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Using as examples two non-one-dimensional quasiclassical systems with nonseparable variables, 
viz., an open optical cavity and a highly excited hydrogen atom in a strong magnetic field, it is 
shown that certain structural transitions that occur in them are accompanied by tunneling 
processes. States localized in the vicinity of a stable classical trajectory that coincides with the 
symmetry axis of the problem are considered. A structural transition occurs at the instant when 
the trajectory loses stability. In some cases it turns out that the stability loss is accompanied by a 
tunneling decay of the states. In other cases, after passing through the stability boundary, 
instanton-type states are produced or bifurcation with doubling of the trajectory period takes 
place. In the case of a homogeneous optical cavity near the stability boundary, it is possible to 
determine analytically the width and level splitting for the quasistationary and instanton 
solutions, respectively. For a hydrogen atom in a magnetic field, states are considered which are 
elongated along the field, and also states located near the symmetry plane perpendicular to the 
field. In the former case it turns out that, near the stability boundary, families of closed stable or 
unstable trajectories are detached, and analytic equations are obtained for them. The appearance 
of unstable trajectories corresponds to formation of an effective potential barrier. It is shown that 
recently obtained numerically closed trajectories, which explain the experimentally observed 
resonances [A. Holle etal. Phys. Rev. Lett. 56,2594 ( 1986) 1 ,  belong to a family of stable 
trajectories. In the latter case, closed stable trajectories are detached and have U-shaped 
projections on the symmetry plane. The stability boundary as well as the parameters of the 
solutions were found numerically for the general case and analytically for high energies. Unstable 
states localized near the zero-energy symmetry plane are considered and their lifetimes are 
calculated. 

INTRODUCTION 

An adiabatic change of the parameters of the Hamilto- 
nian can cause the stationary state of a system to go over into 
a state with a different structure. The parameter values cor- 
responding to the transition determine the stability bound- 
ary of the state. Many forms of structural transitions are 
accompanied by narrowing, way down to zero, of some ini- 
tially exceedingly broad (practically infinite) effective po- 
tential barrier, Processes of this kind were considered in the 
theory of phase transitions at low  temperature^,'^^ and par- 
ticularly in the theory of macroscopic t~nne l ing .~ -~  They 
are, of course not a feature of many-body theory only, but are 
typical of many quantum-mechanical and wave systems 
with one or more degrees of freedom."' The one-dirnension- 
a1 problem is in a certain sense trivial, since the correspond- 
ing potential barriers are determined in elementary fashion 
by the form of the potential, and the tunneling probability 
can be found either in the WKB approximation, or by solv- 
ing the one-dimensional Schrodinger equation by any other 
method. 

For non-one-dimensional problems, the parameters of 
the effective potential barriers produced on the stability 
boundary are patently not obvious, and the boundary itself is 
as a rule unknown. Similar interesting problems were solved 
recently. These include an investigation of an asymmetric 
top9 as well as the problem of highly excited states of a hy- 
drogen atom in magnetic and electric What was 
used in fact in the cited papers was a quasiclassical perturba- 

tion theory for degenerate systems, developed in general 
form in Ref. 13. In This theory the Hamiltonian takes the 
form H = H4 + V, with the variables in H, separable and 
the increment V regarded as small in the sense of classical 
mechanics. 

In contrast of Ref. 13, the states investigated in the pres- 
ent paper are in general not the products of perturbation of a 
system with exactly seperable variables, but comprise dis- 
tinctive stability islands in a stochastic "sea."L4 The small 
parameters that we shall introduce will determine not the 
deviation of the Hamiltonian from an exactly integrable one, 
but localization of the solution in the vicinity of a manifold 
having a dimensionality smaller than that of the initial sys- 
tem. This approach to solving the Schrodinger and a few 
other equations, stemming from the Leontovich and Fock 
parabolic-equation method,'' was intensively developed in 
diffraction theory and in mathematical physics (Refs. 16 
and 17).') We know, in particular, how to find the asympto- 
tic wave functions and the quantization rules for states local- 
ized near stable classical trajectories. From the physical 
point of view, interest attaches also to effects produced when 
seemingly heretofore not investigated trajectories pass 
through the stability boundary. 

To study the effects due to passage through bifurcation 
point of this type it is necessary to retain in the expansion of 
the Hamiltonian, and also in the Ansatz of the asymptotic 
solution in the zeroth approximation, not only the terms 
quadratic in the coordinates perpendicular to the trajector- 
ies (in the general case-to the manifold), as is usually 
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but also the terms of next order. Near the stability 
boundary certain coefficients of the quadratic terms in the 
solution tend to zero, thus indicating delocalization, but the 
next terms can determine a new characteristic dimension of 
the localized state. 

The theory is developed in the present paper for the case 
when an initially stable trajectory coincides with the symme- 
try axis of the problem. The Hamiltonian is in this case an 
even function of the coordinates perpendicular to the sym- 
metry axis. 

The phenomenon considered below can be illustrated 
with a one-dimensional anharmonic oscillator with poten- 
tial U(x) = bx2 f cx4 as the example. Depending an the ra- 
tio of the parameters b and c, the state can belong either to a 
discrete spectrum (c > 0)  or to a continuous one (c < 0).  If c 
is small enough and b is positive, the anharmonic increment 
cx4 is inessential for the low-lying states. With decrease of b 
and at c < 0, the potential barriers become narrower and ac- 
count must be taken of the level width, which determines the 
decay probability of the state. A similar effective potential 
for the motion perpendicular to the symmetry axis appears 
in the problems considered below. The parameters b and c 
are determined in this case in terms of Schrodinger-equation 
solutions localized in the vicinity of the symmetry axis. The 
stability limit of the state corresponds to the condition b = 0. 

The theory developed permits a full investigation of the 
effects produced in the vicinity of a bifurcation of a localized 
state. We consider below tunnel phenomena that accompany 
the stability-loss process in an open optical cavity, and also 
similar phenomena for a highly excited hydrogen atom in a 
strong magnetic field. The latter problem, of great interest to 
theoreticians and experimenters (Refs. 10-13 and 20-23), is 
sometimes called the principal unsolved problem of elemen- 
tary quantum mechanics. 

