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The Darboux representations in combination with numerical methods are used to obtain N- 
modulation solutions of the nonlinear Schrodinger equation describing the process of 
transformation of a continuous signal with a weak initial modulation into a periodic sequence of 
pulses. The optimal parameters for such a transformation are found, as well as the conditions 
under which the off-duty factor of the pulses is maximal. It is shown that in the optimal case the 
off-duty factor and the peak value of the power in a pulse are proportional to the square of the 
number N of the modulation harmonics in the input signal. Examples are given of numerical 
calculations of the profiles of the resultant pulses. A numerical analysis is made of the evolution of 
a spectrum of N-modulation signals. It is shown that a suitable selection of the parameters makes 
it possible to use such signals also for effective transformation of the spectra. 

1. INTRODUCTION 

We shall consider the possibility of generation of a peri- 
odic sequence of picosecond light pulses in an optical fiber 
due to the process of self-modulation of continuous laser 
radiation. The first experimental observation of the split- 
ting into pulses as a result of spontaneous self-modulation 
was reported in Ref. 4. However, from the point of view of 
generation of pulses it is more convenient to utilize a process 
in which the output pulses can be by prelimi- 
nary initial modulation of a continuous signal. The first ex- 
periment of this type was described in Ref. 5. The question 
arises as to whether it is possible to increase the off-duty 
factor in such a process without altering the repetition peri- 
od. In other words, whether it is possible to compress addi- 
tionally the pulses in each period of a sequence in the same 
way as in the case of nonlinear compression of single (multi- 
soliton) pulses in an optical fiber.6 We shall show that, with- 
in the limits of the limitations imposed by the validity of the 
nonlinear Schrodinger equation, the degree of compression 
may reach any desired value and the process can be con- 
trolled by imposing a spectrum of weak initial modulation 
on a continuous signal at the entry to a fiber. In reality, this 
means that the pulse duration can be reduced to femtose- 
cond values when pulses are separated by picosecond inter- 
vals. Moreover, we shall consider the problem of transfor- 
mation of the signal spectrum as a result of its nonlinear 
evolution. 

Propagation of signals in an optical fiber at wavelengths 
1.55-1.65 pm in the negative group dispersion range, where 
there are strong nonlinear effects, is described by the nonlin- 
ear Schrodinger equation. The exact solutions of this equa- 
tion were obtained in Ref. 3 (see also Refs. 7 and 8) and they 
describe the process of self-modulation of waves in an optical 
fiber. By analogy with N-soliton  solution^,^ we can call the 
new solutions "N-modulation." Both classes of solutions are 
separatrix solutions of the nonlinear Schrodinger equation, 
but in the former case they are periodic in respect of one 
variable (6) and in the Iatter case they are periodic in an- 
other variable (7) .  Such N-modulation solutions were ob- 
tained in Ref. 3 and analyzed for the cases N = 1 and 2. 
However, if N>3, these solutions acquire completely new 

features. In particular, only such solutions can ensure a high 
degree of compression of the pulses. However, if N>3, the 
solutions become so cumbersome that it is pointless to obtain 
them in an analytic form and different approaches are need- 
ed. Direct numerical modeling of these solutions by the ex- 
isting fails to give the desired results because 
the initial conditions for their realization are not known and 
also because errors accumulate rapidly in the course of cal- 
culations when rapidly varying functions are employed. Nu- 
merical methods based on the inverse scattering problemI2 
have not yet been applied to periodic solutions. 

A hierarchy of solutions of the nonlinear Schrodinger 
equation of a certain class was obtained in Ref. 13 by deve- 
loping Darboux transformations which however have not 
yet been used for practical purposes and this applies also to 
finite-band theories1' (Refs. 14 and 15). The only exception 
seems to be the work reported in Ref. 17, but even there the 
regular calculation procedure is not described. We shall ap- 
ply the Darboux transformations to obtain N-modulation 
solutions of the nonlinear Schrodinger equation by numeri- 
cal methods and we shall analyze these solutions up to 
N = 10 inclusive. In contrast to the evolution  method^,^^).^' 
we can use the proposed method to find the solution directly 
for any section of an optical fiber and this shortens greatly 
the calculation time, so that for relatively low values of N the 
calculations are practically instantaneous. This will enable 
us to derive the main relationships governing the process of 
self-modulation of waves in a fiber in the case when N >  2, to 
determine the dependences of the off-duty factor of the 
pulses and other characteristics of N-modulation signals on 
the value of N, and to identify the initial conditions under 
which the process of transformation of a continuous signal 
into a periodic sequence of pulses is proceeding in an optimal 
manner. Moreover, we shall investigate the process of trans- 
formation of a signal spectrum as a function of the number of 
harmonics in the input signal, which is equal to the value of 
N. We shall show that the Darboux transformations are the 
most convenient method for numerical determination of 
such solutions. 

