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A theory of the nonlinear optical properties of fractals (fractal clusters) is developed. Giant 
enhancement of the nonlinear susceptibilities are predicted for impurities bound to fractals. This 
enhancement is implemented by excitation with radiation in the intrinsic-absorption band of the 
fractal. The giant optical nonlinearities are due to the existence of strong local fields at the 
impurity centers. The enhancement of the local fields is due to the inhomogeneously broadened 
character of the fractal spectrum (partial preservation of the individuality of the monomers), and 
is proportional to the Q factor of the monomer treated as a resonator. The effects of coherent anti- 
Stokes Raman scattering (CARS) and of the phase conjugation are much more enhanced than 
generation of higher harmonics. In the general case, the nonlinear susceptibility of higher order 
will be enhanced to the utmost if the frequency of at least one strong field enters in the 
susceptibility with a minus sign. On the contrary, higher-harmonic generation is minimally 
enhanced. The dependence of the susceptibility on the type of effect is due to the influence of the 
fluctuations of its phase when averaged over an ensemble of fractals. The gain depends 
substantially on the fractal (Hausdorff) dimensionality and decreases when the latter tends to 
become trivial. The observed phenomena yield information on the spectra of the impurity 
particles as well as of the fractal. It is predicted that the CARS spectra of impurity centers will 
exhibit a system ofnarrow lines typical of a fractal isolated monomer. 

1. INTRODUCTION 

Fractals are defined as constructs having non-integer 
dimensionality and imbedded in three-dimensional space.Is2 
Nature abounds in fractal clusters,bhich are physical real- 
izations of fractals. These clusters have unique geometric, 
statistical and kinetic properties. Light scattering from frac- 
tals was considered by Berry and Perciva14 in the framework 
of the mean-field approximation. In contrast to them, two of 
us proposed in an earlier paper5 a description of linear optics 
of fractals, with account taken of the dominant property of 
fractals-their fluctuating character; a theory was devel- 
oped for the linear response of the fractal, and surface en- 
hanced Raman scattering by impurities was predicted. 

The method of Ref. 5 is used in the present paper to 
develop, for the first time, a theory of nonlinear optical prop- 
erties of impurity centers connected with a fractal. We ob- 
tain the susceptibilities that account for the coherent (para- 
metric) phenomena: coherent anti-Stokes Raman scattering 
(CARS) of light, phase conjugation (PC) of optical radi- 
ation in degenerate four-wave interaction, and second- and 
third-harmonic generation. It is shown the CARS and PC 
undergo giant enhancement. Higher-harmonic generation 
can also be enhanced, albeit considerably less. 

Fractals have unusual optical properties5 different from 
those of both gases and condensed media. The reason is that 
the integrated density of a fractal tends asymptotically to 
zero, but pair interaction between its constituent monomers 
is nonetheless not weak. These properties, mutually exclu- 
sive for a nonfractal medium, are the consequence of a pow- 
er-law decrease of the pair (density-density) correlation 

function g ( r )  with increase of distance between the mon- 
omers, and the scaling form of the dependence of the number 
N of monomers in the fractal on its radius F, : 

where R,  is a constant with dimension of length and has the 
meaning of the characteristic distance between the nearest 
monomers. The exponent D is called the fractal (external 
Hausdorff) dimensionality. Both relations in ( 1 ) follow 
uniquely from each other. The g ( r )  dependence should be 
understood as an intermediate asymptotic at R ,  5 r 5 R , .  A 
fractal is called nontrivial when D < 3. In this case, as follows 
from the second relation of ( I ) ,  its integrated density 
j3 oc R  :- does indeed tend asympotically to zero as R ,  - w . 

The Raman-scattering enhancement considered ear- 
lier,5 and the giant nonlinearity enhancement predicted in 
the present paper, are the consequence of the strong local 
fields which are produced near the monomers of the fractal 
and are at resonance with the exciting radiation. The en- 
hancement of the local field is proportional to the large Q of 
the monomer as a resonator. The spectrum of a fractal is 
inhomogeneously broadened owing to the variance of the 
interaction between the monomers, so that its broad absorp- 
tion band contains monomers for which the resonance con- 
ditions are met. The increase of the nonlinear susceptibilities 
is very large, since it is determined by the value of the local 
field raised to high power (e.g., the sixth) for CARS and PC. 
As D- 3, i.e., as the fractal comes close to being trivial, the 
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spectra of the fractal broaden and enhancement of the sus- 
ceptibilities ceases. 

We show also that the nonlinear spectra of impurities in 
a fractal matrix carry information on the properties of the 
impurity centers of the fractal as a whole, as well as of the 
individual monomers that make up the fractal. 

2. FORMULATION OF PROBLEM AND QUALITATIVE 
ESTIMATES. FUNDAMENTAL FRACTAL PROPERTIES 
NEEDED FOR A QUANTITATIVE THEORY 

Consider a fractal consisting of N particles (mon- 
omers) located at points {ri), where the superscript indi- 
cates the number of the monomer. The coordinates {ri) are 
random; the probability of finding another monomer at a 
distance r from a given one is determined by the pair correla- 
tion function g( r )  [Eq. ( 1 ) 1. 

Monomers are dipole-polarizable (at optical frequen- 
cies) particles with linear susceptibility x0(w), where w is 
the frequency of the external optical field. The induced di- 
poles of different monomers interact with one another via 
dipole-dipole forces. Bound to some monomers are impurity 
centers, whose number is assumed to be small and the inter- 
action between which can be neglected. The impurities are 
assumed to be linearly polarizable and are charactelized by a 
susceptibility x'"' of order n. 

The reason for the giant enhancement of the nonlinear 
susceptibilities of impurities formed into a fractal is that the 
local field Ec acting on the impurity center bound to the 
monomer at resonance with the exciting radiation is much 
stronger that the mean field E. Let us find the corresponding 
estimates. We present in passim the needed theoretical re- 
sults of Ref. 5. 