1. EXPOSITION 

1.1. Construction of asymptotic solution of the SchrOdinger 
equation 

Although we consider henceforth both quantum-me- 
chanical and optical applications, we shall use the quantum 
terminology. Let a wave function Y satisfy the Schrodinger 
equation: 

* / , f i 2 ~ ~ ~ + [ ~ - V ( r )  IY =O. (1.1) 

We assume the potential V(r) to be axisymmetric. The sub- 
stitution Y =p-''' exp(imp)u reduces Eq. (1.1) to the 
two-dimensional Schrodinger equation: 

1 / p f i J ( ~ 2 z + ~ P P ) + [ E - 1 7 ( ~ .  p)  -A2(m2-'/&)/2p2]u=0. ( 1.2) 

We shall consider below both the three-dimensional and the 
two-dimensional problems. In the latter case, we start from 
Eq. (1.2) with m = t. 

Consider the solutions of ( 1.2) which are localized near 
the z axis, i.e., we assume that the characteristic dimension 
p, of the region in which the wave function is concentrated 
along thep axis is substantially smaller than the correspond- 
ing dimension z, relative to the z axis. To this end, we intro- 
duce the small parameter E using the equationp = &'l2x and 
assume that x, = p O ~ - ' "  and zo are of the same order of 
magnitude. Equation ( 1.2) then takes the form 

'/,fi~uZr+2z,,/~) + [ E - l i ( z ,  ~'"l) -fi2(m2-1/,) /2Ex2]2~=0. 
( 1 . 3 )  

We assume also that the potential V is quasiclassical or, for- 
mally, that the parameter fi is small. We choose a system of 
units in which all the problem parameters are dimensionless, 
and assume for the time being that they are all of the order of 
unity, with the exception of the small parameters fi and E. We 
seek an asymptotic solution of Eq. ( 1.3 ) in the form 

neglecting in the exponential the terms of order f i ,  ~ ~ / f i ,  and 
higher. Substituting ( 1.4) in ( 1.3), we obtain 

where V0 = V(z,O), vEP = Vpp ( z g )  1, = ,  etc. At first 
glance the substitution (2.4) does not differ in any manner 
from the substitution used in the parabolic-equation meth- 
od.I6 Our approach, which leads to a generalization of this 
method to the case of passage through the stability bound- 
ary, consists in the following. In the parabolic-equation 
method it is assumed that the sum of the terms of zeroth 
order in Y in the curly brackets of (1.5) is of the order of 
O(E), i.e., the same as of the expression quadratic in v that 
follows it. It is natural in this case to discard the term pro- 
portional to v4, since it is of higher order O ( E ~ ) .  As the state 
stability limit is approached, however, the coefficient of v2 
tends to zero (the wave function spreads out as a function of 
p ) ,  so that the terms proportional to v4 also become impor- 
tant. We assume therefore hereafter that all the terms in the 
curly brackets in (1.5) are of the same order O ( E ~ ) ,  and 
stipulate satisfaction of the following additional conditions 
that determine the arbitrary functions u(z),  T~ (z), and 
70, (z):  

20~~-0 , t0~=0,  (1.6) 

i ~ ~ , , + 2 i t ~ - 2 r ~ , ~ ~ ~ , = 0 ,  (1.7) 

02{2[E-V" (z)] - to ,Z)=~2a,  (1.8) 

0' (Vp,0+2t~,~1,+4t,2) = ~ b ,  (1.9) 

oa ( ' ~ ~ ~ ~ ~ ~ ~ ~ ~ + ~ i ~ + 2 t ~ ~ t ~ ~ ~  1 6 2 ~ ~ ~ )  =c, (1.10) 

where a, b, and c are for the time being arbitrary constants. 
Taking Eqs. ( 1.6)-( 1.10) into account, we discard from 
(1.5) the terms of order &fi2, ~ ~ f i ,  E~ and higher. Equation 
( 1.5) takes then the form 

h2 (m'-'/k) 
U ,  (v) = bv2f cv4+ 

E3v2 

The terms indicated can be neglected if the inequalities &fi2, 
~ f i ,  ~ ~ < f i ~ ,  E~ are pairwise satisfied. It is easily seen that all 
are equivalent to the inequalities E ~ < + ~ < E .  Putting, for ex- 
ample, E = fi9, we get ; < q < 1. 

All the known functions in ( 1.6)-( 1.10) can be ex- 
pressed in terms of the function uo(z ) ,  which obeys the non- 
linear ordinary differential equation 
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Then 
2 z 

where d and f are arbitrary constants. In turn, all the solu- 
tions of (1.12) are expressed in terms of the solution of a 
homogeneous equation that is linearized with respect top by 
the equation for the classical trajectories adjacent to the z 
axis: 

using the equation 

where a,i are constants, and y,  and y, are solutions of ( 1.16) 
and meet the condition 

The Wronskian ( 1.18) does not depend on z. 
We seek next the stationary or quasistationary states in 

the classically accessiblez in the form of the real part of ( 1.4) 

Itfollowsfrom (1.13)-(1.17) that thewavefunction (1.19) 
contains, besides the normalization constant, also the seven 
arbitrary parameters E,f, d, a, , ,  a,, and 

These constants can be determined after formulating the 
boundary-value problem. 