The present paper is organized as follows. In the second 
section we shall formulate the problem and give the general 
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Darboux transformation formulas for arbitrary solutions. In 
the third section we shall find specific formulas for N-modu- 
lation solutions. In the fourth section we shall report the 
results of numerical calculations of a signal at the exit from a 
fiber and in the fifth section we shall analyze the initial con- 
ditions needed to ensure that pulses of the optimal profile are 
formed. In the sixth section we shall carry out a spectral 
analysis of the signals from the point of view of the most 
convenient utilization of an optical fiber as a device for the 
transformation of spectra. In the seventh section we shall 
summarize the results obtained. 

2. FORMULATION OFTHE PROBLEM AND THE DARBOUX 
TRANSFORMATION FORMULAS 

It is k n ~ w n l - ~ . ~  that the propagation of signals in an 
optical fiber in the range of frequencies corresponding to 
negative dispersion, where nonlinear properties of the fiber 
material are important, is described by the following nonlin- 
ear Schrodinger equation 

where 

E=q2x/h, ~ = q  (-hk") -'" ( t - x / v )  , g= (nn , )  '"rpjq, 
( 2 )  

h=2nclo,  k"=dzkldo2, ~ = a ~ l a k ,  

e, is the envelope of the optical field, x is the longitudinal 
coordinate, t is time, n, is the nonlinear refractive index of 
quartz, o is the frequency, il is the wavelength, k is the wave 
vector, and q is a normalization factor governing the rela- 
tionship between the signal amplitude and the characteristic 
changes of the field with time and distance in the fiber. 

The Darboux transformation methodI3 for deriving a 
hierarchy of solutions with an increasing number of param- 
eters is based on the ability to represent the nonlinear Schro- 
dinger equation for a function $( l ,  T) in the form of the 
compatibility condition of the following system of linear 
equations 

where 

0 ig' 
R )  = (  (, ) ,  

- i l $ l V s l '  
(4 )  

v=( 
- ilQ1" 

O ) ,  
) ?  J = ( O  - i  

I is an arbitrary constant. 
For each solution $(l, r )  of the nonlinear Schrodinger 

equation there is a pair of functions rands which depend not 
only on I, but also on two arbitrary integration constants (we 
shall call them C and D). A set of these constants together 
with I will be denoted by a = {I, C, D). If we know a certain 
(initial) solution of the nonlinear Schrodinger equation 
$ = $, ({,T), then in the first stage of obtaining new solu- 
tions the functions r, (a) and s, (a) can be found only by 
direct solution of the system (3) .  Therefore, the solution 
$, (6, T) should be relatively simple. We shall assume that 
the set of the parameters in these functions is fixed so that 
a = a , .  Beginning from $, , r, , and s, , we can obtain a new 
solution of the nonlinear Schrodinger equation by means of 
the formula 

The solution $,, is determined not only by those parameters 
which influence $, , but also by new parameters a , .  The pow- 
er of numerical methods used in the Darboux transforma- 
tion approach is such that the functions r,, and s,, for the 
next step, corresponding to the solution of Eq. ( 5 ) ,  can be 
found without solving Eq. (3)  but simply using an operator 
M given below and capable of yielding new functions R ,, , 
employing solely arithmetic transformations: 

where a, is a second fixed set of parameters. The full rela- 
tionships represented by Eq. (6)  can be written as follows: 

where A = ( (r, (a,) l 2  + Is, (a,) 1 2 )  - I .  In numerical calcu- 
lations the factor A does not affect the form of the new solu- 
tions of the nonlinear Schrodinger equation and it can be 
dropped. This process can be continued and new functions 
R, consisting of N-functions $, (a, ) are obtained at each 
step N ( i  = 1, 2, ... ). The recurrence formula for this proce- 
dure is 

Rx (01, . . . , o x )  

where instead of I, and 1, in Eq. ( 7 )  we have to substitute 
1,- , and I,, respectively. Then, for N = 2, Eq. (8)  reduces 
to Eq. ( 7 ) .  

