
Nondissipative gravitational turbulence 
A. V. Gurevich and K. P. Zybin 

P. N.  Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow 
(Submitted 17 June 1987) 
Zh. Eksp. Teor. Fiz. 94,3-25 (January 1988) 

The nonlinear stage of the development of the Jeans instability in a cold nondissipative gravitating 
gas is considered. It is shown that in a time exceeding the Jeans time a nondissipative gravitational 
singularity (NGS) (a  stationary dynamical structure with a singularity at its core) is formed in 
the neighborhood of a local density maximum. The density of the gas at the center of the NGS (at 
r-0) becomes  infinite:^ a r - " , where a = 24/13, and the potential \I, of the field and the mean 
square velocity 7 of the captured gas have a power singularity: Y a 7 a r2 - " . A  turbulent 
state arises as a result of the development of the instability when the initial density distribution is 
irregular. The turbulent state is a hierarchical structure, consisting of nested moving NGS of 
different scales, with smaller-scale ones trapped in the field of larger-scale ones. In each given 
NGS, scaling relations are then fulfilled both for the density of the gas and for the number density 
of the smaller-scale nondissipative gravitational singularities. A brief comparison with 
observational data shows that the actual hierarchical structure of the Universe on scales from 
spherical star clusters to rich clusters of galaxies apparently corresponds to developed 
gravitational turbulence. 

Because of the action of the forces of universal gravita- 
tion a cold gravitating gas is unstable. The development of 
this instability leads to the appearance of regions of strong 
compression of the gas, and this has decisive significance for 
the formation of galaxies, galaxy clusters, superclusters, etc. 
It is usually assumed that the main role in this process is 
played by hidden mass that is nondissipative, i.e., interacting 
only through gravitational forces. ' v *  The dynamics of a stel- 
lar gas is also nondissipative in the first appr~ximation.~ 
Therefore, considerable attention is paid to the study of the 
development of the instability of a nondissipative gravitating 
gas in an expanding Universe and to the determination of the 
structures that arise in this process."' 

In the present paper we consider the nonlinear stage of 
the gravitational instability in regions that are sufficiently 
small in comparison with the radius of the horizon, when the 
expansion is unimportant and the Newtonian approxima- 
tion is valid. It is the development of this instability that 
leads to the onset of gravitational turbulence. Because of 
self-gravitation and the absence of dissipation, gravitational 
turbulence differs fundamentally from, e.g., the turbulence 
of an incompressible liquid (it differs not only in its struc- 
ture, but also in its physical nature). In Kolmogorov turbu- 
lence the energy source of the pulsations is the macroscopic 
fluid flow, specified over large scales, while the spectra of the 
pulsations are determined by the flow of dissipated energy 
from large scales to small scales. In gravitational turbulence 
there is no dissipation and the stationary spectra arise here as 
a result of the development of an irregular, unstable initial 
state. The characteristic time of development of the turbu- 
lence is 

tBts, ts= ( 4 ~ G p , ) - ' ~ ,  (1)  

where t ,  is the Jeans time, G is the gravitational constant, 
andpo is the initial density of the gas. 

We shall consider strongly unstable (i.e., far-from- 
equilibrium) initial states, when the initial velocity V,  r 0 
and the density disturbances Sp(0) >po,  so that the nonlin- 
ear development of the Jeans instability leads to the onset of 

strong disturbances of the gas density: Sp)po. " In this case,. 
as will be shown in Secs. 1-5, in the time ( 1 ) a stable station- 
ary structure, witl- a singularity at its core, develops in the 
neighborhood of the local density maximum. We shall call 
this formation a nondissipative gravitational singularity 
(NGS). The density at the center of the NGS becomes infi- 
nite, and the field potential Y and mean square velocity 7 
of the gas trapped in the NGS have a power singularity: 

The parameter a here is found to be almost constant: a = 1.8. 
The nonlinear development of the Jeans instability for 

an isolated initial density peak leads, in this way, to the for- 
mation of an entirely regular dynamical structure. The tur- 
bulent state arises as a result of the development of the insta- 
bility in the case when the initial density distribution is 
random and irregular. The turbulent state is investigated in 
Sec. 6 under the assumption that the spectrum of the fluctu- 
ations of the initial density distribution is homogeneous and 
isotropic. It is shown that in this case a hierarchical structure 
consisting of nested moving systems of NGS of different 
scales develops, with smaller-scale singularities trapped in 
the gravitational field of larger-scale scale singularities. The 
potential of the gravitational field is everywhere continuous, 
but the density becomes infinite at each singularity. The 
number of inhomogeneities of different scales depends on 
the initial spectrum of the density fluctuations. However, 
the scaling relations (2) ,  both for the density of matter and 
for the number density of the smaller-scale NGS trapped in 
the field of a larger-scale NGS, and also for their velocities 
and field potential, remain the same for all scales. It is this 
structure that forms developed nondissipative gravitational 
turbulence. Naturally, it is realized only in a certain range of 
scales. 