Consider one impurity bound, say, to the ith monomer 
of a fractal. We denote the monomer-impurity radius vector 
by R a d  assume it to be shorter than the characteristic dis- 
tance R, between the nearest monomers. The local electric 
field Ec at a given impurity consists then of the field E' act- 
ing on the given monomer and the field of its induced di- 
pole5: 

where the subscripts label the tensor components, and sum- 
mation over repeated indices is implied. 

The principal quantity that we shall estimate below and 
calculate later on is the gain G("' for a nonlinear effect of nth 
order. We mean by it the ratio of the intensity of the radi- 
ation generated on the impurities bound to the fractals and 
the analogous intensity but for the free impurity particles. 
Since the amplitude of the field generated on a nonlinearity 
of order n is proportional to the nth power of the exciting 
field, the following estimate is obvious: 

Averaging designated by angle brackets includes here and 
elsewhere averaging over an ensemble of fractals. 

Let us emphasize a circumstance of importance in what 
follows. Since we are considering coherent phenomena 
(whose elementary act leaves the material subsystem in the 
initial state), the quantity averaged is not the radiation in- 
tensity (as in the description of spontaneous Raman scatter- 
ing, cf. Ref. 5 ), but its amplitude. This accounts for the order 

of the averaging and for the squaring of the absolute value. 
To find EC and determine the method of averaging in 

(3), we must know the properties, especially the statistical 
ones, of the field Ei acting on the monomer. We can first 
attempt to estimate the difference between the effective field 
Ei and the average (macroscopic) field E in the usual man- 
ner, introducing the Lorentz field EL.  To find the Lorentz 
field (see, e.g., Ref. 6) it must be recognized that the densi- 
ties of all other monomers around the given one is not con- 
stant but is given by the function g ( r )  [Eq. ( 1) ]. The result 
is EL = +DxoEiR ; DR f -  3, where RL is radius of a ficti- 
tious cavity (Lorentz sphere) around the given monomer. In 
contrast to the case of a nonfractal medium (D  = 3), the 
Lorentz field for a nontrivial fractal ( D <  3) diverges as 
RL +O. 

The divergence of the Lorentz field at short distances 
shows that the main contribution to the field Ei acting on the 
given monomer is made by its nearest neighbors. Since their 
number is small, the field fluctuates strongly. Theories using 
only a field averaged over an ensemble of systems (such as 
the Lorentz field) are inadequate for fractals. 

In Ref. 5 we formulated a binary approximation that 
takes exact account of the contribution made to Ei by the 
fluctuating field of the monomer closest to the given one. 
The fields of the remaining monomers are treated as aver- 
aged; this leads, in analogy with Ref. 6, to replacement of the 
external field by an averaged one and in addition to the field 
Ei of a Lorentz field. The role of the latter, however, is small; 
the field of the nearest monomer is the strongest. We shall 
present below an expression obtained for Ei in the binary 
approximation, but for now we shall estimate G'"' [Eq. 
( 3 )  1 using the qualitative considerations above. We neglect 
for simplicity the inessential influence of the Lorentz field 
and the interaction of the generated radiation with the frac- 
tals (allowance for these factors leads only to small quantita- 
tive changes). 

We consider for the sake of argument monomers that 
have an isolated resonance. Their susceptibility is 

where w, and r are the characteristic frequency and the 
homogeneous excitation width of the monomer, R, is the 
characteristic geometric dimension of the monomer (for a 
two-level system we have o,R 3, = ldI2l2, where d,,  is a 
transition matrix element, and fl is the deviation of the fre- 
quency w from resonance. 

The interaction of the given monomer with its nearest 
neighbor shifts the frequency of the resonance (of the optical 
absorption) by a certain random (since the location of the 
monomer is radom) amount Aw - Of, where we have intro- 
duced the characteristic frequency 

which determines the scale of the broadening and shift of the 
fractal spectrum compared with the spectra of the individual 
monomers. This estimate follows from (4)  with allowance 
for the usual form of the dipole-dipole interaction and for the 
fact that the characteristic distance between nearest mon- 
omers is of order R,.'For many investigated fractals R, ex- 
ceeds R, in~ignificantly,~ therefore Of 5 w, . If the mon- 
omer is a good resonator, it has Q-w, /I?) 1, which we 
shall assume hereafter. 
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The probability of entering into resonance with a given 
pair of other monomers is small relative to I'/flf. Therefore 
different sections of the fractal will be independently ab- 
sorbed. We arrive thus at the concept of a strong inhomogen- 
eously broadened in view of the variance of the pair interac- 
tions) absorption spectrum of the fractal. 

If the external-radiation frequency is located in the ab- 
sorption band of the fractal, certain monomers (more accu- 
rately, pairs of them) will be at resonance with the radiation; 
their fraction is, obviously, T/Of ( 1. The field E T, induced 
by the resonant monomer in its immediate vicinity is, ac- 
cording to (2)  and (4) ,  

The local field E :=, is om /T times stronger than the mean 
field E (om /T) 1); this is in fact the cause of the giant en- 
hancement of the nonlinear susceptibilities [cf. Eq. (3)  ]. 

A qualitative average of ( 3 ) ,  however, cannot even be 
estimated. The point is that the averaged quantity (Ec ) "  
contains an unknown phase whose fluctuations can in prin- 
ciple suppress strongly the enhancement (this statement is 
confirmed by the theory, see below). Only the upper- and 
lower-bound estimates can be obtained for G'"' . 

The upper-bound estimate is obviously obtained by neg- 
lecting in (3) the phase fluctuations, i.e., by changing 
F + ( E C I :  

The factor T/Of ( 1 is here the estimated fraction of the 
resonant monomers. The lower-bound estimate, on the con- 
trary, follows from the assumption that the influence of the 
phase fluctuation in (3)  is essentially destructive: the large 
contribution to 6, proportional to the factor om /T, is ex- 
cluded and we are left only with the mean (nonfluctuating) 
value (F ). Then 

Using (5) and (6) ,  we reduce the estimates (7)  and (8)  to 
the form 

The appearance, in the upper-bound estimate, of the homo- 
geneous width of the resonance of an isolated monomer is 
due to the space-frequency selection that is a feature of non- 
linear interaction with radiation. 

