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A detailed study is made of the rotation of the plane of polarization of a photon under the 
influence of the gravitational field of a rotating source that possesses in the general case electric 
and magnetic charges. Observational manifestations of the rotation are also pointed out. An exact 
expression is obtained for the angle of rotation of the plane of polarization of a photon 
propagating along a geodesic of arbitrary form in a Petrov type gspace-time. It is shown that 
observation of rotation of the plane of polarization could be a new test of general relativity as well 
as a method for determining the physical characteristics of a rotating and charged black hole or 
neutron star. 

A possible new test of general relativity would be obser- 
vation of rotation of the plane of polarization of a photon 
under the influence of the gravitational field of a rotating 
body. This effect, which is a consequence of the dragging of 
the inertial reference frames by the gravitational field of a 
rotating source, has been investigated in the literature in the 
weak field approximation for the case of a photon traveling 
parallel to the rotation axis from - cc to f co or traveling 
along the axis from the rotating object. The results obtained 
by different methods in Refs. 1-6 do not agree with each 
other. One of the reasons for the discrepancy is an insuffi- 
ciently correct chcice of the employed approximations. This 
was shown in Ref. 7, in which the case of a photon leaving a 
radiating object radially was also considered in the weak 
field approximation." A second reason is the absence of a 
sufficiently clear and unambiguous definition of a method 
for measuring the angle of rotation of the plane of polariza- 
tion of a photon propagating in a curved space-time. 

In x-ray astronomy, a new trend has now been success- 
fully developed. It is x-ray polarimetry, and there is hope 
that in the not too distant future the effect of rotation of the 
plane of polarization in the gravitational field of a rotating 
object will be measured. It is clear that this effect must be 
maximal in the strong gravitational field near a neutron star 
or a rotating black hole, where the weak-field approximation 
is insufficient. It is therefore necessary to consider it in more 
detail. 

In the present paper, we propose an unambiguous defin- 
ition of the method for measuring the angle and we obtain an 
exact expression for the angle of rotation of the plane of 
polarization of a photon propagating along a geodesic of ar- 
bitrary form in a Petrov type 9 space-time, and we also 
point out possible observational manifestations of the effect. 
We use the geometrical system of units with c = G = 1 and 
signature + 2 of the metric. 

For a photon propagating in a curved space-time, the 
problem of defining the rotation of its plane of polarization 
arises even in the simplest case when the photon is emitted 
(for example, at z = - w ) and detected (at z = + cc )in 
flat space-time. Indeed, to specify the polarization vector at 
z = - cc one constructs a tetrad of basis vectors at the point 
9 ,, at which the polarization vectorJ'is specified. This tet- 
rad is then transported parallel to itself along two paths: a )  
along the isotropic geodesic that is the trajectory of the con- 
sidered photon, b)  along the r = w path in asymptotically 
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flat space (see Fig. I ). As a result, two tetrads are obtained 
at z = + cc at the point 9,-the one "transported geodesi- 
cally" along path a and the one with "flat transport" along 
path b. They are rotated relative to each other in the plane 
orthogonal to the unit time vector F, and the vector tangent 
to the geodesic through an angle A@,. In addition, the vector 
J'is rotated with respect to the geodesically transported tet- 
rad through an angle AY in the same plane. Then the com- 
plete rotation of the polarization vector of the photon with 
respect to the "flat-transported" tetrad, measured by the ob- 
server at infinity, is 

In some of the studies quoted above, the rotation angle of the 
plane of polarization is taken to be the angle AY, and this 
leads to discrepancy with the results obtained by other auth- 
ors. This can be avoided if as the original tetrad one chooses 
an isotropic canonical tetrad of the Newman-Penrose for- 
malism, which is allowed naturally by the very structure of 
the space-time. Since this tetrad is transported parallel to 
itself, it is not rotated with respect to the flat-transported 
tetrad, i.e., in this case A@, = 0. This property of it means 
that one can also unambiguously define the angle of rotation 
of the plane of polarization in the general case when the 
photon is emitted or detected in the immediate proximity of 
a field source, i.e., in truly curved space-time. Since now 
A@ = A*, the problem reduces to calculating the rotation 
angle of the photon polarization vector with respect to the 

FIG. 1. Rotation of the polarization vector of a photon propagating in 
curved space-time; here, a is an isotropic geodesic, and b is the path of 
transport of the tetrad of basis vectors along the r = m path in flat space. 
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isotropic tetrad in the Newman-Penrose formalism. 
In a Petrov type 9 space-time there exists an integral of 

the motion for isotropic geodesics; this was obtained in Ref. 
8 and is 

K*= { ( k i )  ( 7 ~ ) - ( E )  ( T i )  - ( E f i )  ( f X )  + (EE*) ( f f i ) }  Yz-'h. 