In the concluding part of Sec. 6 we give a brief compari- 
son with observational data. This shows that the hierarchi- 
cal structure that is actually observed on scales from spheri- 
cal star clusters to rich clusters of galaxies corresponds, 
apparently, to developed gravitational turbulence. 

1 Sov. Phys. JETP 67 (I), January 1988 0038-5646/88/01OOOl-12$04.00 @ 1988 American Institute of Physics 1 



1. THE PRIMARY GRAVITATIONAL COMPRESSION. THE 
ONSET OFTHE SINGULARITY 

The dynamics of a gravitating gas in the absence of dis- 
sipation is described by the equations 

Here V is the hydrodynamic velocity of the gas, p is the gas 
density, and Y is the potential of the gravitational field. For 
simplicity the density p is written in the system of units in 
which 4aG = 1 (G is the gravitational constant), or, in other 
words, 

p=4nGpl, (4)  

wherep, is the ordinary gas density. The equations (3)  are 
valid for a cold gas, of temperature T-0. 

In this section we shall study nonlinear and nonstation- 
ary flows of the gravitating cold gas described by Eqs. (3) .  
First we shall consider the simplest, spherically symmetric 
configuration, when the velocity has one component V, = V 
and all quantities depend only on rand t .  In the following it 
will be shown that, because of the central character of the 
gravitational forces, it is possible to study the leading singu- 
larity of the structure of gravitational turbulence using the 
example of spherically symmetric motion. 

In the spherically symmetric case Eqs. (3 )  take the 
form 

We expressp by means of the last equation, substitute it into 
the first equation, and integrate over Pdr. We obtain 

where C( t )  is an arbitrary function of time, and 

We shall consider natural conditions when the total mass of 
the matter is equal to M and there are no mass sources any- 
where in space (dM /dt = 0) .  Then for r-, w , as is clear from 
( 7 ) ,  y, = M/47, i.e., dy, /dt = 0, and from ( 6 )  it follows 
that C(t)  = 0. The system ( 5 )  then takes the simple form 

The solution of Eqs. (8)  can be obtained by using a hodo- 
graph tran~formation.~~' In place of (8)  we then obtain 

The latter equation decomposes into two equations: Either 

It is not difficult to convince oneself that the system (9) ,  
(9a) does not have physically interesting solutions. From 
(9)  and ( 10) we obtain 

ar/dV=-Vr2/y, dt/dV=-r2/y. (11) 

Hence, 

r-'=VZ/2y+H(y), (12) 

where H(y)  is an arbitrary function. Integrating next the 
second equation ( 11 ), with ( 12) taken into account, we find 
t(y, V). The final expressions have the form 

t= (2y)-'"H-%(y) [arctgz+z/(1+z2)]+d(y),  
(13) 

r=I/H(y) (l+z2), ~=-V[2yH(y)]- '~ .  

Here d ( y )  and H(y)  are two arbitrary functions, deter- 
mined by the initial conditions of the problem. In the relativ- 
istic case the analogous solution was obtained by ~o lman . '  
In particular, if the gas at the initial time t = 0 is stationary, 
i.e., 

p=po(r), V=V,(r)=O, (14) 

then 
r 

1 
&(Y) -0, H(Y)  = -, Y= ri2po (rl) dri. r 

(15) 
0 

The last two relations in ( 15) with a specified initial density 
po ( r )  determine the function H(y) .  From ( 13 ), (7 )  we find 
after this, in implicit form, the functionsp, V, and \V for all 
values oft and r. We note that the choice ( 14) of a zero initial 
condition for the velocity is related to a real problem of inter- 
est to us2; in addition, it is precisely in this case that the 
effects of gravitational compression are manifested most 
sharply. 

We shall give an example. Suppose that, at the initial 
time t = 0, 

where a is the characteristic size of the density inhomogene- 
ity. For the following it is convenient to measure r in units of 
a, and y in units of yo = p,0a3/3. Then r/a - r and y/yo -y. 
It then follows from ( 15) that, at t = 0, 

The function r-' = H ( y )  has the following asymptotic 
forms: 

H (y) =y-'" (l-1/5y"') for y+O, 

H (y) =I+3-'"(a/5-y)"B for y+'/,-O, (18) 

0 for Y + ~ / ~ + O .  
The dependence of y on r, as determined by ( 13 ) , (7 ), and 
(17),  is presented in Fig. 1 for different values of t. The 
functionsp(r), Y ( r ) ,  and V(r) can be found analogously. It 
can be seen from the figure that the gas is rapidly compressed 
under the action of the gravitational force, and at time 

t -3'h.2-'hnt a - (19) 

a singularity arises-the gas density at the center becomes 
infinite. In the latter expression to is given in dimensional 
variables; it can be seen that the singularity arises in the 
characteristic time t, ( 1 ) of development of the Jeans insta- 
bility. The behavior of all quantities at the time t = to in the 
vicinity of the singular point r = 0, as follows from ( 13 ), 
( 18), is given by the expressions (in dimensional variables) 
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FIG. 1 .  Dependence of the quantity y = rdY/ar on r at different times 
t / to.  

p=V7 (40/9n) v1p,o(r/a)-"/7, Y =Y,S7/,/3(r/a)'/7, 

v= (28) '"(rla)'/7, ~=413nGp10a2(40/9n)v~. 
(20) 

It can be seen that the field potential, unlike the density, has 
a finite value at the singular point. This constitutes the prin- 
cipal difference from the equilibrium distribution of the gas, 
for which the particle density and the potential, which are 
connected by the Boltzmann relation, can become infinite 
only simultaneously. 