1.2 Rules for bypassing the zeros of uo(z) 

We obtained the asymptotic solution by assuming that 
the function u(z)  is of the order of unity and therefore, as 
follows from ( 1.13), uo(z) is large. The zeros of a ( z ) ,  how- 
ever, which correspond to foci, can lie asymptotically close 
to or on the real z axis. The approximation employed may 
therefore not be valid here. To establish the rules for bypass- 
ing these (asymptotically small) regions, it is necessary to 
add to the original Ansatz one more arbitrary function A (z),  
putting v = x/a + ~ ~ ' ~ 6  '12/2 (x/a) 3. The last equation in the 
system ( 1.6)-( 1.10) is then replaced by two equations: 

For most a, this system splits, A becomes small, and the first 
equation goes over into ( 1.10). In the general case the sys- 

FIG. 1. Integration contour Cin the complex z plane (the asterisks mark 
the zeros of the function U(Z)  : a-for an optical cavity at h = h *; b--for an 
optical cavity at h = h : and h =. h r; c-characteristic form of C for a 
hydrogen atom in a magnetic field (there is only one zero of u(z) for states 
localized near a symmetry plane-either near z, or near z,). The locations 
of the zeros of a (z )  correspond to location of the symmetry axis in the 
stability region (to real coefficients a. ). 

tem ( 1.21 ) can also be integrated.I6 To this end it suffices to 
note that the corresponding homogeneous system has the 
solutions 

T,=IS~-~ exp ( 3~ 4i J - , 

Let zX be the root of the equation y,(z) + (al2/ 
al ,)y2(z) = 0, let ad be real, and let a , ,  - W .  The function 

(z) can be represented near z in the form 

yLZ(zX)  _ o. 
E 2  = --- 

all 

The zeros of uo (z) are in this case complex. Using the explic- 
it solutions of the system ( 1.21 ), we can now show that on 
passing through the vicinity ofzX only the term proportion- 
al to 5 in expression ( 1.15) for 7, will acquire a jumplike 
increase 

This means that the integral of the indicated term in ( 1.15) 
must be calculated by bypassing the complex zero uo(z) as 
shown in Fig. 1. The bypass rule for the case when zX  coin- 
cides with a turning point of the momentump(z) is obtained 
in the same manner. 

1.3 Structure of wave function and rule for quantization with 
respect to the transverse coordinate 

The possible situations that set the structure of the solu- 
tion of the one-dimensional Schrodinger equation ( 1.1 1 ), as 
well as of the wave function ( 1.19), are shown in Fig. 2. A 
distinction must be made here between the two-dimensional 
problem and the three-dimensional one. For three dimen- 
sions, depending on the relations between the parameters ii, 5 
and fi2 ( m  - a), there can be realized the case A 1 correspond- 
ing to the discrete spectrum of Eq. ( 1.11 ), and to solutions 
localized over x or the case B 1 when the states localized near 
the z axis are quasi-stationary in view of the possibility of 
tunneling through the potential barrier along the coordinate 
Y.  Finally, in the case C 1 there are no localized states near 
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FIG. 2. Form of effective potential Urn ( v )  in the three- and two-dimen- 
sional cases. 

the z axis in the approximation considered. For the two- 
dimensional problem, m = 1/2 and there is no centrifugal 
term, so that besides the cases A 2, B 2, C 2, which are similar 
to the corresponding cases of the three-dimensional prob- 
lem, there is also a possible case D 2 when a two-well poten- 
tial, for which instanton solutions can be determined, ap- 
pears in Eq. (1.1 1 ). The sign of b is reversed when the 
parameters of the physical system are changed. The case A 1 
does not change qualitatively in this case, and transitions 
B 1+C1. B 1-C2, andA2+D2 take place. 

To ensure localization of the wave function in the vicin- 
ity of thez axis, we require that the solution ( 1.19) be expon- 
entially small at largep ( or v).  This condition can be met in 
the cases A 1, B 1, A 2, B 2, and D 2 (Fig. 2) by choosing the 
correspondingsolutionofEq. ( 1.11 ); inthecasesB 1, B 2, D 2 
the barriers are assumed to be wide enough to make the cor- 
responding quasistationary state long-lived and the level 
splitting exponentially small2' The condition that @(v)  be 
exponentially small at large v in case A leads to a quantiza- 
tion rule that takes in the semiclassical approximation the 
form 

k, I m 1 >I  and integers, (1.22) 

where the integration contour encloses a cut joining the 
turning points in the potential well in the complex v (or C) 
plane. At k- /m 1 - 1 and Zfi( 1 the term Z.v4 in the well can 
be neglected and the quantization rule becomes particularly 
simple: 

a"=2fi(2k+lml+l) incase A l ,  

a"=2fi (k+'12) in case A2, (1.23) 

a"+ (4F) -'=2"fi(k+'12) in case 0 2 .  (1.24) 

In case B, Eqs. ( 1.22) and ( 1.23) determine the real parts of 
the transverse quasilevels. In case D 2, Eqs. ( 1.22) and 
( 1.24) take no account of the exponentially small level split- 
ting. 

1.4 Equations for the level width and splitting 

Confining ourselves to semiclassical potential barriers 
and to states with small quantum numbers k and m, we as- 
sume that the condition fiZ. 4 1 is met. We also assume satis- 
faction of conditions iiZ ( 1 and fiI m I 5 ii in case B and of the 
condition 14iiE + 11 ( 1 in case D 2. We assume throughout 
that the motion along the z coordinate is between the turning 
points z, and z,. 

For semiclassical potential barriers, the level width r is 
known to be the product of fi by the total flux of the wave 
function normalized to unity in the vicinity of a finite classi- 
cally allowed region.24 If there are no zeros of a ( z )  near the 
interval (z,, z,), after continuing in standard fashion the 
wave function of the bound state through the barrier and 
calculating the flux integral, we have in case B 1 

and in case B 2 

if zeros of a ( z )  are present near the interval (z,, z,), they lie 
near the intersection points zy of the detached closed trajec- 
tories with the z axis, and are arranged as shown in Fig. 1. 
The integrand ( p d  ) - ' in ( 1.25) or ( 1.26) has a sharp peak 
near the pointszy (see Sec. 1.2), and the corresponding inte- 
gral converges in an asymptotically small vicinity of these 
points. The reason for this peak is that the classical trajector- 
ies in the effective potential well near the stability limit are 
tangent to the internal caustics p = + ( ~ a / b )  L12a(z) pre- 
dominantly near the points z? and have there a higher den- 
sity. The tunneling probability, in turn, is proportional both 
to the density and to the number of tangencies. 