(1) 

Here, land ii are real and iZ and E* complex isotropic basis 
vectors satisfying the conditions 

ifi=ifi'=fie=fifiiiiiiio, ifi=--i, %%'=I,  

V, is, in the considered case, the only nonvanishing tetrad 
complex scalar component of the Weyl tensor describing the 
gravitational field outside the source, jl is the tangent vector 
to the geodesic, 2 = 0 ,  andyis a spacelike vector orthogonal 
to and transported parallel to itself along x, so that 

fZ=O, V$=O. 

The vector7can be identified with the photon's polarization 
vector. 

We introduce two real vectors: 

z= ( E i )  6- (E) i, iE= (EE*)  6- ( E E )  E* ,  

and two real scalar quantities: 

It is easy to show that 

K,= (A+iB) Y;? 

The vectors Z and 5 satisfy the relation 

Equality is achieved when lies on a principal null con- 
gruence, i.e., when x-l or x-ii). This case is degenerate, 
and we therefore consider first the more general case of a 
vector 3; that does not lie on a principal null congruence. The 
vectors Z and 5 possess the properties 

Thus, they are mutually orthogonal and each of them lies in 
the plane defined by a pair of isotropic basis vectors; in addi- 
tion, they are always orthogonal to (if 3; does not lie on a 
principal null congruence this condition is not trivial). 
Therefore, they can be used as polarization unit vectors of 
the photon. Then 

A@=arg{(Zf  i6 )  f )  I s,9z=arg(ASiB) I p t - P z  

for propagation of the photon from the point 9 , to the point 
9, of the space-time. Since K, = const, we have 

argk',  = arg(A+iB) + arg (y ; "  )= const 

and, therefore, 

AQ)='/J arg 'Yzl,,as. ( 3  

It follows from continuity considerations that this formula is 
also true for principal null congruences. 

The Schwarzschild and Reissner-Nordstrom metrics 
are characterized by a real scalar tetrad component Y,. 
Therefore, as one would expect, for a nonrotating source 
there is no rotation of the photon's plane of polarization. 

In the Kerr metric, 

yz=M(r-ia cos 19)-~, 

where M is the mass and a is the specific dimensionless angu- 
lar momentum of the gravitating body; Boyer-Lindquist co- 
ordinates, which coincide asymptotically with ordinary 
spherical coordinates in flat space, are used here. In this 
case2' 

A@=s arctg (q cos 6 )  11, 
where 

e = s i g n { ( r ( P z ) - r ( 9 i ) )  ( 6 ( 9 2 ) - 6 ( 9 1 ) ) } .  

The signum E arises because when the photon approaches 
the source and leaves it there is a change in the sign of the 
cbmponents kr and k9 of the geodesic vector, these being 
determined by the equations (see, for example, Ref. 9) 

k r =  (9 ( r )  )'hp-z, ke=& (O ( 6 ) )  l h p - ? ,  (4)  

where 

P ( r )  =r4+ (a2-Ez-q)r2+ 2 M ( q + ( E - ~ ) ~ ) r - a ~ q ,  
8 ( 6 )  =q+ a2 cos2 6-E2 ctg2 6 ,  

pZ=rzSaZ cosZ 9, E=LzE-', q-QE-'. 

Here, 6 and 7 are integrals of the geodesic motion, L, and E 
are the orbital angular momentum and the energy of the 
photon, and Q is Carter's integral (see Ref. 9). 

For a photon traveling parallel to the rotation axis of 
the source, 

where Pi is the point of closest approach of the photon to 
the deflecting body: 

In the first order in a/R and M/R, we obtain 

a cos fir  a 
AID=-2 arctg (-) a - 2 - cos 6,. 