A singularity of the form (19), (20) arises for any ini- 
tial spherically symmetric density distributionp, ( r )  in ( 15) 
with a maximum at the center r = 0. The reason for this is 
that the motion of the gas in the region r-0 is determined by 
the particle distribution p, ( r )  in the vicinity of the center, 
which, for r g a ,  has the form ( 16), with 

plo=po(0), a2=2pIo(dZp0 (0) ldr2) -'. (21) 

Therefore, in the general case as well, the time to of onset of 
the singularity and the behavior of all quantities in the vicini- 
ty of the center are described by the formulas ( 19)-(2 1 ). 

Analogous singularities arise in a finite time to upon 
compression of a gravitating gas even in the absence of 
spherical symmetry. For example, for planar motion in con- 
ditions when Vo ( x )  = 0, at t = 0 we have 

wherep,, and a are given, as before, by (21 ). For cylindri- 
cally symmetric motion under the same conditions we have 

We now consider the distribution of matter near an 
aribtrary density maximum. In the general case, such a dis- 
tribution can be represented in the form 

P = P ~ - ~ / ~ ~ ~ "  (x2/a2+y2/b2+z2/c2). (23 

We introduce the variable 

E= (x2/a2+ y2/b2+z2/c2) % (24) 

and shall seek the solution of the system ( 3 )  with the initial 
conditions (23) in the form 

Substituting (25) into ( 3 )  and using arguments analogous 
to those employed in the derivation of (6) ,  (7), (8 ) ,  we 
obtain 

Introducing the variable y = 6 2dB/d6, it is not difficult to 
reduce the system of equations (26) to the corresponding 
equations (8 )  obtained earlier for the spherically symmetric 
case, with the one difference that now the role of the variable 
r is played by the variable f. Because of this, the solution of 
the system (26) also turns out to be identical to that ob- 
tained above [ ( 13 ), ( 19)-(21) 1, with the same replacement 
of r by 6. Thus, the singularity that arises in the general case 
of the three-dimensional density distribution (23) has the 
same character as in the spherically symmetric case. The 
pattern of the motion becomes two-dimensional (cylindri- 
cal) or one-dimensional (planar) only when we set c = w 
(or, respectively, c = w and b = w ) in (23) from the out- 
set; the character of the behavior of the density near the 
singularity then changes [see (22) 1 .  

The singularities considered above arise on account of 
gravitational compression of peaks in the density of matter 
that is initially at rest or moving uniformly. In the presence 
of dispersion of the initial velocity the appearance of other 
singularities is possible, and these have been considered pre- 
viously by Zel'dovichs and Arnol'd.' An essential point is 
that they have the same behavior of the parameters in the 
vicinity of the singularity as in the planar case (22). In this 
case [see (22) 1 

so that the motion near the singularity has, essentially, a 
purely kinematic character, and the role of the field is of little 
importance.' On the other hand, in our case, for arbitrary 
compression, as can be seen from (20) and (26), near the 
singularity the virial relation 

V",Y-Y,, 

is fulfilled. In this case the decisive influence on the dynam- 
ics of the gas after the appearance of the singularity is exert- 
ed by the capture of the gas in the potential well that has been 
formed. The following sections of the paper are devoted to an 
analysis of the pattern of motion that arises in this case. 

2. MANY-FLUX FLOWS 

The applicability of the equations (3  ) of single-flow hy- 
drodynamics to the description of the motions of a cold 
gravitating gas is limited. This can be seen, in particular, 
from the results of the preceding section: In a finite time to a 
flux-breaking singularity arises. Beyond the singularity, in a 
nondissipative medium, many-flux flows appear: At a given 
point r a t  time t several fluxes, having different velocities V, 
and densitiesp,, are present simultaneously. By considering, 
in this case too, a cold gas interacting only through gravita- 
tional forces, we arrive at the equations [in place of ( 3 )  ] 
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apt - + div (ptVt) =0, 
at 

av1 -+(VIV)V1+VY=O, by= zpi, i=1 ... . n. (27) 
at a 

With the development of the motion, because of multi- 
ple reflection and breaking, the number n of fluxes can be- 
come rather large. It is convenient, therefore. to introduce 5 

the distribution function FIG. 2. Profile of the velocity V ( x ) .  Dashed curve-before the breaking 
of the flux; solid curve-after the breaking of the flux; x+ and x-  are 
points on the caustics. 