Since R, 2 R, and Of ) T, the upper- and lower-bound 
estimates in (9) differ very strongly. Which of the indicated 
estimates is approached by the value of G'"' for a specific 
effect can be determined only from the complete theory (see 
below). This theory describes also the spectral dependence 
of the factor G'"' , a dependence not included in (9)  and is 
determined essentially by the fractal dimensionality. 

It will be shown below that generation of a higher har- 
monic (i.e. of radiation of the maximum possible frequency 
at the given external fields and the order of nonlinearity) is 
always described by the lower limit in (9) .  Processes with 
"subtraction" of even one photon are estimated, when the 
exciting fields are equal (within the limits of the width T )  
are estimated from the upper limit in (9).  The same pro- 
cesses are characterized, when the relative frequency detun- 
ings increase from zero to % r ,  by values of G'"' with order 

of magnitude ranging from the upper to the lower estimates 
in (9).  

To conclude this section, we present the results needed 
below for the linear response to fractals and obtained in Ref. 
5 in the binary approximation. The fluctuating field Ei act- 
ing on the ith monomer is expressed (see below) in terms of 
the random response matrix M -': 

~ , ~ - ' = A 6 , ~ f  (C-A) nai'n~"', A= (xo-'f @) -', 

where 

j i r i  * i j -  i , =r -+, 0 =z (rib) -3. (11) 
k 

The random quantities in ( 10) are Q> and of the unit vectors 
n"hat depend on the random coordinates r%f the mon- 
omer. 

The quantities entering in M [Eq. ( 10) ] are aver- 
aged' over the ensemble of fractals (i.e., over the sets {ri )) 
by changing to a Laplace representation with x;' as the 
variable, and averaging over the distance between the mon- 
omer and its nearest neighbors with the aid of the distribu- 
tion g ( r )  [Eq. ( 1 ) ] ; the result is therefore dependent on the 
fractal dimensionality D. This dependence is defined by a 
special function S, of the complex variable z (Ref. 5):  

where a = D /3 (not to be confused with the vector index), 
and T (...) is the gamma function. The integral representa- 
tion in ( 12) specifies S ,  at Im z > 0; in the lower half plane 
the function is determined by the analytic continuation 
S, ( z * )  = S,* (z). 

The linear susceptibility of a monomer in a fractal is 
expressed as the mean value: 

The final expression for the total field acting in the ith mon- 
omer is 

where E is the mean (macroscopic) field in the fractal, 
k ,  = ( 1 - a R  & 3 ~ 1 )  - I  is a factor due to allowance for the 
Lorentz field (it is not of principal importance in the present 
theory and leads only to small corrections). If expression 
( 14) is used. Eq. (2)  determines the field Ec at the impurity, 
which is the initial quantity for the calculation of the nonlin- 
ear susceptibilities. 

3. NONLINEAR IMPURITY SUSCEPTIBILITY OF A FRACTAL. 
GIANT CARS AND PC 

With CARS and CP as examples, we construct a theory 
of nonlinear susceptibility of impurity centers in a fractal 
matrix. Consider fields that are harmonic in space and time. 
If the fractal dimension Rc is much shorter than the radi- 
ation wavelength A, the waves generated by different parti- 
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cles in a fractal will always add up coherently. At R, )A, 
known phase-matching conditions must be met (see, e.g., 
Ref. 7) .  Of course, for the theory of Ref. 5 to be valid at 
R, >A it is necessary that the characteristic distance R, 
between the nearest monomers be much shorter than the 
wavelength A. Assume that the foregoing conditions are met. 
The oscillating exponentials are then excluded; we shall indi- 
cate below only the amplitudes that precede them. In view of 
the coherence, the amplitude of the generated radiation is 
proportional to the number of impurities, while the radi- 
ation power is proportional to the square of this number. 
Bearing this in mind, we shall leave out this factor for brevity 
(we have converted here to the amplitude per impurity cen- 
ter). 

CARS and CP are four-wave parametric processes in 
the elementary act of which two photons of frequency w, 
decay into two photons with frequencies w, and w,. These 
processes are defined by a nonlinear susceptibility of third 
order7 

where w, is the frequency of the generated radiation, and w,  
and w, are the frequencies of the nonlinearly interacting 
waves. In the CARS case, w, = 2w, - w,; PC corresponds 
to the completely degenerate case w, = w,  = 0,. For coher- 
ent effects it is necessary to average the field amplitude (see 
the preceding section) i.e., the value of the susceptibility. In 
the case of isotropic (in the mean) fractals, the known8 sym- 
metry properties lead to an expression for the averaged (im- 
purity) susceptibility x:z6 of the fractal in terms of two 
scalar functions F, and Fa,  which we write in the form 

The terms with A +  and A- are respectively the completely 
symmetric and the incompletely symmetric (vanishing on 
symmetrization with respect tofl-S and y-6) parts  of^'^'. 
The averaged susceptibility of an isolated impurity molecule 
is expressed in similar form: 

The task of our theory is to express the amplitudes F, and Fa 
in terms off, and fa. 

We take next into account the nonlinearity of the sus- 
ceptibility of the impurity, and describe the fractal in the 
framework of the linear-response t h e ~ r y . ~  The nonlinear (of 
frequency w, ) amplitude of the dipole-center dipole mo- 
ment is then 

NL- (Sc) ( 1 ) C  I ( I ) C  ( 2 ) ~ .  
da -~asraE~ ET Ea 7 (18) 

where ECh" are the amplitudes of the local fields (2).  The 
numerical exponent identifies the frequency of the corre- 
sponding field. 

