the pres- 
ence of random fluctuations of the parameters of the medi- 
um arises. An early (albeit incomplete and nonrigorous) 
solution of this problem was obtained by Kaner,' while the 
full justification and construction of a rigorous asymptotic 
theory, based on a diagrammatic method, was carried out in 
the classic works of Bouret8 and Tatar~ki'i,',~ Making use of 
their results, many authors have fruitfully applied the ap- 
proach of Kaner (now known as the mean-field method) 
with complete rigor to solve various wave-scattering prob- 
lems in fluctuating media (see the reviews in Refs. 9 and 10). 

There is a substantial amount of interest, in addition, in 
generalizing the existing results to nonlinear fluctuating me- 
dia (all of the foregoing remarks applied to linear waves). 
Beginning in 197 1, a large number of papers started appear- 
ing in which the mean-field method was extended to the non- 
linear case. Thus, nonlinear acoustic waves in a medium 
with fluctuations in the speed of sound were examined in 
Refs. 11-13, and in Refs. 14 and 15, so were finite-amplitude 
long surface waves in tanks having an uneven bottom. The 
nonlinear mean-field method has been used in the context of 
 plasma^,^ and in Ref. 16 it was used to investigate weakly 
dispersive waves in an arbitrary fluctuating slightly nonlin- 
ear medium. Highly dispersive waves have been included in 
the general framework in Ref. 17, and furthermore the re- 
sults obtained with the linear mean field method have been 
used to study the nonlinear attenuation of  soliton^.'^^^^ They 
have also appeared in experimental work (see Ref. 20, for 
example), in which the measured mean nonlinear fields have 
been compared with theoretical predictions. 

Note, however, that the rigorous methods of Refs. 1 and 
8 have not been extended to the nonlinear case, and further 
justification is need if one is to use the partially flawed mean- 
field method. Pelinovskii and SaichevZ1 have presented ex- 
amples of nonlinear systems with fluctuating parameters for 
which this method gives clearly incorrect results. Following 
the appearance of that paper, the systems discussed in the 

literature were basically those which are almost integrable 
by the inverse scattering method (see Refs. 22 and 23, for 
example), and a number of problems were solved, moreover, 
in the Born appr~ximat ion .~~. '~  Unfortunately, the first of 
these approaches assumes integrability of the unperturbed 
(homogeneous) problem, which is an extremely rare occur- 
rence, and the Born approximation is restricted to very short 
times. 

In the present paper, using a nonlinear wave equation as 
an example, we demonstrate why the mean field method is 
incorrect. We find that the small corrections (i.e., those pro- 
portional to a small parameter) which are discarded contain 
divergent integrals, which negates the method's validity. 
The physical reason for these divergences lies in the un- 
bounded growth of the root-mean-square phase fluctuations 
("locations") of the waves, which is due in turn to fluctu- 
ations in the speed of sound in an inhomogeneous medium. 
We propose an approximate method based on the asymptoti- 
cally rigorous multiscale expansion pr~cedure, '~ which 
eliminates phase fluctuations of waves by an appropriate co- 
ordinate transformation. Using the method we have devel- 
oped, we derive a simplified equation which contains only 
deterministic quantities, and we investigate its elementary 
properties. " 

2. THE MEAN-FIELD METHOD 

We consider the simplest model of a weakly nonlinear, 
nondispersive one-dimensional medium with small fluctu- 
ations in the wave propagation velocity (speed of sound): 

utt- [ I + e a  (x)] 2 ~ , x = e 2  (u2),. (1)  

Here 0 <&4 1, and a ( x )  is a zero-mean uniform random 
function (the mean dimensionless speed of sound equals uni- 
ty). According to the standard approach taken by the mean- 
field method (see Ref. 14, for example), the unknown func- 
tion u is represented as a sum of coherent and fluctuating 
components: 

Substituting (2)  and ( 1 ) and averaging over an ensemble of 
realizations, we have 

- - 
k t , - i i X x = e 2 [ 2 a u ~  +a2iix,+ ( ~ ~ ) ~ ~ ] + e ~ t l Z U :  +e4 (U'2)=. 

Subtracting (3a) from ( 1 ), we obtain 
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Keeping only the first nontrivial terms in ( 3 ) ,  we obtain a 
system of equations for u and u'. -- 

Eli-'ii,=ea[2auL+a'ii,+ (fi",], (4a) 

In order to obtain a closed-form equation for the deter- 
ministic function ii, we must express u' in the form 
u' = u' [ a (x ) ,  E(x,t)] from (4b), and substitute into (4a). 
This can be accomplished using a retarded Green's function, 
which is equivalent to setting the initial conditions for Eq. 
(4b) at t+ - co. 