The distribution function f(r, V, t )  has the meaning of the 
matter density created at the spatial point r at time t by the of the field, also become infinite at the point x f  ( t ) .  How- 
fluxes whose velocities lie in the interval between V and V + ever, the gravitational potential q itself and its first deriva- 
d V. Using the system of equations (27), we obtain tive remain continuous at points on the caustic: 

We emphasize that the kinetic equation (28) describes in 
our case the hydrodynamics of many fluxes of a cold contin- 
uous medium, and not the motion normally considered (see, 
e.g., Ref. 10) for a system of particles. The possibility of 
going over to the kinetic description (28) in the many-flux 
hydrodynamics (27) is based on the equivalence of the iner- 
tial mass and gravitational mass. Only because of this cir- 
cumstance is it the case that the acceleration acquired by 
each flux at a given point r under the action of the gravita- 
tional force is independent of the flux density and is de- 
scribed by a single expression. 

An important role in Eq. (27) or (28) is played by the 
caustic surfaces on which the fluxes either coalesce or prolif- 
erate. This process is shown for different cases in Figs. 2 and 
3. In Fig. 2, x f  ( t )  and x -  ( t )  are points of the caustic that 
arises upon kinematic breaking of the flux.x35 Between x+ 
and x- there are three fluxes, and for x > x f  and x < x- 
there is one. At the point x f  the fluxes V,  and V2 coalesce, 
and the derivatives of V have singularities: 

(29b) 

Analogous conditions are fulfilled at the point x -  at which 
the fluxes V, and V, coalesce. A general classification of the 
types of caustic surfaces that arise upon kinematic breaking 
is given in papers by Arnol'd et al.93'1 

Figure 3 shows the proliferation of fluxes in an oscillat- 
ing gas captured by the field. If the frequency of the oscilla- 
tions, as in the case considered in Fig. 3, varies as a function 
of their level, then the number of caustics and, consequently, 
the number of fluxes will increase continuously with time 
(see, e.g., Ref. 12). The boundary conditions on the caustics 
continue to have the form (29). 

The singularities (20), (21) that we considered in Sec. 
1, which arise at the center of a spherical or an elliptical 
density peak, are capture singularities. They are, however, 
distinctive: For t > to ,  as will be shown below, singular fea- 
tures containing an infinite sequence (converging toward 

- ( )  -++-. (29a) the center) of caustic points arise in them. It is on the basis of 
x + x * ( t )  these features that the stationary nondissipative gravitation- 

The densitiesp"' andp"), like the second derivative a *q/ax2 al singularity is subsequently formed. 

FIG. 3. Development with time of a many-flux flow V ( x )  
upon capture in a potential well: t ,  i 1, < t ,  < t,. 
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3. SPHERICALLY SYMMETRIC GRAVITATIONAL 
SINGULARITY 

We shall continue the analysis of the compression of a 
spherically symmetric density peak into regions beyond the 
singularity. For this we shall go over from (3)  to the kinetic 
equation (28) ,  which, in the case under consideration, can 
be written in the form 

Here f = f ( V ,  r, t)  is the distribution function of the fluxes 
with respect to the radial velocity V,  = V. In accordance 
with Sec. 1, it is assumed that other velocity components are 
absent at the initial time t = 0, and, consequently, because of 
the spherical symmetry of the field potential, at all subse- 
quent times. The effective densityb is written with allowance 
for the spherical accumulation of flux, and is connected with 
the true density p,  by the relation [see (4)  1 

It follows from ( 13), ( 14), and (31) that in the pri- 
mary-compression period t < to we have b = C(t)? in the 
vicinity of the center. At the time t = to ( 19) of onset of the 
singularity the value ofp increases sharp1y:b = CO?/' (20). 
For t > to in the case of purely kinematic breaking the quan- 
tity would have a finite value po ( t )  at r = 0, but in this 
case, as follows from (30), the potential of the field at r=O 
would change its form sharply and would acquire a singular- 
ity of the logarithmic type: 

Y ( r ,  t ) r + o = p o ( t ) l n  r. (32) 

In this case strong capture in the gravitational field (32) will 
occur, so that the motion of the gas, like the value of its 
density at r ~ 0 ,  should be determined specifically by the ac- 
tion of the field. 

Another important point is that the logarithmic poten- 
tial well at times t close to t, turns out to be very narrow. 
This implies that the frequency of the oscillations of the 
fluxes trapped in the well is large, and, as will be shown 
below, increases rapidly as one goes deeper into the well, i.e., 
as r-0. Consequently, for t >  to an infinite set of caustic 
singularities, converging toward the point r = 0, immediate- 
ly arises in the vicinity of the center. Correspondingly, an 
infinite set of fluxes also arises here. We shall call such a 
structure a gravitational singularity. 