Inasmuch as in PC the generated and excited frequency 
radiations have the same frequency, the dipole moment ( 18) 
produces a field that polarizes in turn the nearest ith mon- 
omer. It is important that the distance between the two di- 

poles is much less than A and the amplitudes of the waves 
generated by them add up coherently. The actual emitter is 
thus in fact the summary (effective) dipole de", for which it 
is easy to obtain the expression 

In the CARS case the generated wave differs in frequen- 
cy from the initial waves, but the difference is as a rule small. 
The effective nonlinear dipole is therefore likewise described 
by Eq. (19). 

In accord with the definition of x°F), the radiating di- 
pole moment d'" is expressed in terms of the average (mac- 
roscopic) wave amplitudes as 

elf (3F) (1) I(1) (2). 

(da ) = ( ~ a e r a  )ED ET Eb r (20) 

~ h e r e E ( ~ '  are the average (macroscopic) amplitudes of the 
exciting waves. Using (2) ,  ( 14), ( IS), and ( 19) we obtain 
an expression for (de") in the form (20) with a nonlinear 
susceptibility 

where we have introduced the matrix T= IIM - I; the wave 
frequencies are indicated where they are significant (see be- 
low). 

The averaging in (21) is over random factors: the 
impurity orientation (the tensor X(3c', the angles of the vec- 
tor nC (the matrices II) ,  the angles of the vector nu of the 
mutual orientation of the approaching monomers, and the 
distances r" between these monomers (the matrices T ) .  As- 
suming the averaging over these factors to be independent, 
we rewrite (21) in the form 

The product of the matrices II (2 ) ,  which enters in (22), is a 
polynomial in R - I .  The main effect of the enhancement of 
the nonlinear processes is due to the term with the maximum 
power (twelfth) of R - I ,  which will be retained hereafter. 
The discarded terms are small with a smallness parameter 
(R /R,,I3. 

Using ( 17) and averaging over the angles (see above), 
we obtain the susceptibility (x "~ ) )  in the form ( 16), with 
coefficients 

F~='/~~xOI k ~ 1 ~ k ~ R - ' ~ [ f s ( Q . ~ ) + ~ l i f a ( q )  1 7  (23) 

Fa=~olkL12k~R-'2[fa(Qa)+Llsfs(q) I ,  (24) 

where it is required to average, over the mutual distances of 
the monomers, the quantities Q,, Q,, and q expressed in 
terms of the amplitudes A and C [see ( 10) ] : 

QS=8AzA'+3C2C'+'/,AC(A*+C') +2/,(AZC'+C2A'), (25) 

Q,=A2A'+1/3AC (A*+C*) +2/1 (A2C*+C2,1*), ( 2 6 )  

q='Ia (C-A) (Ace-A*C) . (27) 

The amplitudes A and C in (25)-(27) are taken at the fre- 
quency w,, and A * and C * at the frequency w,. 

The quantities (25)-(27) can be reduced by identity 
transformations to a from that merits calculation of their 
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averages with the aid of ( 12 ) . For example, 

where we have introduced a resonant (see below) factor A 
that contains no random quantities: 

The first term in (28) is transformed by differentiation with 
respect to the parameter X; ' after which, using (12), we 
obtain 

d 
(A2A'>=NZoe- Sa (Xi) -AeRoe[Sa (Xi) -Saw (X2) I. (30) 

dxi 

We use, for the sake of argument, the form (4)  ofx, (cf. 
Ref. 5) and express A of (29) in the patently resonant form 

where flf is given by Eq. (5).  We assume a relatively small 
detuning I Aw I 4 flf and recognize that r % flf . The factor A 
(31) is then large in terms of the parameter flf/ 
max(r,Aw). 

Recognizing that the functions S, (X) and their deriva- 
tives are of the order of unity, we separate from (30) the 
leading terms with respect to the parameter A and obtain 

Since the frequency-variation interval of the factors S, (x )  is 
-fly (cf. Ref. 5) we can set at flf ) r the frequencies w, and 
w, in these factors equal to some mean value w and rewrite 
( 32) in the final form 

(A2A*>=-2iRo9A2(Aa) Im & (x), x=-Ro3 Re xo-'(o), 
(33 

where we use a complex function of a real argument 
s, (x)  =S, ( X  + iO) (see Ref. 5 for its properties). In perfect 
analogy with the foregoing, we obtain in the leading order in 
A: 

(CLC*>=-iRogAZ(Ao) Im s,(-x/2). (34) 

The interference terms containing products of A and 
turn out to be small compared with (33) and (34) relative to 
the parameter r/fl,. For example, for the term ( A  2C *) we 
obtain, in full analogy with the derivation of (30), 

R," 
(A2C'>= -- sa (x) 

2Xi+X,' dX 

The maximum value of (35) is reached at S13; T. The esti- 
mate ( A  'C ) - R :A is then valid, i.e., (35) is indeed smaller 
than (33) and (34) by a factor T/af 4 1. 

As a result we get from (23 ), (24), (33 ), and (34) in 
principal order in r/flf  

The amplitudes (36) and (37) of the nonlinear suscep- 
tibility, together with its form ( 15), are the principal result 
of the theory for giant CARS. They determine the suscepti- 
bility of the impurity introduced into the fractal matrix in 
terms of the susceptibility of an isolated impurity molecule. 
The corresponding expression for PC are obtained from 
(36) and (37) by putting Aw = 0 (or course, the initial sin- 
gle-particle amplitudesf, and fa will be different for these 
two effects). 

Let us discuss briefly the basic expressions (36) and 
(37). The nonlinear-response amplitudes F, and Fa ,  carry 
information on the impurity center (the ampltudes f, and 
fa ), on the fractal absorption spectrum (the functions s, ), 
and on the unperturbed spectrum of the individual monomer 
(the factor A). The most complete information can obvious- 
ly be obtained with the aid of CARS (since it is possible to 
vary Aw). 