R R 
The values of ai and R are obtained by solving Eqs. (4).  For 
a photon with arbitrary initial value of the polar angle a(,, 

2M 4Ma 
R 

R2 COS e0. cos 19i - - cos ih, A @  a -- 

For 9, = a, the angle A@ --, - 4Ma/R 2 .  The minus sign re- 
flects the rule for measuring the angle, namely, if we look 
after the photon along the direction z, then the anticlock- 
wise direction will be positive (as argument of a complex 
number). 

In the case of the Kerr-Newman metric, which de- 
scribes the gravitational field of a rotating charged body, the 
component of the Weyl tensor has the form 

Pz+Qz 
Y,=M(r-ia cos 6 ) - ' { 1 -  

M (r+ia cos6) ( 5 )  

where Q and Pare, respectively, the electric and magnetic 
charges of the source. Calculating the rotation angle in ac- 
cordance with Eq. ( 3 ) ,  we find 

a cos 6 
~Q)=s{arc t .~( - )  r 

1 a cos 6 + - arctg ( 
3 r+MpZ (Q2+PZ) -' (6)  
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Far from the source, the rotation angle, calculated to terms 
of second order in a / R  and M / R ,  has the form 

In this case, as follows from the expressions we have ob- 
tained, measurement of the rotation angle of the photon's 
plane of polarization makes it possible to measure the elec- 
tric and magnetic charges of the black hole. 

In conclusion, we list briefly the possible observational 
manifestations of the considered effect. In Ref. 10 there is a 
calculation of the degree of polarization and of the position 
angle of the radiation of the accretion disk around a rotating 
black hole as functions of the photon energy, i.e., effectively 
as functions of the distance in the disk to the black hole. The 
calculation takes into account only the geometrical factors 
associated with the relativistic bending of the accretion disk 
near the rotating hole. Allowance for this effect leads to an 
additional rotation of the plane of polarization compared 
with the results of Ref. 10. For distances of - 10 gravitation- 
al radii, the magnitude of this effect is small and amounts to a 
few degrees. Therefore, the effect can be discovered only in 
future polarimetric observations. However, searches for this 
effect are important, since they would permit determination 
of the physical characteristics of the black hole, for example, 
its electric and magnetic charges. 

A second possible observational manifestation is the 
following. It is well known that by virtue of symmetry the 
integrated polarization of the radiation of a spherical star is 
zero although the radiation of each of its part is polarized, 
i.e., there is complete cancellation of the polarization from 
the individual sections of the surface of the star. The effect 
we have considered leads to a breakdown of the cancellation, 
since the effect depends strongly on the position on the sur- 
face of the star. As a result, we obtain an integrated polariza- 
tion along the rotation axis of the star: 

where& = 100%rfor an optically thin and E = 11.7% for an 
optically thick radiating region ( r  is the optical thickness). 
It is possible to express a  in terms of the angular velocity of 
the rotation of the star. For this, it is necessary to know the 
expression for the relativistic moment of inertia of the star. 
In the case of a neutron star, one can obtain a relationship 
between a  and R by matching the Kerr metric to the metric 
within the star. To obtain an estimate, we assume that the 

star rotates as a rigid body. Then, using the expression for 
the metric within the star in the form of (5.1 11 ) from Ref. 
11, we find 

For a neutron star of radius R ,  = 10 km and M = Ma, we 
obtain 

P 1 4 . 2 ~  (V,/C)' ,  

where v, is the equatorial rotation velocity of the star. It is 
proposed to make detailed calculations of this effect in a 
separate paper. In this case, observation of the rotation of the 
plane of polarization under the influence of the gravitational 
field of a rotating source will not only serve as a test of gen- 
eral relativity but may also give a new independent relation 
connecting the angular momentum, mass, and radius of a 
neutron star. 

We take this opportunity to express our great thanks to 
Yu. N. Gnedin, who drew our attention to the observational 
manifestations of the rotation of the photon plane of polar- 
ization, and also M. Demianski and A. I. Tsygan for helpful 
discussions. 

"We note that Ref. 7 also gives a general expression for the angle of 
rotation of the plane of polarization of a photon traveling parallel to the 
axis. This is given in the form of an integral which, however, iscalculated 
under the assumption that the photon travels absolutely straight with- 
out undergoing deflections. 

Z)Tronslator's Note: The Russian notation for the trigonometric, inverse 
trigonometric, hyperbolic functions, etc., is retained here and through- 
out the article in the displayed equations. 
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