To describe the gravitational singularity it is natural to 
use the theory ofadiabatic capture (see Ref. 13 and Sec. 36 of 
Ref. 14), since the variation with time of the parameters of 
the potential well is slow in comparison with the frequency 
of oscillations of the fluxes trapped in it. This means that in 
the first approximation the oscillations occur as if in a sta- 
tionary well. Neglecting, then, the term a f /at in Eq. (30), 
we obtain 

In other words, because of the frequent oscillations in the 
well the distribution function, in the first approximation, 
turns out to be mixed over the surface of constant "energy" 
E. Taking into account now the slow variation of the well 
with time, we have 

I -  v dr=2*f (8-'4')'" dr, '4' (r , ,  t )  m e ,  (33 

Here I(&, t)  is an adiabatic invariant, r ,  = r, ( E ,  t )  is the 
reflection point, and it has been taken into account that 
V =  &- 2li2(& - Y)li2. The formulas (33) give the general 
solution of Eq. (30) in the adiabatic approximation. The 
conditions for applicability of this approximation for our 
case will be discussed later. 

The form of the function f ( I ) ,  according to Ref. 13, is 
determined by the conditions on the capture boundary, i.e., 
for I = I, (t) ,  where I, is the maximum adiabatic invar- 
iant, calculated for the capture boundaries. It is natural to 
take as a capture boundary the level of the first caustic 
Y = \V, ( t ) ;  the energy in the well (EGO)  is reckoned from 
this level. The potential at a point on the caustic, according 
to (29), is continuous, together with its first derivative, and 
will also be reckoned from the level Y,. In order to find the 
function f (I, ) it is necessary to determine the total magni- 
tude of the mass h? of matter trapped in the well: 

It is not difficult to convince oneself that, since [see (33) ] 

the second integral in (34) is equal to unity. Therefore, 

and, consequently, 

The value of the invariant I, increases monotonically with 
time from I, = 0 at t = to to I, = I, ( t ) .  The quantity 
f (I,) varies correspondingly, in accordance with (35), 
and, according to (33), the value off is subsequently con- 
served: 

f (I) =f ( I m ) I m - r .  (36) 

The formula (36) expresses the distribution function f (I) 
in terms of its value on the boundary I, at the earlier time at 
which I, was equal to I. Thus, in its general form the solu- 
tion of the kinetic equation (30) in the region of capture is 
known and is given by (33), (35), and (36); it depends 
strongly on the potential Y(r, t)  of the field. The problem 
now reduces to the integration ofjust the potential equation 
(30), which takes the form 

0 
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Here the parameter r, ( t )  is determined by the conditions for 
joining with the solution ( 13), (20), and the function f (I) 
is determined by the conditions (35), (36) on the boundary 
of the well. We shall consider the process of formation of the 
well immediately after the primary singularity: 

r= (t-to)/to<I. (38) 

For a point r, ( t )  on the first caustic, using the solution ( 131, 
(20) we obtain 

re ( t )  =r,z7/; r,=ak, (39) 

where a is the scale characterizing the initial density distri- 
bution ( 16), (21); k is a constant of order unity that deter- 
mines the exact position of the caustic, and will be deter- 
mined later. Correspondingly, for the mass M trapped in the 
well we have 

Taking into account the power-law character of the de- 
pendence of r, and M on T, we shall seek the solution of Eq. 
( 37 ) in the self-similar form 

Y (2, ~ ) = Y ~ T ~ ~ @  (x), (41 

where Y, is a normalization constant with the dimensions of 
the potential Y, x is defined in (37), and a, is an arbitrary 
constant; Y, and a, will be determined below [see (47) 1. 
According to (37) we then obtain 

ro(t) = br,(t) =br,~'/~, 
x , ( v )  

Z = a 2 + 1 1 F  (y), F(y) = J [y-@ (r) ]'*oXdr, (42) 
-m 

Here b is a constant of order unity. In particular, for the 
maximum invariant, 

0 

m = a d 2 + Z F o ,  Po= [-@ (x) ]'ex dz, (0) -0. (43 ) 
- es 

It follows from (35), (40), and (42) that 

In order to find now the distribution function f (I) of 
the adiabatic invariants we must, according to (36), equate 
I,,, (T)  = I and hence express T as a function of I .  We have 

r (I) = (I/IIFo) 21(a~+'13). 

Substituting this quantity into (44) and taking (36) into 
account, we find 

Correspondingly, for the energy distribution function, using 
(42), we obtain 

(46) 
Substituting this expression into (37) we determine the pa- 
rameters a, and Y, : 

Equation (37) is brought after this to its final form: 

We shall investigate the asymptotic behavior of the 
function @(x)  in the vicinity of the singularity, i.e., for 
x-  - UI or r-0. We make the assumption,which will be 
justified later, that F (y) falls off sufficiently rapidly as 
y - - UI , so that the integral 

0 

converges. Equation (38) in the limit x- - UI then takes 
the form 

Its solution that goes to - co as x- - co has the form 
3 'I, 2 In(-x) 

( - ( x )  2 [I+---+.. 9 -x 1 . (51) 

Thus, as r-0 the gravitational-field potential 
Y - - [ln(l/r)] - - UI. The effective density p (30) then 
vanishes logarithmically as r - 0: 

PC" (-X) - l b ~ [ l n  (Ilr) ]-'la. (52) 

Comparing (52) with (32), we see that the distributions ofp 
and @ near the singularity are completely determined by the 
action of the gravitational field. Finally, from (51), (48), 
and (46) it is not difficult to obtain also the asymptotic form 
of the energy distribution function as E -  - UI : 

It can be seen that the distribution function falls off exponen- 
tially as E -  - a,, and this, in particular, is the justification 
for (49 ) . 