At values of z in the close vicintiy of zy, the obtained 
asymptotic relation remains in force only when v( ( - b / 
c)",. If we assume that we can use in these vicinities an 
Ansatz in which, in contrast to ( 1.4), both the argument of 
the exponential and the argument of the function @(v) are 
represented as series in v, and leave the standard equation 
( 1.21) unchanged, we can show that the results ( 1.25) and 
( 1.26) remain in force also in the general case. This state- 
ment is actually equivalent to the hypothesis2' of existence of 
a caustic that limits the potential barrier from the outside 
and coincides with one of the level lines Imr(p,z) = const 
(r(p,z) is the complex classical action below the barrier). 

The level splitting in case D 2 can be calculated by an 
asymptotic method,24 introducing a symmetric (Y, + T,) 
and antisymmetric (Y, - Y,) combination of wave func- 
tions Y, and Y, localized respectively near each of the de- 
tached trajectories. If one of the points zy coincides with the 
turning point zj, loss of stability is accompanied by a detach- 
ment not of two closed trajectories symmetric about the z 
axis, but one closed trajectory with double the period. No 
instanton states are produced in this case. If, however, the 
pointszy lie outside the segment (z,, z,), the level splitting is 

52 Sov. Phys. JETP 67 ( I ) ,  January 1988 M. Yu. Surnetskil 52 



pendently of the remaining ones. After obtaining them we 

where we have introduced the function s ( z )  = ( -- 1)' at 
z: < z < z c  , , in which the intersection points z y  are num- 
bered from unity of L and we use the notation z,X = z , ,  
z:,, = z2. The integral 0 f s ( ~ 4  ) - I  in (1 .27)  must be taken 
near the singularities in the sense of the principal value. 

2. TUNNEL EFFECTS IN AN OPEN OPTICAL CAVITY 

The diffraction losses in an open optical cavity can be 
caused not only by edge effects due to the finite dimensions 
of the reflecting surfaces,25 but also to tunneling processes 
which are generally speaking not connected with these di- 
mensions. This circumstance was pointed out in Ref. 26. 
Specific results on this subject were obtained for slightly bent 
surfaces of the cavity.27 Similar phenomena take place also 
near its stability boundary.*' 

We investigate in the present section tunnel phenomena 
in the case of a uniformly filled cavity. Depending on the 
relations obtained below between the parameters of the re- 
flecting surfaces, and on the distance between them, we show 
that in the approximation considered there can exist near the 
stability limit states that are quasistationary, stationary, or, 
in the two-dimensional case, instantons. Analytic expres- 
sions are obtained for the corresponding values of the level 
widths and splitting. 

2.1 Boundary-value problem and quantization rule 

We consider the solutions of Eq. ( 1.1 ) in a narrow tube 
near the z axis between surface S ,  and S2. We assume for 
simplicity that the boundary conditions satisfied on S, and 
S2 are 

Equations (2.1 ) are equivalent to Y I,, = YI,, = 0. The con- 
ditions (2.1 ) can be met by stipulating that i n  the function 
( 1.19) the value of r0 + &rIxZ + E ~ T ~ X ~  be constant on S, 
and S, accurate to O ( c 2 ) .  Let the equation of the boundary 
S, be at small p of the form 

This requirement leads then to four additional conditions for 
T, ( j =  1 ,  2 ) :  

The boundary condition for u will be met if we stipulate also 
satisfaction of the quantization rule 

and put d = d / 2 .  The conditions (2 .3) - (2 .5)  together 
with ( 1.22) determine completely the remaining free param- 
eters of the wave function ( 1.19), with two parameters of the 
function a, (z )  determined from two equations ( 2 . 3 )  inde- 

have from two equations ( 2 . 4 ) ,  with allowance for the re- 
sults of Sec. 1.2, 

where the integral in the first factor is taken with the com- 
plex zeros of a , ( ~ )  bypassed as shown in Fig. la. 

2.2 Homogeneous open optical cavity 

In the homogeneous case we have p ( z )  = p ,  = const, 
V" PP = VZppp = 0.  Equation ( 1.16) is easily solved, and the 
condition ( 2 . 3 )  on the boundaries S,  and S2 of the cavity 
determine all the free parameters of the function a, (z ) .  As a 
result we have'' 

oo(z) =po-'h(aI,+2a1zz+a22~2) ", 
ail=-a12/Zal 

= [h(1+2azh)  ]'"[2 (1-2alh)  (aI-a,+2ala,h) I-'", 

The origin is here on the symmetry axis and coincides with 
z = z , .  

We determine now the critical distances between the 
mirrors: 

Let initially the Surfaces S,  and S, be identically concave 
and let a,)a, > O .  It follows from (2.7) and ( 2 . 8 )  that 
h > h ; and the symmetry axis is stable only in the interval 
h * < h < h 7 .  Expressions (2 .7)  for aij can be simplified near 
the critical value h = h *. The simplifications, which will be 
treated in greater detail at the end of Sec. 3.1, can be carried 
out also in Eq. ( 2 . 6 ) .  Recognizing, finally, that in this case 
ther are no points of intersection of the detached trajectories 
with the z axis, we get at lh - h * I  < 1 

It  follows from this equation that if 

a stable state approaching the stability limit becomes quasi- 
stationary with an intrinsic-energy width determined by ex- 
pressions ( 2 . 9 ) ,  (1 .26) ,  and ( 2 . 9 ) ,  (1 .25)  for the two- and 
three-dimensional cases, respectively. If the inverse of in- 
equality ( 2 . 10 )  is satisfied, the states in the stability region 
near the boundary are stationary in the approximation con- 
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sidered, but on the other side of the boundary they take in the 
two-dimensional case the form of instantons, with the level 
splitting determined by Eqs. (2.9) and ( 1.27). 