A distinctive property of the amplitudes (36) and (37) 
is their proportionality to the imagninary pact of the suscep- 
tibility of the fractal [cf. ( 13) ] and hence to its absorption 
[at a given sign of the detuning, only one of the quantities, 
Im s, (x)  or Im s, ( - x/2), differs from zero, see the prop- 
erties of the function s, in Ref. 51. Thus, the predicted giant 
(see below) enhancement of the CARS and PC effects on 
impurities are realized only when the exciting radiation 
lands in the fractal's intrinsic absorption bands. 

The symmetry of the susceptibility of an isolated impu- 
rity [see ( 17) and the discussion following that equation] is 
duplicated, as expected, by the impurity susceptibility of the 
fractal ( 16). In the leading order in T/flf, the completely 
symmetric part of the impurity susceptfbility "generates" a 
completely symmetric part of the fractal susceptibility 
(Fs af, ); the same holds for the incompletely symmetric 
parts. It is interesting that in the long-wave absorption band 
of the fractal (at 52 < 0)  the amplitude Fa vanishes, i.e., the 
linear response becomes completely symmetric. We point 
out that both amplitudes Fs and Fa,  and hence the symmetry 
of the response, can be directly measured in polarization ex- 
periments. 

The gain G (3' is given by 
( S F )  (1) l ( i )  (2). (3c) (1) / ( I )  (2) .  

G3'= I ( ~ a ~ 7 6  )e, e, e6 /(~ap,ra )ee e, ea 12, (38) 

where e"', e"", e"'are the polarization vectors of the incident 
waves. The amplitudes (36) and (37) increase rapidly with 
decrease of R and reach a maximum at the limiting (from the 
standpoint of applicability of the dipole-dipole interaction 
model) small value R - R, . For a monomer in the form of a 
macroscopic sphere it is permissible to put R = R, ( R ,  is 
the radius of the sphere). Assuming, to be definite, identical 
linear polarizations of the waves, we obtain from ( 17), ( 36), 
and (37) for the maximum value of CARS again 

~z~~~ = G ~ ~ ~ L C A R S  
( Q ) ,  
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FIG. 1 .  Gain for CARS and PC (values of LCARS ) vs the parameter 
x=:fL/fLf ( 0  is the detuning of the exciting-radiation frequency). Solid 
line-D = 1.5. dashed-D = 2.5. 

An equation for PC is obtained from (39) by putting 
Aw = 0. We indicte that the singularity in (39) at x = 0 is 
only apparent: Im s (x )  vanishes at this point faster than any 
power of x . ~  

The value of the factor G :ty is determined by the con- 
stant (w;/flfrl4 = ( R : f i f / ~  :I'l4% 1, and its spectral 
dependence is determined by the smoothly varying factor 
L CARS ( 0) and the resonant circuit g( Aw ) . A feature of the 
latter is its small spectral width, equal to 2 r  (cf. the width r 
of an isolated monomer vs the width flf ) of the spectrum 
of the fractal). The factor G zy (39) agrees, accurate to 
insignificant factors ( k ,  1' (influence of the Lorentz field) 
and (R,/R, )' (effect of interaction of the generated radi- 
ation with the fractal) with the upper-bound estimate in (9)  
for n = 3 [cf. the discussion following Eq. (9)  1. 

The variable x (33) in terms of which the gain G:2FS 
(39) depends smoothly on the exciting-radiation frequency, 
is equal, if Eq. (4)  is used, to the relative detuning fl/fif 
from resonance. Figure 1 shows the factor LCARS (39) 
which describes this smooth dependence. It has the form of a 
doublet consisting of short- and long-wave peaks. In the 
fractal absorption region shown in the figure, the gain 
changes by seven orders of magnitude. A strong dependence 
on the fractal dimensionality is seen: for example, when D 
changes grom 1.5 to 2.5 the long-wave maximum is shifted 
by a decade in frequency and decreases by approximately 
three decades in size. 

It is expedient to compare (39) with the maximum Ra- 
man-scattering gain GRS.  The corresponding theory devel- 
oped in Ref. 5 for the case of large frequency shifts by scatter- 
ing yields'' 

1 
GRS = - S p ( T T + >  

3 

Generalization of (40) to the case of small shifts, when the 
interaction between the fractal and the impurity at the fre- 
quency of the scattered radiation is substantial, can be car- 
ried out in analogy with the derivation of Eq. (19). The 
result is 

Calculation of the mean values in (41 ) yields 

The maximum value of the Raman scattering gain is 
G Ex = G RS 1 = R,;  comparison of (39) with (42) leads to 
the estimate 

G:F - (G,":) (szf/r) 2g2 (AO) . (43) 

A typical value is GRS k lo5 (Ref. 9); the main param- 
eter that determines this value is fl,-/T. Diverting the factor - lo3 to the remaining parameters, we obtain the estimate 
f i f / r - lo2.  We get then from (43) the estimate 
G;tFS- lOI4 for PC on fractally bound molecules, and also 
for CARS at Aw 5: r. In the case of CARS, if the detuning 
Ao lies in the usual IR band, then Aw/T- lo2 - lo3, and 
the estimate (43) gives G g;pS - lo6 - 10'. Such values will 
be reached, of course, if the local fields (which can exceed 
the external ones by several orders) do not saturate the sus- 
ceptibilities of either the impurities or the fractal monomer. 

4. ENHANCED HARMONIC GENERATION 

We begin with third-harmonic generation. This effect is 
also determined by a linearity of third order. The nonlinear 
dipole moment of the impurity is 

where E") is the local amplitude of the exciting field at the 
frequency w at the impurity location. The nonlinear impuri- 
ty susceptibility of the fractal and of the individual impurity 
take respectively the form 

(SF) ( s t )  
( xama  > = ~ ~ a & a ,  (xaera ) = f ~ & a .  (45) 

Note that the susceptibilities (45) are fully symmetric and 
each of them is characterized by one amplitude P o .  In this 
case, in contrast to the descriptions of the CARS and PC 
effects, we can neglect the interaction between the generated 
radiation (of frequency w, ) with the fractal, i.e., we can put 
'p'f = dNL. 