The complete solution of Eq. (48) has been found nu- 
merically by the method of iterations. The result of the cal- 
culation is presented in Fig. 4. The constants b and k, deter- 
mined by the conditions for joining of the potential @ and its 
derivative d@/dr with the solution ( 13 ) , (20), were found to 
be equal to 

FIG. 4. Dependence of the potential Y on x = ln(r/r,). 
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The condition for applicability of the adiabatic approxi- 
mation is 

Here Tis the period of the oscillations. Taking into account 
that, according to (41 ), (47), 

from (33), (42) we obtain for - y k 1 

where Po is a constant of order unity and y is defined as in 
(53). For y-0 it is found that P r  0.3. Thus, the conditions 
for applicability of the adiabatic approximation are always 
well fulfilled for sufficiently large values of lyl. 

We have considered the process of the onset and initial 
development of a nondissipative gravitational singularity. In 
time, for t% to,  mixing occurs throughout the volume of the 
gas, and as a result a distribution that rapidly approaches the 
stationary distribution f = f (E) is established. An impor- 
tant point is that the distribution function preserves in this 
process its exponential decay in the region of the singularity, 
where E--* - W .  Therefore, the logarithmic laws (51) and 
(52) describing the decays of the potential and density 
always remain valid, and this leads, in dimensional vari- 
ables, to the expressions 

p=C/r2[ln ( l l r )  I"', Y =6nGC [ l n  ( l l r )  (55 

An important point is that, because of the conservation of 
the total mass M and total energy of the system in the 
process of the gravitational compression: 

rn 

M=4n J p o  ( r )  r2 dr, 

the stationary density distribution established turns out to 
depend extremely weakly on the concrete form of the distri- 
bution function f (E).  This can be seen from Fig. 5, in 
which, as an example, stationary distributions of the density 
and potential are shown for the same values of M and $ and 
substantially different functions f (E)  : 

FIG. 5. Stationary distributions o f  ( a )  the field potential Y and ( b )  the 
density p as functions o f  x = ln(r/r ,)  for the energy distribution func- 
tions (57a) (curve 1 )  and (57b) (curve 2 ) .  
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The constants f o ,  E ,  , and E, appearing in (57) are deter- 
mined uniquely from the values of the total mass M and 
energy $. We note that in the expression (55) the constant 
C -  I z? I/MG. 

Thus, for spherically symmetric gravitational compres- 
sion a nondissipative gravitational singularity arises at the 
center in the Jeans time ( 1 ) and subsequently develops into a 
stationary singularity. The field potential and density in the 
NGS always have a singularity of the form (55). 

4. CONSERVATION OFTHE SQUARE OF THE ANGULAR 
MOMENTUM 

Above, we considered spherically symmetric compres- 
sion. In the general case, however, as was shown in Sec. 1, the 
three-dimensional gravitational compression of an arbitrary 
initial density peak has an ellipsoidal character [see (23)- 
(26) 1. In this case an important role in the formation of the 
three-dimensional singularity is played by the angular mo- 
mentum. It is necessary, therefore, to consider the question 
of the conservation of the angular momentum in a many-flux 
flow in a nondissipative medium. 

As can be seen without difficulty, the total angular mo- 
mentum of the gas is conserved in the presence of an arbi- 
trary number of fluxes. In fact, by defining the angular-mo- 
mentum density 1 of the gas by the relation 

1- J [ r v ] f d ~ ,  (58 

starting from (28) we obtain for the components li the equa- 
tions 

Here E,, is the unit antisymmetric tensor, and we have sum- 
mation over repeated indices. By integrating (59) overd 3rin 
a closed system, we find that 

In particular, in our formulation (14) of the problem the 
initial velocities 

V,(r) =O (60) 

and, consequently, the total angular momentum is equal to 
zero: L, = 0. 

The fundamental difference between a many-flux flow 
and a single-flux flow lies in the existence of independent 
higher moments of the velocity. From the vanishing, e.g., of 
the average velocity (the velocity of the directed motion) it 
does not by any means follow that the mean square velocity 
(the velocity of the thermal, chaotic motion) is also equal to 
zero. The mean square velocity, as is well known, determines 
the pressure, which is a very important characteristic of the 
dynamics of the gas. The situation with the angular momen- 
tum is entirely analogous. Besides the mean angular momen- 
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tum, in a many-flux system we can also introduce the mean 
square angular momentum 

This quantity, like the ordinary pressure, is a scalar, and it is 
this quantity which determines the internal angular-mo- 
mentum pressure, as it were, that opposes the compression 
of the system. 

We now elucidate how the square of the angular mo- 
mentum evolves in time. We introduce by the relation 
(61 ). Differentiating (61 ) with respect to time and using 
(28), we obtain 

wherep is the average gas density (28) andj, = J V, f dVis 
the flux of matter in the radial direction. Starting from the 
continuity equation and Poisson's equation, it is not difficult 
to obtain the relation 

where j,, is the divergent part of the matter flux (curlj,, 
= 0).  