At h  = h  T the point of intersection of the detached tra- 
jectories coincides with the turning point z, and bifurcation 
with doubling of the period takes place, such that a V-shaped 
closed trajectory is detached from the symmetry axis. It can 
be shown in this case in analogy with Sec. 1.2 that the first 
integral in (2.6) should be evaluated along the contour 
shown in Fig. lb  and divided by two. As a result we get for 
Ih -fit1 

It follows hence that a: >P,  the passage through the stabil- 
ity limit is accompanied by detachment of the V-like stable 
closed trajectory, in the vicinity of which are localized V-like 
states. If, however, a: <PI,  then at 0 < h  < h  T ( h  T the 
states near the symmetry axis are quasistationary with a lev- 
el width determined from Eqs. (2.11 ), ( 1.25), and ( 1.26). 

Let now the surfaces S, and S, be inwardly concave, i.e., 
a, >O, a, <O. We assume for the sake of argument at 
a,< - a,. It follows from (2.7) that instability takes place 
i n t h i s c a s e o n l y a t h * > h > h ~ a n d a t h < h ~ . I f a l  = -a,, 
the entire interval 0 < h  < h  : is stable. Finally, if a, = 0, the 
stability region coincides with the interval 0 < h  < h F .  Let us 
consider the situation when the distance between the mirrors 
is close to h  *. The intersection point zX = (2a , ) - '  of the 
detached closed trajectories lies then inside the interval (z,, 
z,). Taking this circumstance into account, we chose for 
(2.6) the integration contour shown in Fig. la. As a result 
we have 

This case is similar to the case h  z h  * for a,>a, > 0. In par- 
ticular, the expression for c differs from the corresponding 
value in (2.9) only in sign. Equations (2.12) and (1.25)- 
( 1.27) determine the width and splitting of the levels for the 
quasistationary and instanton solutions, respectively. 

We present finally the expressions for the parameters of 
Eqs. ( 1.25)-(1.27) near the critical distances h  T and h  T. At 
Ih - h  71 <h we have 

andat Ih- h : J ( h  

These cases are perfectly analogous to the case h  z h  : at 
a,>a, > 0. 

3. HIGHLY EXCITED HYDROGEN-ATOM STATES LOCALIZED 
IN A STRONG MAGNETIC FIELD NEAR A SYMMETRY AXIS 
AND A SYMMETRY PLANE 

The classical motion of a particle in a combination of a 
Coulomb field with a magnetic field of comparable strength 
is generally speaking s t o c h a s t i ~ . ~ ~  Experiments (including 
numerical ones), however, with highly excited atoms in a 
strong magnetic field point to a definite regularity of the 
spectrum. This is attribuited in Refs. 2 1 and 22 to the pres- 
ence of closed trajectories along which the heuristic quanti- 
zation rule agrees with the experimental data. The question 
is, how correct is such a quantization rule? If the considered 
closed trajectory is stable, the answer is known." It is also 
known that the quasiclassical wave function of a system has 
in the stochastization region an increased density near un- 
stable closed traje~tories.~' If such states have a sufficiently 
long lifetime, they should also be manifested in the observed 
spectrum. 

From among the closed trajectories of the considered 
problem, a special role is played by trajectories on the sym- 
metry axis z, and also on the symmetry axis p for the two- 
dimensional equation ( 1.2), since the most pronounced are 
transitions into states that are elongated along the z axis in 
the case of longitudinal polarization of the radiation, and 
states located near the symmetry plane in the case of trans- 
verse polarization.20~31 The trajectories lying on the symme- 
try axisz are stable only in certain bands.20 A stability region 
for trajectories lying on thep axis (or in the symmetry plane 
z = 0)  is also known.32 In addition, an additional burst of 
radiation can occur on the stability r eg i~n . ' ~ .~ '  

We show in the present section that stable states local- 
ized near the z axis are separated from the other states by a 
potential barrier whose parameters have been found in ana- 
lytic form. The z axis loses stability after its calescence on the 
pz plane with two closed trajectories. We obtain below ana- 
lytic expressions for families of such trajectories (some of 
which were obtained numerically in Refs. 21, and 29). Ele- 
mentary equations for the coalescence pointsZ0 are in good 
agreement with the numerical calculation.29 

We show next the states located near the symmetry 
plane, outside the stability boundary, become U-shaped. In 
this case a trajectory that is stable on thep axis loses stability 
after passing through the boundary, and a stable U-shaped 
trajectory not lying on the p axis is detached from it. The 
quantization rules and the parameters of the solutions are 
obtained in analytic form at high energy E, and numerically 
in the general case. We show also that at E = 0 the symmetry 
plane is unstable and we calculate the lifetime of the states 
localized near a symmetry plane with E = 0. 
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3.1. Semiclassical quantization rule 

If the potential V(r) is an analytic function of the co- 
ordinates in all of space, and the motion along z is restricted 
between two turning points z, and z,, we require, to deter- 
mine the remaining free parameters, that the continuations 
of the wave function ( 1.19) beyond the turning point z, and 
z, into the region classically forbidden in z decrease expon- 
entially. The momentump(z) has in this case a square-root 
instability at the point z, and z,. We can therefore use 
Zwann's method33 and stipulate that the asymptotic form 
( 1.19) be transformed into itself after bypassing, along the 
closed countour C, the turning points z, and z, in the com- 
plex z plane with a cut [z,, z, ] .  The contour Cshould in this 
case enclose the zeros of the function d ( z )  (Fig. lc).  For 
the method to be valid it suffices if the momentum p(z) in 
the vicinity of the turning point z, is of the form 
p(z) -q (z) (Z - Z, ) 'I2, where U(Z) is an arbitrary mero- 
morphic function.33 In particular, putting = (z - z, ) -' 
we find that Zwann's method is valid if the potential has at 
the point z, a Coulomb singularity. This statement was veri- 
fied for the three-dimensional case in Ref. 20 by directly 
matching the solutions in the vicinity of a three-dimensional 
Coulomb singularity. 

The "transition-into-itself " condition for the asympto- 
tic form of the solution ( 1.19) can be represented as an ag- 
gregate of conditions for the functions a,, r,, r, and 7,. 
These conditions for oo, ro, and r ,  were discussed earlier in 
Ref. 34 for two simple turning points and in Ref. 20 for the 
case when one of them is a Coulomb point. 