The Green's function for the operator 8 :, - d :. is 

where H(x )  is the Heaviside step function (H(x)O) = 1, 
H(x <0)  = 0).  We then have 

rn 

uf (x, t)= j JG(X-Z., t-to) [2a(xO) ii,(xO, to) Idxo dto. 
-OD 

(6)  

Substituting (5)  and (6)  into (4a), some straightforward 
manipulation gives 

where W(r) = a(x)cr(x + r )  is the correlation function 
for fluctuations in the speed of sound, and 2 = 2 = W(0) 
is the variance of the fluctuations. We have thus obtained the 
desired closed-form equation for the mean field, containing 
deterministic coefficients only; the latter circumstance in 
fact constitutes its advantage over the original equation ( 1 ) . 
There is, however, an important drawback to Eq. (7).  Be- 
cause of the integration over the temporal argument, it is not 
possible in principal to pose (7)  as a Cauchy problem. This 
drawback can be corrected by going to the so-called single- 
wave approximation (see Ref. 15, for example). Specifically, 
let the initial condition u (x,O) consist only of waves moving 
to the right. Then E(x,t) = E(z,T), where 

and the integral in Eq. (7)  can be rewritten as 

Here we have used the obvious formula 

Substituting (8) and (9)  into (7)  and neglecting small 
terms, we have 

m 

We may rewrite this equation in the original variables: 

a = j w (r) dr. ( lob)  
0 

Equations ( 7 )  and (10) are the "final outcome" of the 
mean-field method. 

In order to evaluate the applicability of the mean-field 
method, we use the single-wave approximation in the expres- 
sion for the random component of the field u' in (6).  By 
analogy with (9), we obtain 

X 

-~a(~+t+z)ii,(~+2~,T)dr+O(~~. (11) 
0 

Note that the first term in ( 1 1 ) describes a small displace- 
ment of the incident wave as a whole, and the second de- 
scribes a reflected wave." In fact, we may represent the total 
field u as the sum of an incident wave do' with fluctuating 
phase and a reflected wave u"': 

U=u(o) ( z -&€I (x) , T) +EU"' (x, t) 
xu(o '  (z,  T )  +E [--u,(~) (z,  T) B+u(') (x, t) 1, (123) 

where 0 is the phase fluctuation (the integral of the fluctu- 
ations in the speed of sound). It is easy to see that the mean 
squared phase fluctuations are infinite: 

whereupon the integral in ( 13a) obviously diverges for any 
W(r)  except the degenerate case 

OI 

W (r) h - 0 .  
- m 
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The appearance of an infinity is related to way in which the 
initial conditions for u' are posed as t+ - UJ (i.e., the use of 
the retarded Green's function (5) ) .  As a result, over the 
infinite time interval ( - UJ ,t), the quantity 82 can grow to 
infinity. If we assume Cauchy conditions at t = 0, the phase 
fluctuations may be estimated by 

s 

and as x + oo we have 

It is also clear that is infinite, in addition to 82 
(compare Eq. ( 11) and the second term on the right-hand 
side of ( l2a) ), and this is just the term which was discarded 
in going from the exact equation (3a) to the approximate 
one, (4a)! It was in fact this very circumstance, which funda- 
mentally violates the basis of the mean-field method, which 
remained unnoticed in Refs. 6 and 11-20, leading to errone- 
ous results. We emphasize that nothing said above bears on 
linear media, in which waves do not interact among them- 
selves and the phase with which a wave arrives at some point 
in space is in some sense irrelevant. From a formal stand- 
point, nonlinear (quadratic) terms like p, which lead to 
divergences, do not occur in linear problems. 

3. CONSTRUCTION OF A VALID METHOD FOR DESCRIBING 
NONLINEAR WAVES IN FLUCTUATING MEDIA 

It is clear from the foregoing that in constructing a valid 
perturbation theory for the original equation ( 1 ), it is neces- 
sary to eliminate phase fluctuations of the incident wave in 
some fashion. The easiest way to do this is to stretch (com- 
press) spatial variables, so that in the new variables the wave 
moves equal distances in equal  time^.^' It is easily seen that 
terms -au, correspond to fluctuating field transport in 
Eq. ( 1 ). A transformation eliminating these from ( 1 ) is thus 
given by 

y=y ( x ,  t )  t=t;  (14a) 