Henceforth, we shall confine ourselves to considering 
initial conditions corresponding to an elliptically symmetric 
matter distribution (23) at time t = 0. Using then the 
expression (63), and also the symmetry of the problem un- 
der replacement of x by - x ,  y by - y, or z by - z, we 
obtain 

where A,,, is the angular part of the Laplacian in spherical 
coordinates. After integration of the expression (64) by 
parts and introduction of the variable p = cos9 we find, fin- 
ally, 

Here L t is the field part of the total squared angular mo- 
mentum. 

It follows from the conservation law (65) that if at the 
initial time t = 0 the gravitating gas had, by virtue of (60), 
zero angular momentum, then, as a result of complete relax- 
ation to the mixed spherically symmetric state, although z, 
remains equal to zero, the matter acquires a squared angular 
momentum exactly equal to the field part L $ at t = 0: 
- 
L ~ = L ~ : .  (66) 

We note that, in the case of elliptical compression, before the 
time of formation of the caustic, as can be seen from (25), 
L = 0. After the formation of the caustic, because of reflec- 
tion from the field potential, the radial character of the mo- 
tion of the particles is destroyed and the fluxes acquire a 
squared angular momentum L on account of the squared 
angular momentum L $ of the field. In (66), 'Vo (r, p,p) is 
the initial distribution of the field potential at t = 0. Calcu- 
lating the value of the quantity L $<, for an initial ellipsoidal- 
ly symmetric matter-density distribution (23), we find 

roamax {a, b, c ) .  (67) 

Here a, b, and care the semiaxes of the initial ellipsoid. It can 
be seen that the squared angular momentum acquired is 
proportional to the difference of the squares of the semiaxes. 
If all the axes are equal, the compression is spherically sym- 
metric and, naturally, L ;<, = 0. If the initial ellipsoid differs 
little from a sphere, the mean density of the squared angular 
momentum is equal to 

Herep, is the gas density at the maximum of the initial dis- 
tribution, and ro r a is the initial radius of the density peak 
[the formula (68) is written in dimensional variables]. 

5. GRAVITATIONAL SINGULARITY OF GENERAL FORM 

We consider now the process of mixing and of the estab- 
lishment of a stationary many-flux distribution after a hy- 
drodynamic singularity of general form, with the ellipsoidal 
character (23), (26). 

The main difference from the spherically symmetric 
case considered in Sec. 3 lies in the appearance of a nonzero 
squared angular momentum of matter about the center 
r = 0. In the absence of angular momentum all characteris- 
tics of the kinetic equation (28 )  pass through the center and 
are bounded only by the energy level E (32). Because of this, 
a contribution to the density f i  at a given point r is made by all 
trajectories with E > Y ( r )  [see (37) 1. But the appearance of 
a nonzero squared angular momentum forbids penetration 
of the characteristics into the region close to the center. A 
result of this is the "reflection" of trajectories, which, as is 
well known,"+14 is described by 

E , ~  =V2/2+ Y (r) +mZ/2ra=const. (69) 

It leads to the appearance of two points of reflection of 
trapped trajectories (rm, and rmax ). The density of the 
trapped gas turns out to be smeared out, as it were, over the 
finite region between rmin and rmax . 

The process of the smearing out of the distribution func- 
tion of the trapped fluxes over the energies near the singular- 
ity for t >  to (19), as in the spherically symmetric case, oc- 
curs in a time t - to 4 to (38). But the isotropization of the 
system over the angular variables in a strictly spherical po- 
tential occurs on account of ergodic occupation of trajector- 
ies of the region between r,, and r,,, (Ref. 10). This pro- 
cess is slower-its characteristic time is of order to. An 
important feature here, however, is the deviation of the field 
potential from spherical symmetry; this deviation leads to a 
considerable acceleration of the mixing and to relaxation of 
the system over the angular variables (the analogous process 
of so-called fast relaxation was considered for a gravitating 
gas in Ref. 16). Therefore, we can suppose that the mixing 
process, even in the presence of a nonzero squared angular 
momentum and with allowance for the fast relaxation, can 
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be described in the adiabatic approximation. 
Also of great importance is the fact that, because of the 

conservation of the squared angular momentum, the trajec- 
tories that emerge at time to from the peripheral regions 
never fall close to the center and, consequently, do not affect 
the structure of the central region. Therefore, the stationary 
distribution near the singularity is established very rapidly 
in comparison with the total relaxation time to of the initial 
density peak. In other words, the process of adiabatic mixing 
near the singularity (in contrast to the case of a spherically 
symmetric singularity-see Sec. 3) leads immediately to the 
formation of a stationary distribution function f (E, m2). 
Correspondingly, the steady-state effective density b ( r )  
(3  1 ) can be represented in the form 

In the following we shall consider the case of ellipsoidal 
compression that does not differ strongly from spherically 
symmetric compression [see (68) 1. As the adiabatic invar- 
iants in such a system it is natural to choose the squared 
angular momentum m2 and the radial-motion invariant I, 
analogous to (33) : 

The latter relation in (7  1 ) determines the turning points r,, 
( E )  and r,,, ( & I .  