The new solution of the nonlinear Schrodinger equation 
found at each stage of the calculations can be deduced from 
the formula 

The selection of the initial solution $, (a, ) and of the con- 
stants a, is determined by the actual physical problem to be 
solved as well as by the initial and boundary conditions, for 
example, those applied to obtain N-soliton solutions 
$1 (a, = 0. 

3. PROBLEM OFTHE MODULATION INSTABILITY 

We shall assume that the initial solution of the nonlin- 
ear Schrodinger equation is 

An arbitrary phase factor eie in Eq. (10) will be omitted. 
The functions r, and s, corresponding to the solution ( 10) 
are readily found by integration of Eq. ( 3 ) : 

rI={C e x p [ i ( 2 x + x I ~ + l i x I ~ ) / 2  
-D e x p [ - i  ( 2 x + x l ~ + l i x i E )  / 2 ] ) e x p ( - i g / 2 ) ,  

sI={C e x p [ i ( - 2 ~ + x ~ a + l ~ x ~ E )  121 (11) 

+D exp [ - - i  ( - 2 ~ + x ~ ~ + l ~ x ~ ~ )  121) exp ( i g / 2 ) ,  

where x, = 2( 1 + 1: and cos 2x = ?c,/2. We shall as- 
sume that the parameter I, is purely imaginary, so that 
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I, = iv,, and we shall replace the constants Cand D with real 
parameters T~~ and go,: 

C=exp {[6iEol-ixi ftoi+n/2) 1/21, 
(12) 

D=exp {[-6iEoi+ixi (zol+n/2) 1/2), 

where 6, = x , ~ , .  Then Eq. (1 1) can be written in the form 

rI= {exp [ (2 i~+ix , ( t -~~ , -n /2)  -8i(g-goi) )/2] 
-exp [ (-2i~-ix, (t-to,-42) +6, (E-to,) )I211 exp (-iE/2), 

s,= {exp [ (-2iX+ix, ( T - - T O , - ~ / ~ )  -6, (E-to,) )I2 1 
+exp [ (2iX-ix, ( ~ - t ~ ~ - n / 2 )  +6, (E-EOI) ) 121) exp (iE/2). 

(13) 
In this case the solution $, (0, ) obtained with the aid of Eq. 
(5)  is 

xi%h 61 (g-go,) +2ixivi sh 8, (E-goi) 
91(E,t)= 1-  

2[oh 8, (E-L,) -vi cos x, ( t L r , )  I 

Apart from the relabeling of the constant v, it is identical 
with the solution describing the modulation instability of a 
wave with a continuous amplitude when the initial modula- 
tion is due to one harmonic [Eq. (9 )  in Ref. 31. Then, the 
quantity x,  (0  < x,  < 2) determines the frequency of the ini- 
tial (5- - co ) modulation of the continuous signal, where- 
as 

is a growth increment of the modulated signal instability. 
The dependence of 6, on x, is plotted in Fig. 1. The incre- 
ment is real within the range 0 < x ,  < 2 and its maximum 
corresponds to x,  = 2'12. 

The selection of the parameters ai in the next stages of 
obtaining the hierarchy of the solutions of the nonlinear 
Schrodinger equation is made in the same way as in the case 
ofEq. (12): 

We investigated N-modulation signals in an optical fi- 
ber by obtaining the exact solutions of the nonlinear Schro- 
dinger equation up to N = 10. For these values of N it is 
possible to reveal all the characteristic features of the solu- 
tions, as well as their asymptotic behavior when N-+ a. It 
should be pointed that up to N = 5 inclusive the calculations 
can be carried out to one significant place, but in order to 
avoid accumulation of rounding errors in the range 
5 < N< 10, we need accuracy to within two significant fig- 
ures. In the calculations we selected the fundamental fre- 
quency x,  so that the growth increment for the first and N th 
harmonics are the same (Fig. 1 ). Using Eq. ( 15), we can 
readily find this value: x ,  = 2(N2  + 1)-'I2. We then have 
6 ,  = S, = 2N/(N2 + 1 ). This condition guarantees that 
the growth increments of all the harmonics are real and are 
approximately of the same order of magnitude. Moreover it 
is found that this selection of x ,  makes it possible to optimize 
the profile of the pulses obtained at the exit from an optical 
fiber. 

If all the values of f o j  are different and the differences 
between them are very large, we obtain a sum of elementary 
solutions. Therefore, generation of sharp pulses can be ex- 
pected only for values of lo, close to one another. The nu- 
merical calculations demonstrate that the best results are 
obtained when all f o j  are the same. If moreover, all of them 
obey f oj = 0, then the complete solution becomes symmet- 
ric: $( - f )  = $*(f). 