(terms - E ~  respond to nonlinear transport of the incident 
wave by the scattered field, but this effect is negligible to the 
stated accuracy ). In the new variables, Eq. ( 1 ) takes the 
form 

Using ( 14b) to express x in terms of y, 
Y 

we may insert ( 16) into ( 15) and transform to a frame of 
reference moving at the mean speed of sound (equal to uni- 
ty): 

We have as a result 
z+t  

ut1-2u.+ [.a, ( z+t )  +e',,, (z+ t )  J a (4 d r  ] u, 
0 

=e2 (u') ,,SO (8').  (18) 

To simplify Eq. ( 18), we use the rigorous asymptotic 
method of multiple scales (see Ref. 26, for example), where- 
in along with the "rapid" time t, we introduce a hierarchy of 
"slow" times: T = c2t, Tl = ~ ~ t ,  ... . Derivatives with respect 
to time in ( 18) are transformed to the form 

Omitting TI, T,, ... from the formal list of arguments, we seek 
a solution in the form 

(the form of the main term in the asymptotic series (19) 
corresponds to waves traveling to the right at close to the 
speed of sound). Zeroth-order perturbation theory is satis- 
fied automatically, and to first order, Eq. ( 18) gives the fol- 
lowing equation for u"': 

which must be supplemented by the condition of having no 
scattered waves as t-, - UJ : 

(It  is implicitly understood here that fluctuations in the me- 
dium are turned on "adiabatically," i.e, (20) must be solved 
by replacing a ( z )  with a(z)exp(vz), 0 < v<  1, and letting 
v-0. This assures convergence of improper integrals like 
( 12b) ). The Goursat problem (20) is then easy to integrate: 

m 

u(<)= - j a ( z + t + ~ )  u:" (z+2r,  T )  h. (21) 
0 

Note that there is not term in (21) corresponding to phase 
fluctuations of the incident wave (compare (2 1 ) and ( 1 1 ) ) . 

To the next order ( -E,) of perturbation theory, we 
have 

where U = uj2' - 2u12'. It is easy to see that by virtue of the 
statistical uniformity of a (z), the function F(z,t, T )  is a sta- 
tistically stationary function of the rapid time t. Consequent- 
ly, the requirement for U (and d2') to be bounded as t -. UJ is 
the vanishing of the mean over t of the "forcing function" F: 

A 

1 
( F ) -  lim - SF (I, t, T )  dt -0 .  

A+- 2A -A 

Putting (21) and (22b) into (23), we obtain the desired 
equation detailing the relationship be u"' and T: 

m 

where W(T) = ( a ( x ) a ( x  + T)), C? = (a2) .  Note that in 
the present case, the correlation function W(T) has been 
averaged over space and not over an ensemble of realiza- 
tions, as in the mean-field method. Note also that averaging 
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over the rapid time tin (23) occurs in the method of multiple 
scales as a natural condition for boundedness of the small 
corrections, and in this sense it differs from averaging over 
an ensemble, which to some extent is put in "by hand." Fur- 
thermore, in an experiment, as a rule, one measures the char- 
acteristics of the irregularity in a medium which are aver- 
aged over space, and to interpret the measured mean fields 
using ensemble means, strictly speaking, requires a proof of 
the appropriate ergodic theorem. The advantages of the pro- 
posed method thus also include the fact that nowhere does it 
assume a probability distribution for the fluctuations in the 
speed of sound (this is also true of all higher-order approxi- 
mations in perturbation theory). 

It must be emphasized that Eq. (24) governs the wave 
profile itself, rather than the mean field. In fact u'O'(z,T) is 
independent of the rapid time t, and is therefore never aver- 
aged at any stage of the asymptotic procedure which is used. 
In order to find the mean field, we revert to the original 
variables, using Eqs. ( 14) and ( 17) : 

z=y (x) -t=x-O (I) -t, T=e2t, 

The mean field is then given by 

(x, t) = J (I-t-0, eZt) r(@, 2) do, 
- m (25) 

where T(O,x) is the probability distribution of the phase 
O(X).  According to the central limit theorem of probability 
theory, when x )  R (R is the correlation length of a (x)  ), the 
distribution T(O,x) tends to a Gaussian, regardless of the 
form of r (a,x) ,  and it is completely determined by its vari- - 
ante = 2~'Px + O(e3) (see (13b)) and mean O 
= - eZ$x + O ( E ~ ) .  Accordingly, 