The expression f 0 1 - x ' ~ ~ '  is obtained in full analogy with 
(21): 

( 3 P )  ( 3 C )  
(Xaera)=kL3(~aa'r~a*Tfi~~TT~~T6,6). (46) 

Next, just as in the transition from (21 ) to (22),  we "uncou- 
ple" the averagings and reduce (46) to the form 

Averaging over the angles of the vectors nc and n" we verify 
that the structure (45) is duplicated; the expression for the 
response amplitude is 

We average in (48) over the distances between the mon- 
omers, using ( 12), in full analogy with the calculation of the 
amplitudes, (25)-(27). The result is 
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Note that, just as in (39) above, there is no singularity at 
x = 0. 

The Maxwellian gain GLfX is calculated in analogy 
with (39): 

The main differences between (50) and the analogous result 
(39) for CARS and PC is the following. There are no large 
factors (powers of the ratio nf/T nor narrow spectral struc- 
tures in (50). Moreover, GLtx is determined by both the 
imaginary and real parts of the function s,, leading to a 
slower decrease as a function of frequency with increased 
distance from the center of the absorption band. 

The order of magnitude of G :fx in (50) coincides with 
the lower estimate (9)  at n = 3 [apart from the smooth spec- 
tral dependence and to the Lorentz-field contribution, 
which were neglected in the derivation of (9)  1 .  The value of 
G:tX is determined by a high power of the ratio R,/Rm, 
which can exceed unity but in general by not much (cf. Ref. 
4).  The ratio Ro/Rm can be large only for a fractal in which 
the polarizable monomers just joined by "neutral" long 
bonds. In any case, comparing ( 50) with ( 39 ) we can state 
that third-harmonic generation is much less enhanced than 
the CARS and PC effects. 

The spectral dependence of the third-harmonic genera- 
tion gain is illustrated in Fig. 2. It is smooth; the dependence 
on the fractal dimensionality is just as strong as for CARS 
and PC (cf. Fig. 1 ). 

Second-harmonic generation is described by the sec- 
ond-order impurity susceptibility. The amplitude of the non- 
linear dipole moment for this process is of the form [cf. 
(44) 1 

FIG. 2. Third-harmonic generation gain LTH vs the parameter x. Solid 
curve-D = 1.5, dashed-D = 2.5. 

The symmetry properties of the susceptibilities x'~" of an 
isolated impurity and X'ZF) of the fractal are determined by 
the noncentral symmetry of the system, viz., by the presence 
of the polar unit vector m. In view of these properties, each of 
the indicated susceptibilities is expressed in terms of three 
independent amplitudes: F,, F,, F,Cf,, f,, f-,). It is convenient 
to express the tensor structure of the susceptibility in the 
form 

The direction of m can be determined, in particular, by the 
anisotropy oc the matrix (crystal) in which the fractal is 
immersed, or by the normal to the surface on which the frac- 
tal is located, or else by the external electric field. 

The expression for ( x ' * ~ ' )  is obtained in full analogy 
with (47): 

Retaining the terms that are maximal in the parameter (Ro/ 
R, ) 3  and averaging over the vectors nc and n" , we obtain an 
expression for the amplitudes F, in terms off; ( i  = 1, 2, 3):  

F,=z/3f1R-%LY2Az+C2>, 
(55) 

F2,3='/,5f2,3R-6kL2(7A2+2C2+6AC>. 

Just as above, the susceptibility of the fractal duplicates 
the symmetry of the isolated impurity, while the tensor 
structures in Eqs. (52) and (53) turn out to be eigenfunc- 
tions of the transformations from an isolated impurity to a 
fractal (each amplitude Fi is expressed only in terms of the 
correspondingJ. ) . 

Averaging over {ri)  makes it possible to obtain from 
(55) final expressions for the amplitudes of the susceptibil- 
ity (52) 

For the sake of argument, we calculate the second-harmonic 
gain for circularly polarized radiation. With allowance for 
(57),  we obtain for it from (52) 

The factor L, as a function of the detuning S1/af (of the 
parameterx) is shown in Fig. 3. Note that the dependence on 
the fractal dimensionality is also strong, albeit weaker than 
for the third harmonic (cf. Fig. 2 ) .  This is understandable, 
since the higher the order of the linearity the stronger the 
effect of the system properties. 
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FIG. 3. Second-harmonic generation gain LSH vs the parameter x .  Solid 
line-D = 1.5; dashed-D = 2.5.  

It is seen from (58) that, just as for third-harmonic 
generation, in contrast to CARS and PC, the gain contains 
no information on the initially small spectral width of the 
monomer; it contains no large coefficient (power of the pa- 
rameter f l f / r ) .  The value of G :& agrees in order of magni- 
tude with the lower estimate in (9) .  We can thus expect the 
harmonic generation to be much less enhanced than the 
CARS and CP effects. 

5. ESTIMATE OFTHE GAIN FOR PROCESSES OF ARBITRARY 
ORDER 

Let us estimate the gain G for coherent linear processes 
of higher orders. In particular, let us ascertain in which cases 
G is proportional to the large factor-a power of nf/r (as is 
the case for CARS and CP, but not for harmonic generation, 
see above); cf. the discussion of the estimates (9) .  

The nth order susceptibility is of the form 

wherep and m are respectively the numbers of absorbed and 
emitted (in external fields) photons; n = p  + m; w, is the 
frequency of the generated radiation. 