Numerical calculations also demonstrate that for the 
value x I  selected above and zero values of lo, the largest 
amplitude and off-duty factor of the pulses in a periodic sig- 
nal are obtained for l = 0 provided all .r,, are assumed to be 
zero. Figure 2 shows the signal profiles within each period 
for the cases when N = 3, 4, or 5. It is clear from this figure 
that for the selected parameters the pulses appear sharply 

The periodicity of the solution in respect of the variable r is 
retained if we assume that x, = N,,, but 0 < K N  < 2 
( x ,  < 2/N) so as to ensure that the growth increment of the 
Nth harmonic S, = x, ( 1 - &/4) ' I 2  remains real (Fig. 
1 ). When N = 2 the solution can still be written in an analyt- 
ic form. However, the next steps corresponding to N>3 can 
be made only by numerical methods. 

FIG. 1. Instability growth rates of harmonics during the initial state of 
formation of an N-modulation signal. 

FIG. 2. Profiles of pulses with the maximum off-duty factor at the point 
{ = O f o r N = 3  ( a ) , 4 ( b ) , a n d 5  (c) .  
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TABLE I. Parameters of a periodic sequence of pulses of optimal profile 
I I I II I I I 

against a small-signal background. An increase in N in- 
creases the pulse amplitude and reduces its width. The de- 
pendence of this process on N will be described by introduc- 
ing the following parameters. We shall use $,,,,, to denote 
the peak value of the amplitude for a pulse. If we bear in 
mind that in the asymptotic case corresponding to g- - a, 
the signal amplitude is = 1, then this quantity in fact de- 
termines the relative increase in the pulse amplitude 
p = $,,,ax in the course of evolution. Moreover, we shall 
use r0 to denote that zero which is close to the maximum of 
the function $({, r )  and, for the sake of simplicity, we shall 
define the off-duty factor by Q = T / 2 r 0 ,  where T = 2.rr/x, is 
the pulse repetition period. At high values of N the pulses 
assume a certain asymptotic profile and, if we define the off- 
duty factor in the usual way as the ratio of the repetition 
period to the width (duration) of a pulse at half the peak 
power, calculations show that for N >  5 this factor is - 2.969. The relative fraction of the energy concentrated in 
a pulse can be calculated from 

combination of phases will be denoted by {r,,.) = {O, 0, 1) .  
The maximum value of the field in a pulse is then p = 3.81 
and the off-duty factor is Q = 7.86. Figure 3 shows the pulse 
profiles for N = 3,4, and 5, respectively when the phases are 
{ r O j )  = {0,0,  11, {0,0,O, 1 )  and {0 ,  O,0,0, 1). A compari- 
son of Figs. 2 and 3 show that the energy in a pulse decreases 
and at the same time the background increases compared 
with the case of zero phases. An increase in N increases the 
number of possible combinations of the phases which can 
provide pronounced pulses. Table I1 gives characteristic pa- 
rameters of the pulses obtained for N = 3, 4, and 5 in the 
course of a gradual shift away from the optimally selected 
phases { r o j ) .  We can see that for N = 5 it is possible to ob- 
tain pronounced pulses for ten different phase relationships 
between the harmonics. In experiments the relationships 
between the phases can be set by selecting the phases of the 
harmonics of the initial modulation of a continuous signal. 

5. AMPLITUDES OF INITIAL MODULATION OF A 
CONTINUOUS SIGNAL 

I 
q=-= { l q 1 2 d T ( J  l $ 1 2 d ~ ) - ' .  (17 )  An arbitrary N-modulation signal can be represented, 

4 -ro -T/Z in the asymptotic case 6- m, in the form of a wave of con- 

All three above parameters describing a periodic se- 
quence of pulses, calculated for different values of N, are 
listed in Table I. Using the results of this table, we find that 
the off-duty factor Q obtained for large numbers N is de- 
scribed by an asymptotic formula 

from which we can see that the factor rises quadratically on 
increase in N. The increase in the maximum amplitude of the 
pulses can also be described by an asymptotic formula: 

where a = 1.564 . . . , b = 0.046 . . . . The peak value of the 
power carried by a pulse is -p' and, like the off-duty factor, 
rises almost quadratically. The fraction of the energy carried 
by the main peak decreases slightly and for N- co it ap- 
proaches a certain constant 7 -0.797 . . . , so that the maxi- 
mum theoretical efficiency of the processs of transformation 
into pulses is fairly high. It should be noted that the values 
x I  = 2(N + 1 ) - ' I 2  selected initially are optimal for ensur- 
ing the best parameters of the pulses if Nis fixed. Variation of 
K ,  to the right or left of this optimal value increases strongly 
the background of the signal and the parameter 7 deterio- 
rates. 