This implies that 

If we now differentiate the expression (25) for the mean fielu 
with respect to t and take (24) into account, we obtain the 
correct equation for ii. Transforming derivatives with re- 
spect to x with the aid of (27), 

m 

and keeping terms 5 E', we have 

- w (r) ii, (x+2r7 t) dr )= 0. (28) 
0 

Comparing (28) and Eq. ( lo),  which was obtained with the 
mean field method, it is clear that the distinction lies in the 
fundamentally different nonlinear terms. The one exception 
is the special case0 = 0: the Gaussian distribution (26) then 
tends to a Dirac delta function, and 2 = ii2. We thus con- 

clude that for a general situation (0 #O), the nonlinear di- 
vergences in the higher orders of the mean field method are 
important, and the method is therefore only useable in the 
linear limit. We alp0 note that in real physical systems, the 
correlation function W(r) decreases monotonically over the 
interval (0, co ), as a rule, and we never have f l =  0 (see 
lob) ). 

4. LIMITING CASES AND GENERALIZATIONSOF THE 
THEORY 

Let us eliminate the term ( 1/2)duy '  in (24) by the 
Galileancoordinate transformationx' = z + d T / 2 ,  t ' = T. 
Dropping the primes and the superscript (0), we have 

0. 

We first determine the dispersion relation for small ampli- 
tude waves, within the scope of Eq. (29). Neglecting nonlin- 
ear terms, we assume that u - exp (iwt - ikx), where 

m 

o=ik2 J W ( r )  c-"*' dr. (30) 
0 

It is easily seen that for a monotonically decreasing correla- 
tion function W ( 7 ) ,  the dispersion relation (30) is dissipa- 
tive (Imw > 0).  The reason for this is that the back-scattered 
field is not described by Eq. (29), and its energy is subtacted 
from the energy of waves traveling to the right, decreasing 
the latter. The rate of dissipation largely depends, however, 
on the value of the parameter A /R (A is the characteristic 
wavelength, R is the correlation length of a (x)  ) . We consid- 
er two limiting cases, A ) R and A 4 R. 

1. When A R (small-scale inhomogeneities), the inte- 
grand on the right-hand side of (29) can be expanded in a 
Taylor series: 

u (x+22, t )  =u (x, t) +2rux (x, t) . 
As a result, one obtains the well known Korteweg-de 

Vries equation (see Ref. 28, for example): 

Dissipative effects play a central role in Eq. ( 3  1 ). 
2. When A (R (the smooth inhomogeneity case), we 

may differentiate (29) with respect to x. Integrating by 
parts, the integral term can then easily be expanded as a 
series in powers of (A /R)'. Retaining only the first two 
terms of this series, we obtain 

Equation (32) is a conservative, Hamiltonian equation. This 
is to be expected, as the coefficeint of wave reflection from 
smooth inhomogeneities is exponentially small. It is also 
noteworthy that up to the accuracy of its coefficients, (32) is 
identical to the Ostrovskii equation,29 which describes long, 
slightly nonlinear waves in a medium with a dispersion rela- 
tion 

(for example, interior gravitational waves in a rotating 
tank). Equation (32) possesses stationary solutions describ- 
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ing periodic waves, including those with cusped "crests".29 
We now consider some generalizations of the foregoing 

approach. 
1. The results obtained are most simply generalized to 

weakly dispersive media, for which the original equation ( 1 ) 
must be replaced by the equation for a nonlinear string 
(Boussinesq equation) : 

Without an alterations, the asymptotic procedure gives the 
following generalization of Eq. (24) : 

m 

( 0 )  , ( 0 )  u, - /,oZu:" + u ( ~ ) u .  +'/,u:::= j W(T>U(O) ( z + ~ T ,  t )  
0 

(33) 

(compare (33) with the corresponding equation in Ref. 16, 
which was derived via the mean-field method). 

2. The present approach can also be extended to highly 
dispersive media, but it then gives no new results. We can 
clarify this with a simple model describing plasma wave scat- 
tering from density fluctuations of ions in a rarefield plasma 

where E is the dimensionless complex electric field strength 
in the plasma wave, and n specifies the fluctuations in the ion 
density (this problem was examined in a slightly more com- 
plicated setting in Ref. 17 used the mean-field method). 
From the standpoint of our approach, the main difference 
between (34) and ( 1 ) is the complete immutability of the 
form of the solution to (34), even in the zeroth approxima- 
tion in E. In fact, the equation for the zeroth approximation, 

completely determines the solution (soliton, periodic 
wave), and when there are fluctuations, one can only speak 
of the evolution of the parameters of this solution. Powerful 
universal methods have been developed for studying such 
problems (the averaging method of Witham,30 the direct 
perturbation theory of Ostrovsky and G o r ~ h k o v , ~ ~  and the 
like), so that there is simply no need to use our approach 
(nor the mean-field method). Note also that in the example 
considered, we have also employed perturbation theory for 
almost integrable systems. In actuality, the zeroth-order 
equation (35) can be integrated by the inverse scattering 
method, although in general this property is encountered 
very rarely. 