In the vicinity of a simple turning point z,, those solu- 
tions of ( 1.16) which satisfy the condition ( 1.18) are of the 
form 

while in the vicinity of a Coulomb point, where 
VO(z) = - a/lz - z, I, they can be expressed as 

y 1 ( j ' ( z )  =(z-2,) +0( (2-a,) 2), 

yz(j) ( z )  =p ( z )  (z-z ,)  /a+O ( I Z - Z , ~ ' ~ ~ ) .  (3.2) 

Let y, and y, be solutions of ( 1.16) which go over as z--z, 
into the solutions yrL) and y:, respectively. In the vicinity of 
the turning point z, the functions y ,  and y, go over then into 
linear combinations of the solutions yi2' and yy '  and it is 
possible to determine the constant matrix T from the equa- 
tion 

This matrix transforms the solutions yL2' of Eq. ( 11.6) in the 
vicinity ofz, into analogous solutions y: in the vicintiy of z,. 
It turns out that the condition for transformation into itself 
for the solution u,,(z) determines completely the arbitrary 
constants in (1.17):3' 

It follows from (1.14) that the condition of transformation 
into itself coincides for r, with (3.4). For the function T, to 
meet this condition, it is necessary to satisfy the quantization 
rule 

1 - $ p d r - d $ % = . 2 n  , n>l andinteger 
A c  2fi poo2 

(3.5) 

and the equality d = d / 4 .  Equation (3.5) can be trans- 
formed into 

where N is the number of zeros of the solution y, (z) on the 
open interval (z,, z,), and sgn(t,,/t,,) was unfortunately 
omitted in Refs. 20 and 21. The region of the symmetry-axis 
stability corresponds to a positive radicand in (3.6), and its 
limit corresponds to a zero or infinite radicand. 

Finally, the indicated condition, when applied to the 
function T2,  yields 

(3.7) 
It can be shown that near the stability limit the expression 
for 5 simplifies to 

in which we must put u0 = a ,  ,1'2yl or a, = a2,'I2y2, depend- 
ing on whether the stability limit corresponds to a zero of a,, 
or to a zero of a ,  ,. A similar simplifying assumption of (26) 
was made in the calculations of Sec. 2. 

3.2 Highly excited states localized near thezaxis 

The potential in the Schrodinger equation ( 1.1 ) for a 
hydrogen atom in a magnetic field B can be represented in 
the form 

We expand (3.9) near the z axis accurate to terms of fourth 
order in p: 

V ( r )  vo ( z )  S~/~V~~O(Z)P~+~/~~V~PP(Z)P'~ 
(3.10) 

V0 ( 2 )  = - a / z ,  Vp,O ( 2 )  =u/z3+yV4,  v,",,, ( z )  =-gal?.  

In this case the momentum p(z)  has one Coulomb turning 
point and one simple one. We introduce the dimensionless 
coordinate = - Ez/a (E < 0) and the dimensionless pa- 
r a m e t e r ~  = fa2/12E 13. Equation ( 1.6) takes then the form 

The solutions of this equation for weak (w & 1 ) and strong 
( U  % 1 ) magnetic fields were investigated in Ref. 20. We con- 
sider only the case of a strong field. In this case the stability 
region of the trajectory lying on the z axis constitutes a set of 
bands defined by the inequalitiesZ0 

or by the equivalent inequalities (see Fig. 3a) 
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FIG. 3. a )  Stability bands for hydrogen atoms in a strong magnetic field 
(hatched). b)  Schemeofdetachment ofclosed stable (s) and unstable ( u )  
trajectories at the stability boundary. 

where q) 1 is an integer, and the quantum number n togeth- 
er with the integers k and m ( n  and with the number q of the 
band determine the energy levels: 

This expression was obtained in Ref. 20 by using uniform 
asymptotics of the solutions of Eq. (3.11) at w) 1, in the 
form4' 

where J,  ( u )  is a Bessel function and r ( x )  a gamma func- 
tion. Estimates show that when the second integral of (3.8) 
is calculated in the leading order w the region w< 5 1 makes 
a small contribution, and only the region 0-'13((< 1 in 
which the WKB asymptotics can be used to solve (3.15) is 
significant: 

A surprising property of the hydrogen atom in a strong mag- 
netic field is that the solutions (3.6) are valid also in the 
vicinity of the turning point f = 1. 

Using the explicit value obtained for T in  Ref. 20 and 
substituting (3.16) in (3.18) we obtain for 
l m 1 / 2  - (w;)1'21<l 

and for I W " ~  - ( m g  ) < 1 

In the case of (3.17), c > 0 and splitting of the closed stable 

trajectories takes place. In the case (3.18) the negative value 
of c indicates that the stable states near the symmetry axis 
are separated from the other states of the discrete spectrum 
by a potential barrier. The width of the "decay" is deter- 
mined here by (3.18) and by ( 1.25 ), with the following sub- 
stitutions in the latter: 

The dynamic features of an analogous one-dimensional sys- 
tem were investigated in Ref. 35. 

Two closed stable (unstable) trajectories, having mir- 
ror symmetry relative to the z axis and corresponding to the 
bottom of the well (to the top of the barrier), 
v$ = + ( - b /2c)'12 in Fig. 2, are merged at the stability 
limit with an unstable (stable) trajectory lying on the axis, 
and are transformed into one stable (unstable) trajectory 
lying on the axis (Fig. 3b). The trjectory corresponding to 
v$ at w'12 - (wq+ ) ' I2 4 1 is given by 

or, after substituting the explicit values of a , ,  and Z., 

(0) n"~(o'"-q-~/,) I/* 
p=pi (2) = U'"J~~,  (u) . 3'h(qS2/3)yaI E I (3.20) 

Analogously at w'12 - (w; ) 'I2 g 1 point v: corresponds to 
a closed trajectory p = p:9' ( z )  = [a2,/2Z.1 1'2y2(z), or in ex- 
plicit form 

The family of closed trajectories (3.20), recently ob- 
tained n u m e r i ~ a l l y , ~ ' ~ ~ ~  explains the structure of the reson- 
ances observed in the experiments." According to (4.12), 
the energy at which the separation of the closed trajectories 
takes place has the following dependence on the index q: 

The value of E ,+ differs from the result of Ref. 29 by 8% at 
q = 1, by 4% at q = 2, and does not differ from Ref. 29 at 
q>3 within the limits of the accuracy of the plot of that pa- 
per. The period of the trajectories can be easily found: 

T,*=2n (q+'l2*'l6) /y. 