We consider first the case m > 0, i.e., processes accom- 
panied by photon emission to external fields (such as CARS 
and PC). We assume for simplicity in (59) that all the ab- 
sorbed photons have the same frequency w, = w,, and all 
the emitted ones have o, = w,, . Following next the deriva- 
tion of (22) and neglecting interference terms such as (35), 
which contain products ofA and C, we estimate the impurity 
susceptibility of the fractal at 

Where a,, a, ,  and a, are numerical coefficients that depend 
only on m,p, and the type ofsymmetry ofthe considered part 
of the susceptibility [cf., e.g., the form of (23)-(26)l; x,, is 
the susceptibility of an individual monomer at the frequency 
of the generated radiation: x'"" is the impurity-center sus- 
ceptibility part that corresponds . The max function 
in (60) describes the possible additional gain due to the im- 
purity-fractal interaction at the frequency of the generated 
radiation [cf. the discussion of Eq. ( 19) 1. This enhancement 
takes place in those cases when w, lands in the intrinsic- 
absorption band of the cluster. 

Using form (10) for A and C, expression (12) for the 
mean values, and definition (29) of XI and X,, we rewrite 
(60) in the form 

where x, - - R Rex, '. The functions S, in (61 ) vary 
with the frequencies w, and w, in a characteristic interval 
-fly. The strongest spectral dependence in (61) is con- 
tained in the factor A. 

Differentiation of A in (61 ) leads to the appearance of 
maximum powers of the large parameter flf/T. In the argu- 
ments of the smoothly varying functions S ,  we can neglect 
the frequency differences, i.e., put w, = w, = w. With this in 
mind, we obtain from (61 ) the estimate 

where C is a binomial coefficient and x is defined in (33). 
A comparison with ( 13) shows that the spectral depen- 

dence of the amplitude gain (x ' "~ )  ) / (x("~)  ) for a given sign 
of the detuning duplicates the form of Im x,, i.e., of the 
absorption coefficients. Thus, giant impurity nonlinearities 
should be observed only in the fractal's intrinsic absorption 
band. 

The second argument of the max function in (62) pre- 
dominates when the frequency w, is close to w, i.e., at 
p - m = 1. In the opposite case the first argument predomi- 
nates. An order-of-magnitude estimate of the gain of the ef- 
fect (i.e., of the intensity of the generated radiation) follows 
from (62) for the considered case m > 0 

. - 

x ( T) '@-') gn-1 (Am) I Ja (m) 1 2 ,  

where J ,  (w) denotes the smooth (in the fractal's intrinsic- 
absorption band) frequency dependence given in (62) by the 
functions s, 

In the case m = 0, i.e., when radiation of the maximum 
frequency (i.e. of the highest harmonic) is generated, we can 
verify in full analogy with the preceding case that the ampli- 
tude of the effect is a homogeneous polynomial of degree n in 
A and C: 

n 

where aj are numerical coefficients that depend on n [cf. 
(48) and (55)l .  

The averaging in (64) is in the same manner as above. 
Since, however, (64) does not contain the complex-conju- 
gate amplitudes A * and C *, the susceptibilities do not con- 
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tain large factors - An - ' . The spectral dependence of the 
gain of the amplitude (x ' "~ '  )/(X(nc) ) is given by the func- 
tions s, (x)  and s, ( - x/2) and by their derivatives up to 
the (n - 1)st [cf. (49) and (56)];  we denote it by 3, ( a ) .  
This function varies over a characteristic frequency interval 
0,; it is of the order of unity in the absorption band of the 
cluster. As a result, we obtain for the gain of the higher- 
harmonic generation the simple estimate 

The nth order nonlinear impurity susceptibility of the 
fractal is thus larger than that for free impurity molecules by 
the factor (63) whichis proportional to the 2(n - 1 ) st pow- 
er of the larger parameter flf/T. The only exception is the 
case higher-harmonic generation (65 ) , which does not con- 
tain this large parameter [cf. (9)  and the discussion that 
follows]. 

6. CONCLUDING REMARKS 

Let us briefly summarize and discuss the main results 
and principles of the present paper. We have developed a 
theory for nonlinear susceptibilities of impurity molecules 
bound to a fractal. The results for CARS (PC) and for third- 
and second-harmonic generation are given by Eqs. (16), 
(36)-(39); (45), (49), (50); (52), and (56)-(58) respec- 
tively. 

The enhancement of the nonlinear effects is due to the 
presence, near the fractal's monomers, of strong local fields 
greatly exceeding (by up to several orders) the mean (mac- 
roscopic) field. The strong local fields are due in turn to the 
following interrelated properties of the fractal: the quasi- 
resonant character of the spectrum (partial preservation of 
the individuality of the isomers) and the (mainly) inhomo- 
geneous origin of its broadening, the disorder of the struc- 
ture, and the strong fluctuations. Strong local fields are pro- 
duced in the vicinities of monomers that are at resonance 
with the external field (and for which the inhomogeneous 
frequency shift of the resonance compensates for the detun- 
ing). The strengths of these fields are proportional to the Q 
factor of the monomer. 

Using the foregoing qualitative picture, we obtained 
simple upper- and lower-bound estimates of the value of the 
effect (9) .  These two estimates differ substantially: the up- 
per contains the large factor (flf/T) & 1, but the lower does 
not. These estimates are valid apart from inessential factors 
that account for the influence of the Lorentz field and for the 
interaction of the generated radiation with the fractal. 

The results (63) and (65) of the complete theory, ob- 
tained for nonlinearity of any order, indicate which of the 
limiting estimates (9)  correspond to the different paramet- 
ric effects [cf, the discussion following Eq. (65) 1. Namely, 
for the generation of higher harmonics (in which the fre- 
quencies of all the photons are additive) the estimate of the 
gain G ,!,$ (65) is always the lower limit of (9) .  This follows 
formally from the fact all the poles of the averaged suscepti- 
bility as a complex function of the frequency lie in one (low- 
er) half-plane [c.f., e.g., the analytic properties of (47) and 
(48) with ( 10) taken into account]. Physically, this fact 
means destructive influence of the fluctuating phase of the 
generated field when the latter is averaged over an ensemble 
of fractals. 