3. Let us briefly discuss media having spatiotemporal 
(and not just spatial) fluctuations in the speed of sound: 
a = a(x, t ) .  Without dwelling on the details, we note that 
the proposed method can also be extended to this situation 
with one exception, namely if the fluctuations are produced 
by waves whose phase velocity is close to the speed of sound. 
When a z a ( x  + t), the interaction of sound with inhomo- 
geneities will be resonant and strong, and its evolution will 
be described by a Korteweg-de Vries type of equation con- 
taining no integral operators (but with coefficients which 
depend explicitly on x and t).  

4. The least trivial generalization of the theory we have 
constructed applies to multidimensional nonlinear media 
described by the equation 

where x = (x,, ..., x,), and N = 2,3 is the number of spatial 
variables. In order to exclude "dangerous" terms -aAu  
from (36), which lead to divergence, the transformation 
y, = yj (x) should satisfy the system of equations 

where Snk is the Kronecker delta. It is easy to see that when 
N >  1, the system (37) is indeterminate, and cannot be 
solved in general. We can only eliminate terms -au,,,, 
j =  1, ..., N. This means that for multidimensional fluctu- 
ations, the proposed asymptotic scheme, which can be regu- 
larly refined out to infinite times, can only be constructed for 
plane waves. For quasi-plane waves (i.e., L ,  - 1, L2-E- ', 
where L, is the transverse scale (with respect to the wave- 
front), and L, the longitudinal), the secular terms (propor- 
tional to the rapid time T )  are non-imaginary in higher-or- 
der perturbation theory, and the equation which generalizes 
(24) is only valid up to times t < ~ - ~ (  T<E-'). This is suffi- 
cient for a study of the initial stages of propagation of a qua- 
si-plane wave, but it is still not known how to describe the 
scattering process for t 2 E - ~ .  AS for the evolution of nonlin- 
ear wave fields with a broad angular spectrum, this may pos- 
sibly yield to investigation using a nonlinear generalization 
of the kinetic equation previously derived for linear fluctuat- 
ing media.32.33 

"The results opf the present paper were briefly summarized in a previous 
note.27 

"Since the function u' desbribes waves traveling in different directions, it 
cannot be completely represented in the form u' = ul(z,T). 

"In Ref. 27, phase fluctuations were eliminated by transforming to a refer- 
ence frame comoving at the local speed of sound. However, such an 
approach generalizes poorly to three dimensions. 

'V. I. Tatarskii, Rasprostranenie voln v turbulentnoi atmosfere (Wave 
Propagation in a Turbulent Atmosphere), Nauka, Moscow ( 1967). 

'S. M. Flatte (Editor), Rasprostranenie zvuka vo fluktuiruyushchem 
okeane, Mir, Moscow ( 1982) [Sound Transmission through a Fluctuat- 
ing Ocean, Cambridge University Press, Cambridge ( 1979) 1. 

3S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Vvedenie v statisti- 
cheskuyu radiofiziku, ch. I1 (Introduction to Statistical Radiophysics, 
Part 11). Nauka, Moscow (1978). 

4E. N. Pelinovskii, Nelineinaya dinamika voln tsunami (Nonlinear Dy- 
namics of Tsunamis), Izd. Inst. Prikladn. Fiz. AN SSSR, Gor'kii 
(1982). 

'K. Aki and P. Richards, Kolichestvennaya seismologiya. Teoriya i me- 
tody, T. 2, Mir, Moscow ( 1983) [Quantitative Seismology, Theory and 
Methods, Vol. 2, W. H. Freeman, San Francisco ( 1980) 1. 

6V. V. TamoTkin and S. M. Fainshtein, Zh. Eksp. Teor. Fiz. 64, 505 
(1973) [Sov. Phys. JETP 37,257 (1973)]. 

7E. A. Kaner, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 2,827 (1959). 
'R. C. Bourret, Can. J. Phys. 40,782 (1962). 
9Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, and V. I. Ta- 
tarskii, Usp. Fiz. Nauk 102, 3 (1970) [Sov. Phys. Uspekhi 13, 551 
(1971)l. 