As already mentioned, the case when all of roj  vanish is 
optimal, but this is not the only way of generating com- 
pressed pulses. For example, if N = 3, we can also obtain 
narrow pulses for rol  = 0, To, = 0, and ro3?t3/a = 1. Such a 

stant amplitude on which the following periodic perturba- 
tion is superimposed: 

FIG. 3. profiles of pulses of an N-modulation signal at a point 4 = 0 calcu- 
lated for T~, , ,X , , , /P  = 1 (rOj = 0 when j # N )  for the cases N = 3 (a) ,  4 
(b), and 5 ( c ) .  
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TABLE 11. Parameters of a periodic sequence of pulses obtained for nonoptimal phase relation- 
ships 

iT*jl  I , I I n 11 '5,) / p I 1 . 
I1 

where q, is the total phase of the signal, aj are the relative 
phases of the harmonics given by tan a, = 26,/x;, and the 
quantities 

are the initial amplitudes of the harmonics. The constants A, 
corresponding to low values of N can be found by lineariza- 
tion of the complete solution. For example, if N - 1, the 
amplitude is A, = 2, whereas for N = 2, it is A, = A, = 8/3. 
If N) 3, we can find linear amplitudes A, by numerical meth- 
ods. Table I11 lists the asymptotic values of Aj for N = 3, 4, 
and 5. However, it should be pointed out that these asympto- 
tic val3~s correspond to much larger values of{ than those in 
the cases N = 1 or 2, wherep, (6) become between three and 
five orders of magnitude smaller than unity. Moreover, if 
N>3, some second-order terms may become comparable 
with linear terms in the expansion of Eq. (20). Bearing this 
point in mind, we used calculation methods to find the coef- 
ficients~, (6) for relatively small values of 6. The phases aj 
then differ from the values determined from the formula 
tan a, = 2Sj/x;. 

Table IV lists the values of pj, a;. , and A, calculated 
using the Fourier transformation formulas given below. The 
values of 6 were selected so that the depth of modulation at 
the entry to a fiber was 2-3%. A comparison of the values of 
A, in Tables I11 and IV shows that they agree for j = 1 and 
j = N, when 6, are the smallest. In the case of intermediate 
values of j the difference can be very large and these A, de- 
pend on {, which is related to the contribution made top, (6) 
by terms of the second and higher orders of the type 
exp(26,{), etc. 

TABLE 111. Asymptotic values ofthe amplitudes of harmonics of initial modula- 

It therefore follows that in experimental realization of 
N-modulation signals in an optical fiber the amplitudes and 
phases of the harmonics of the initial modulation must be 
calculated for each given length of a fiber and for each inten- 
sity of the continuous signal at the entry. We shall now ob- 
tain some estimates. We shall assume that N = 5 and that the 
pulse repetition period is 6 ps. Then, the duration of the 
pulses at half the peak power is -70 fs. Using Eq. (2)  we 
find that q-4.7 x and the length of the fiber necessary 
to achieve this process is - 100 m (for = - 15). Then, for 
a fiber of -20 ,um2 cross section the average power of the 
continuous signal at the fiber entry should be - 25 W. The 
depth of modulation of the first harmonic can be seen from 
Table I1 to amount to - 1.74%. If we allow for the contribu- 
tion of the other harmonics, then the total depth of modula- 
tion is -2.5%. 

6. EVOLUTION OF SPECTRA OF N-MODULATION SIGNALS 

All the functions considered above are even within a 
period if r0, x, /IT = 0 or 1. Therefore, in an analysis of the 
spectra we can represent the solutions of the nonlinear 
&hrodinger equatibn in the form of the cosine Fourier ex- 
pansion: 

m 

where the coefficients are given by 
n/r. 

The squares of the moduli of the Fourier coefficients for any 
6 satisfy the relationship 

3 - 

4 1 1 2:": 1 I 1 2.428 
.5 36.612 63.726 33.586 2 
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TABLE IV. Fourier coefficients and phases in expansion of Eq. 
(20). and values of amplitudes Ai calculated using Eq. (21) for 

which describes conservation of the total energy of the field 
during propagation along a fiber. 