Another result (63) was obtained for processes in 
which the susceptibility (59) contains at least one negative 
frequency. When the excitation is almost degenerate in fre- 
quency (the frequencies of all the exciting fields are equal to 
within r), the value of G :IX (63) is estimated by the upper 
limit in (9),  i.e., the phase fluctuations of the susceptibility 
X'nF' are insignificant. Effects of this type are of third order, 
such as PC and also CARS at small differences between the 
frequencies of the two exciting fields. When the detuning 
increases and reaches almost the total width flf of the fractal 
spectrum, the value of G2dX decreases to the lower-bound 
estimate (9),  a fact described by the factor g(Aw) in (39) 
and (63). Thus, at finite detunings the destructive effect of 
the susceptibility phase fluctuations begins to influence also 
effects with photon subtraction. 

The indicated dependence of the form of the gain on the 
character of the processes is not obvious beforehand, for in 
all cases the local fields are equally enhanced (by w,/T 
times) compared with the mean field [see the estimate (6)  1. 
The actually considered effects, however, are coherent ones 
in which the amplitude of the field is averaged and the im- 
portant role in the averaging over the fractal ensemble is 
played by the fluctuations of the phase. (The enhancement 
of the coherent effects was estimated earlier'' only from the 
increase of the modulus of the local field, while the phase was 
disregarded; nor was the spectrum broadening due to the 
disorder of the medium taken into account.) 

The dependence [see (39) and (63) 1 of the gains of 
effects that include photon subtraction on the photon fre- 
quency difference Aw is contained in the factor g. The con- 
tour of g( Aw) has the character of a two-photon resonance: 
it is determined by the value of Aw compared with 2 r  (we 
emphasize that r is the natural resonance width of an isolat- 
ed monomer) and is independent of the positions of the sys- 
tem levels. It is this last circumstance that causes the immu- 
nity of this resonance to inhomogeneous broadening, 
meaning its natural width and its contribution to the gain. 
The onset of such a nonlinear resonance, notwithstanding 
the assumed linearity of the monomer susceptibility, is due 
to the interaction between the monomer and the nonlinear 
impurity. 

The gain G'"' and its smooth dependence on the fre- 
quency of the exciting radiation depend strongly on the frac- 
tal dimensionality. These dependences are illustrated in 
Figs. 1-3 for effects of third and second order. With increase 
of the fractal dimensionality, the value of G'"' decreases and 
its spectral profile broadens. When the fractal dimensionali- 
ty tends to the trivial D- 3, the gain of the nonlinear suscep- 
tibilities vanishes (our theory, however, is no longer valid in 
this case). 

In sum, we can state that effects with photon subtrac- 
tion are much more enhanced than higher-harmonic genera- 
tion. It is important that the gain estimate (63) does not 
depend on the number of the subtracted photons. The spec- 
tral dependence of the effects discussed reveals resonances of 
impurity centers as well as a nonlinear monomer resonance. 
To our knowledge, these nonlinear resonances have hereto- 
fore not been considered. Their distinctive features are due 
to the interaction between strong fields and an entity consist- 
ing of a nonlinear impurity and linear element (a  monomer 
contained in a disordered fractal medium). The enhance- 
ment of the nonlinear susceptibility depends substantially on 
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the Hausdorff dimensionality of the fractal. 
We have obtained above the nonlinear susceptibilities 

averaged over an ensemble of fractals. Since the fluctuations 
in the fractal are strong, the mean squared fluctuations of the 
susceptibilities can be of the order of the mean values. This, 
of course, does not make the mean values meaningless; when 
radiation interacts with M )  1 independent fractal particles 
(e.g., with a coloidal solution or a suspension), the mea- 
sured fluctuations decrease by a factor M ' I 2 .  Nonetheless, if 
M is not very large, these fluctuations are observable, and 
therefore their calculation is of independent interest. We 
hope to consider this calculation in the future. 

Experimental observation of the predicted effects will 
permit a study of the properties of the monomers that make 
up the fractal (the question of what is a monomer is general- 
ly speaking not trivial, cf. Ref. 5),  and in particular to find 
the spectral width r from the contour g ( A w ) .  Substitution 
of J? in the expression for Gallows us to calculate this factor 
and to compare it with the value obtained independently in 
experiment. 

The most promising fractal objects for first experiments 
are apparently clusters made from noble metals, for example 
particles in colloidal solutions. Interest attaches also to frac- 
tal surfaces produced by sputtering thin films, although the 
theory requires certain modifications to be applicable to 
them. 

The spectral properties of impurity particles that can be 
studied with the aid of CARS on fractally-bound molecules 
are similar to those obtained on free molecules. However, 
the much larger predicted enhancement of the CARS inten- 
sity [see the discussion of Eq. (43) ] will undoubtedly add to 
the capabilities of this method at lower frequencies and will 
accordingly enhance its analytic capabilities. 

Inasmuch as four-wave parametric processes can be ob- 
served in the presence of amplification with a much smaller 
number of molecules, fractals with impurity centers consti- 

tute a promising nonlinear medium, especially if miniatur- 
ization of samples is required. 

Besides parametric processes, our theory describes 
also the nonlinear absorption, which is determined by the 
imaginary part of the nonlinear susceptibility. The latter 
pertains to processes with subtraction of photons and is 
therefore maximally enhanced in accordance with (62). In 
particular, the two-photon-absorption coefficient is propor- 
tional to Im x ' ~ ' (  - a , ,  a l ,  a2 ,  - a2) [see ( 16), (36), and 
(37)l.  According to our theory effects determined by non- 
linear absorption are also enhanced, viz., nonlinear-impuri- 
ty photochemistry, ionization, dissociation, photoeffect, 
and others. 
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'' The numerical factor in the trace Sp ( TT + ) of Ref. 5 is in error. The 
correct value is given in Eq. (40).  
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