This formula gives the T = 2/3 an asymptotic value of the 
"quantum defect" equal to 2/3, or a value of 1/3 for the 
numbering used in Ref. 21. The quantum defect was ob- 
tained in Ref. 21 numerically at E = 0 and was found to be 
close to 0.3. 

3.3. Highly excited states localized near a symmetry plane 

To explain the experiments with Rydberg atoms in a 
strong magnetic field, a two-dimensional model was pro- 
posed in which the motion of the electron is investigated only 
in a symmetry plane perpendicular to the field (see Ref. 36). 
The semi-empirical quantization rule obtained contains only 
two quantum numbers responsible for the motion in the 
symmetry plane, and ignores the motion in the transverse 
direction. A correct quantization rule should include an in- 
teger quantum number in the limit of the purely Coulomb 
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problem, and a half-integer number in the purely oscillator 
problem. A planar model cannot meet this r e q ~ i r e m e n t . ~ ~  
Nonetheless, good agreement was observed in Refs. 37 and 
22 between the two-dimensional model and an exact quan- 
tum calculation (which covers the regions of the regular and 
irregular spectra). 

Some results of the present subsection were reported to 
a conference." The problem reduces to an investigation of 
states localized on the pz plane near a segment bounded by 
the turning points of the effective potential V, = V + fi2m2/ 
2p2 at z = 0. (In the semi-classical approximation we left out 
the term fi2/8p2,) we expand V, up to terms of fourth order 
in z: 

va ((r = vu (p) +l/zV**O (p) zZ+ '/zp vLzz (E)) z4,  
(3.22) 

a y2pZ Ii2m2 
V O ( p ) =  --+-+-, 

P 8 2p2 

Note that in the case y = 0 the exact solutions of Eq. ( 1.16) 
(in which z and p must now change places) are 
y, = P2 - m2/a and y, = - app(a2 + 2Em2fi2) - I .  It can 
be easily found that now the arctangent is zero and N = 1 in 
(3.6), and an integer quantum number appears in the right- 
hand side of (3.6) with allowance for ( 1.22) (case A 2) .  As a 
result we arrive at a quantization rule for the Coulomb field. 
In the opposite case, at a = 0, the solutions (3.1 ) are exact 
and the arctangent and N are both zero. We then obtain a 
quantization rule for an oscillator with half-integer quantum 
number. 

To solve the problem in the case when the Coulomb and 
magnetic fields are, generlly speaking, comparable in magni- 
tude, we introduce dimensionless coordinate 
x = '/2/3a-"3p/2 and dimensionless parameters 
q = 2E(ay)-'I3 and p = fimy'13a-213/2. Equation (1.6) 
can then be reduced to 

FIG. 4. a)  Region of motion stability near a symmetry plane for a hydro- 
gen atom in a magnetic field (shaded). The dashed line shows the asymp- 
totic relation 17 = 16r-*h4 for the stability region. b)  Plot of the function 
f (p)  of expression (3.24). The dashed line-is the asymptotic relation 
f = 2 ' 5 ' 2  -4 8 

r P .  

The motion stability region near thep axis was obtained 
n~merically.~' It is shown in Fig. 4a. In the present subsec- 
tion we confine ourselves to the case of large m, when the 
turning points p ,  and p2 of the momentum 
p = 2'I2(E - v ~ ) " ~  are simple. For small m, stable states 
far from the stability boundary were investigated in Ref. 3 1. 

The lower boundary of the stability region in Fig. 4a 
corresponds to coalescence of the turning pointsp, andp,. It 
is obtained from the condition that the momentump(p) and 
the derivative of the potential V 0  (p)  be simultaneously equal 
to zero. The upper boundary corresponds to loss of the sta- 
bility of the trajectory on thep axis. The point of tangency of 
the boundaries is the point of the classical resonance. It cor- 
responds to p = p *  = 31/661124 , q = q* = 3-Ii3/2. TO the 
left ofp* the stability boundary corresponds to a zero coeffi- 
cient t,,, and to the right-to a zero coefficient t ,  ,. In a small 
vicinity of the point (p*, q*) the period of motion along thez 
axis is double the period of the motion along thep axis. The 
theory considered is no longer valid here and the motion can 
be investigated by the methods of classical and semiclassical 
perturbation theory for degenerate ~ y s t e m s . ~ ~ , ' ~  

If the dependence of q on p for the upper boundary is 
written in the form qo(p) ,  it is convenient to represent the 
expression (3.8) for Z. near this boundary as follows: 

The dimensionless function f(p) was calculated with a com- 
puter. To this end, the second integral in (3.8) was trans- 
formed into an integral on the real axis, containing no singu- 
larities at the pointsp, andp,, by adding and subtracting a 
known very simple integral with the same singularities. The 
first integral in (3.8) can be simply expressed in terms of the 
elements of the matrix T. The calculation result is shown in 
Fig. 4b. It can be seen that c is positive. It turns out here that 
passage through the stability boundary is accompanied by 
the appearance of a U-shaped closed stable trajectory that 
does not lie on thep axis and has double the period [see also 
Eq. (3.29) 1. We get thus U-shaped states with exponentially 
small wave-function density on thep axis everywhere except 
in the vicinities of the point p ,  or p,. 