I0E. N. Pelinovskii, Nelineinye volny (Nonlinear Waves), Edited by A. V. 
Gaponov-Grekhov, Nauka, Moscow ( 19791, p. 33 1. 

"A. R. George and K. J. Plotkin, Phys. Fluids 14, 548 (1971). 
12K. J. Plotkina dn A. R. George, J. Fluid Mech. 54,449 (1972). 
13E. N. Pelinovskii, A. I. Saichev, and V. E. Fridman, Izv. Vyssh. Uchebn. 

Zaved., Radiofiz. 17, 875 (1974). 
14M. S. Howe, J. Fluid Mech. 45, 785 ( 1971 ). 
I5N. Yajima, J. Phys. Soc. Japan 33, 1475 ( 1972). 
I6G. M. Zaslavskii, Zh. Eksp. Teor. Fiz. 66, 1632 (1974) [Sov. Phys. 

JETP 39,802 ( 1974) 1. 
I7V. V. Tamoikin and S. M. Fainshtein, Zh. Eksp. Teor. Fiz. 62, 213 

( 1972) [Sov. Phys. JETP 35, 115 ( 1972) 1 .  

102 Sov. Phys. JETP 67 ( I ) ,  January 1988 E. S. Benilov and E. N. PelinovskiT 102 



18L. A. Ostrovsky, Int. 1. Nonlin. Mech. 11,401 ( 1976). 
I9J. W. Miles, Phys. Fluids 22,997 ( 1976). 
'VU. K. Bogatyrev and S. M. Fainshtein, Izv. Vyssh. Uchebn. Zaved., 

Radiofiz. 18,888 (1975). 
"S. N. Gurbatov, E. N. Pelinovskii, and A. I. Saichev, Izv. Vyssh. 

Uchebn. Zaved., Radiofiz. 21 1485 (1978). 
"F. G. Bass, V. V. Konotop, and Yu. A. Sinitsyn. Zh. Eksp. Teor. Fiz. 88, 

541 (1985) [Sov. Phys. JETP 61,318 (1985)l. 
23F. Kh. Abdullaev and T. K. Khabibullaev, Dinarnika solitonov v neod- 

norodnykh kondensirovannykh sredakh (Soliton Dynamics in Inhomo- 
geneous Condensed Media), Fan, Tashkent ( 1986). 

24A. N. Malakhov, E. N. Pelinovskii, A. I. Saichev, and V. E. Fridman, 
Akusticheskie volny konechnoi amplitudy v turbulentnoi srede (Finite- 
Amplitude Acoustic Waves in a Turbulent Medium). Pre~r int  No. 85. .. . 
NIRFI Gor'kii ( 1976). 

G. Bass, V. V. Konotop, and Yu. A. Sinitsyn, Izv. Vyssh. Uchebn. 
Zaved., Radiofiz. 27, 718 (1984). 

26A.-H. Nayfeh, Metody vozmushchenii, Mir, Moscow (1976), p. 245 

103 Sov. Phys. JETP 67 (I), January 1988 

[Perturbation hiethods, 1. Wiley and Sons, New York ( 1973)l. 
"E. S. Benilov and E. N. Pelinovskii, Dokl. Akad. Nauk SSSR ( 1988). 
"M. I. Rabinovich and D. I. Trubetskov, Vvedenie v teoriyu kolebanii i 

voln (Introduction to the Theory of Waves and Oscillations), Nauka, 
Moscow (1984), p. 299. 

29L. A. Ostrovskii, Okeanologiya 18, 181 ( 1978). 
30J. B. Witham, Lineinye i nelineinye volny, Mir, Moscow ( 1977), p. 472 

[Linear and Nonlinear Waves, 1. Wiley and Sons, New York (1974) 1. 
3'K. A. Gorshkov and L. A. Ostrovsky, Physica D 3,428 (1981). 
32M. A. Raevskii, 0 rasseyanii i transformatsii voln v sredakh s pros- 

transtvenno-vremennymi sluchainymi parametrami (Wave Scattering 
and Transformation in Media with Random Spatio-Temporal Param- 
eters), Preprint No. 81, Inst. Prikladn. Fiz. AN SSSR, Gor'kii (1983). 

33E. S. Benilov, Dokl. Akad. Nauk SSSR 285,447 ( 1985) [sic]. 

Translated by M. Damashek 

E. S. Benilov and E. N. Pelinovskl 103 