The Fourier coefficients can be found analytically only 
for N = 1, when the solution is relatively simple and is given 
by Eq. ( 14) [see Ref. 71. In all other cases we have to find 
the Fourier coefficients by numerical methods. A full pic- 
ture of the evolution of the signal spectrum in the optimal 
case, when all T~~ vanish, is plotted in Fig. 4 for the cases 
N = 3 ,4 ,  5. Since the process is symmetric relative to 6 = 0 ,  
this figure gives only the values in the range <<O. For 
6-  - CXI obviously the whole energy of the signal is repre- 
sented by the carrier frequency and we have Kt2 = 1. In the 
process of evolution the energy is distributed between side 
bands and for 6 = 0 there is an approximately uniform dis- 
tribution between the harmonics, because the signal itself is 
nearly in the form of the 6 function. 

We also investigated the spectra of N-modulation sig- 
nals from the point of view of maximum transformation into 
one of the side bands. The problem was then to find such a 
relationship between the initial phases T~~ for which the car- 
rier energy at some point 6 is transferred mainly into some 
specific side band. For example, if N = 2 and { T ~ ~ )  = {O, 11, 
almost all the energy of the carrier at the point 6 = 0 is trans- 
ferred symmetrically to the first side band 1 f , I 2  = 0.465. 
The total energy of the first side band (on the left or right) is 
-93% of the whole initial energy. At high values of N the 
energy may be transferred to further side bands. Table V lists 
all possible cases investigated by us (in the range N < 5 )  in 
which a high degree of conversion into any one of the side 
bands is achieved. We can see from this table that in none of 
these cases is the conversion efficiency greater than 0.4. 
However, it should be pointed out that we have ignored the 
values of the phases xjcioj/.rr which are not integers when the 

finite 6 

FIG. 4. Evolution of the spectrum of N-modulation signals with the maxi- 
mum off-duty factor, shown for N = 3 (a),  4 (b), and 5 (c ) .  The numbers 
alongside the curves give the harmonic numbers. 

j I ~j (5 )  

spectrum becomes asymmetric. In this case the efficiency of 
conversion to a single side band may exceed 0.5. However, 
this is a subject of a separate communication. 

a,, rad 1 

7. CONCLUSIONS 

We considered the process of self-modulation of a con- 
tinuous signal in an optical fiber due to a nonlinear depen- 
dence of the refractive index of the fiber on the wave field. 
The Darboux transformation method used in the above anal- 
ysis, together with numerical calculations, allowed us to car- 
ry out a complete analysis of the solutions of the nonlinear 
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tion signals corresponding to maximum energy transfer to one of 
the side bands. 
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Schrodinger equation representing such self-modulation. It 
was found that the degree of compression of a pulse in each 
repetition period can be increased to very high values. This 
effect can be useful in the construction of master oscillators 
(lasers) for optical communication lines with high transmis- 
sion rates because it is so far the only method for generating 
pulses of femtosecond duration with a repetition frequency 
of the order of thousands or more of gigahertz. Obviously, 
the generation of pulses with a high off-duty factor consid- 
ered here cannot be realized by spontaneous self-modulation 
as in Ref. 4. One requires an imposed initial modulation of 
the signal and this has to be done by several harmonics. Such 
modulation is relatively easily realized by means of semicon- 
ductor lasers with an output in the form of continuous radi- 
ation representing several longitudinal modes with strongly 
locked phases. 

The effect under consideration also provides new op- 
portunities for the transformation of a signal spectrum in a 
fiber. It is clear from our results that the efficiency of conver- 
sion into side bands can be increased up to 46% and one can 
select the situation when the transfer of energy is to a given 
side band. The Darboux transformation method once again 
provides the best approach for a rapid and complete investi- 
gation of the effect and for determination of the parameters 
of the signal at the exit from a fiber. 

We shall conclude by noting that N-modulation solu- 
tions can be constructed also in the case of the sine-Gordon 
equation. An analysis based on the theory of dynamic sys- 
tems'' makes it possible to predict some features of such 
multipass solutions which have a number of properties in 
common with N-soliton solutions. 

The authors are grateful to V.M. Eleonskii and N.E. 

Kulagin for valuable discussions stimulated by the present 
investigation and for various critical comments. 

"An explanation of this situation can b.: found in Ref. 16. 
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