Near the point (p*, q* ) (Fig. 4a) and also at large p 
and q, the solution of Eq. (3.23), and also the value of c, can 
be obtained in the analytic form. We consider the case 
7-p4& 1, in which Eq. (3.23) has the asymptotic solutions: 

This yields for the matrix T 

It follows from (3.26) that the asymptotic formula for the 
stability boundary is of the form 7, = (p )  -- 16~-,p4. This 
dependence agrees well with the result of the numerical cal- 
culation already a t p  > l (see Fig. 4a). The motion along the 
p axis is stable below the boundary. Substituting (3.26) and 
( 1.23 ) (case A 2) in (3.6), we obtain for the corresponding 
energy levels 
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The main contribution to the closed-contour integral in 
(38) is made in this case by the vicinity of the point 
xI = pq-'I2. As a result we get 

Assuming q close enough to q,(p), we obtain from (3.24) 
and (3.28) f(p) ~ 2 ' ~ / ~ . r r - ~ , u ~ .  This function is compared in 
Fig. 4b with the numerically obtained one. It is easy also to 
find an asymptotic equation for the detached closed stable 
trajectories: 

The states investigated experimentally and theoretical- 
ly in greatest detail within the framework of the two-dimen- 
sional model are those with near-zero energy and small m. It 
is seen from Fig. 4a that these states are unstable. Experi- 
ment, nonetheless, reveals clearly resonances with periodic 
structure corresponding to quantization within the frame- 
work of the two-dimensional model in the symmetry plane 
(see Ref. 6 and the literature cited therein). 

Let us calculate the lifetimes of the unstable states at 
E = 0 and fim = 0. Equation (3.23) can be solved in this 
case exactly (it reduces to Eq. (2.410 of Ref. 39).  In this 
case, one turning point is of the Coulomb type and the other 
is simple. Without presenting the detailed calculations, we 
write down the final expression for the matrix T: 

Substituting (3.30) in (3.6), we obtain for the width of the 
level with quantum number k 

r=2ImE=- 2k+i Im[arctg(3"i) ]AE=0.43 ( 2k+ l )  AE, 
3L 

(3.31) 

where the distance between the levels AE is connected with 
the period T of the electron motion by the relation 
TAE = 2mi, and the lifetime of the state is r z f i / T .  It fol- 
lows from (3.3 1 ), in particular, that a state with k = 0 has a 
lifetime three times longer than one with k = 1 and its level 
width is smaller by two or three times than the level spacing. 
We can therefore assume, by analogy with the arguments of 
Refs. 30 and 40, that these resonances are experimentally 
observable. However, the detachment of the U-shaped stable 
trajectories considered above takes place for small m at a 
very low energy E (see Fig. 4a). As E = 0 is approached, 

2. The experimental data and theoretical calculations 
have shown that stable closed trajectories in the stochastic 
region can act as centers for experimentally observed highly 
excited states. The oscillator strengths of transitions into 
such states outside the stability limits can be expressed, in 
analogy with Ref. 20, in analytic form in terms of the matrix 
T, and were numerically determined near the boundary. 

As the stability boundary w = w,f is approached (Sec. 
3.2) the intensity of the radiation should increase. The struc- 
ture predicted for the resonances in Ref. lo6' accords with 
the resonances observed experimentally in Ref. 2 1. The max- 
imum values of the oscillator strengths can be estimated by 
noting that Eqs. (42) and (43) of Ref. 20 do not hold at - - 
ac- 1. After obtaining a,, from this estimate for the condi- 
tion q+213 - w'I2 < 1 and substituting in the indicated equa- 
tions, we get (in atomic units) 

their half-life will probably not differ greatly from that of the max ~(YoJx~Y~lnk)~Z-n-"/3(k+l)"1q-Y'. 
unstable trajectory with E = 0 on the p axis and U-shaped 
states can make the main contribution to the observed spec- 
trum. 

CONCLUSION 

1. The theory developed allow us to investigate in ex- 
plicit form the tunnel effects produced on passage of certain 
series of classical resonances in a semiclassical system with 
nonseparable variables. The phenomenon itself has a rather 
general character and is well known for systems with separa- 
ble variables (e.g., the effective centrifugal barrier for the 
spherically symmetric polarization potential a rP4) .  In the 
two-dimensional case, for an arbitrary closed classical tra- 
jectory, the term quadratic in v in the exponential of the 
Ansatz ( 1.4) and in Eq. ( 1.1 1 ) will be followed primarily by 
a term proportional to d.  An interesting problem is the gen- 
eralization of the theory to include the vicinity of the stabil- 
ity boundary of closed trjectories in N-dimensional space. 

Comparing these expressions with the corresponding equa- 
tions from Ref. 20 far from the stability limits, we find that at 
q - k - 1, near the boundary, transitions from the ground 
state into the considered highly excited states have intensi- 
ties approximately n'I3 times larger if m = 0 and n2I3 times 
largerifm = + 1. 

3. Investigation of size effects in an open cavity can be 
useful not only for optical applictions but also in the theory 
of electrophysical structures of extremely small size. Such 
structures can be reproduced with the aid of a scanning tun- 
nel micro~cope.~' The central link in future transistors based 
on the resonant-tunneling effect is an open cavity of nano- 
meter size. It is of interest to investigate the current-voltage 
characteristic of such a system at an applied voltage close to 
the cavity stability limit. 

4. It is customarily assumed that in non-one-dimension- 
a1 systems without a definite symmetry the tunneling 
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through the potential barrier is effected as a rule in the vicini- 
ty of the most probable path. 1 8 ~ 1 9  It was shown above that the 
inverse situation is also possible, with the probability of pen- 
etrating through the potential barrier is uniformly distribut- 
ed over the entire length of a stable trajectory. The point is 
that we have calculated the tunnel effects by using an expan- 
sion inp and assuming the barriers to be narrow enough. The 
most probable tunneling path may be formed with increase 
of distance from the stability limit. 

The author is sincerely grateful to V. M. Babich and V. 
L. Pokrovskii for a stimulating discussion of the results of 
the work, and V. F. Sumtaskaya for the computer calcula- 
tions. 
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