The distribution function f near the singularity in the 
approximation of fast adiabatic mixing depends only on the 
invariants I and M 2. The concrete form of f (I, m2) is then 
determined from the boundary conditions specified in the 
region of the hydrodynamic-compression caustic. We shall 
consider a matter element d~ near the caustic surface r, . In 
our approximation, when this element intersects the caustic 
surface it is rapidly redistributed and mixed in the many-flux 
zone in accordance with the conservation of the adiabatic 
invariant I and with the transformation of the field part 
Z,(r,) of the squared angular momentum into the squared 
angular momentum of the matter, as described by (66), 
(68). (Before the caustic surface, as follows directly from 
the solution of (25), (26), the squared angular momentum 
of the matter remains equal to zero.) Thus, near the caustic 
surfacer,, in accordance with (35 ), (68), the boundary con- 
ditions have the form 

dM=ph(ro)dro=f (I) dl, f (I, m2) =f (z)6(mZ-lz(ro) ). (72) 

Here I is the adiabatic invariant (71 ) on the caustic surface 
r,, when 

where p, (r, ), V, (r, ), and Y(r, ) are the density, velocity, 
and gravitational-field potential in the hydrodynamic solu- 
tion (20), (23) at the point r,; it has been taken into account 
that Vi = (4/7)Y06" (20). 

We now substitute the distribution function (72) into 
the expression for the effective density (70). The integration 
over the angular momenta dm2 here is performed immedi- 
ately. In addition, it is convenient to integrate over dr, in- 
stead of d ~ .  We have 

where the conservation of the adiabatic invariant I is taken 
into account by the fact that the quantity (dddr ,) ,  is calcu- 
lated at constant I: 

Substituting (74), (75) into (70), we find, with allowance 
for (72), 

As is clear from (71), (73), 

In the integration it has been taken into account that the 
main contribution to the integral is made by the region in 
which the hydrodynamic asymptotic form for the potential 
is valid (see below); in addition, in the last term in the inte- 
grand, I ,  (r, ) a r: [see (68) 1,  and for sufficiently small r, 
this term is unimportant. 

Integrating now in (76), we find, finally, 

p (r) =piorzf*f, 
plo = 2 ' / la  (7/y) ' * / z ,  ~ , , B ~ Y ~ J / ~ ~ B ~ ~ ~ ' ~ ~ ,  
i (78) 

Here we have taken into account the expression (68) for I ,  
(rO ), and Ph (r, ) = [the quantity Po is defined as in 
(20) 1. Correspondingly, the total density 

The potential and the modulus of the mean velocity are equal 
to 

where a is the initial size of the matter density peak. From 
this it can be seen that the field potential at the center of the 
NGS remains finite for all values of mi $0, and the depen- 
dence of p and Y on r near the singularity is a power-law 
dependence. However, as the spherically symmetric initial 
condition is approached (mi -0) the depth of the potential 
well increases, and becomes infinite in the spherical case 
(mi = 0).  The density p increases analogously, and for mi 
= 0 loses its meaning. It is in this way that one passes to the 

limit of the distinct, strictly spherically symmetric case. 
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We note that, as can be seen from (76), the main contri- 
bution to the asymptotic form (80) is made by the region of 
values r, - rl3Iz4 ) r. Performing the calculation for the re- 
gion r, X r, ) r  [a calculation entirely analogous to (76)- 
(78)],  it is not difficult to convince oneself that the field 
potential \I/ and density p preserve here the dependence 4/', 
and, to within a constant, coincide with (20); this fact was 
used in (77). 

To conclude this section we shall consider the impor- 
tant question of the stability of the spherically symmetric 
singularity that has formed-a singularity at which the field 
potential Y(r) = q,(r/a)2"3, while the distribution func- 
tion f, (E, m2) possesses the property (see the dependence of 
f, on m2) that in the vicinity of the singularity at r 4 r ,  we 
havedf, /dV = V,d f, / d ~ .  For the perturbation Sf ofthe dis- 
tribution function in the linear approximation we have 

a a a 
- 6 f + V V 6 f + V Y  - 6 f S V 6 ' 4  -fo=O. 
at a v av (81) 

We shall compare the third and fourth terms of Eq. (81) 
near the singularity r- 0. Assuming that for r-+ 0 the pertur- 
bation Sf is an analytic function, we obtain from (81) the 
following estimates: 

a 6~ PO vs'4 - fo- --. 
av Fr; 

Here A Vis the characteristic width of the perturbation of the 
distribution function in velocity space, and A is the charac- 
teristic size of the density perturbation. 

Taking into account that, according to Poisson's equa- 
tion, (2/13)(1 + 2/13)@, =a2p0, and SV-A 'Sf, we find 
from (82) 

More precisely, the relation (83), according to the above 
estimates, takes the form 

The inequality (84) is always fulfilled for rgr , ,  since for 
perturbations localized inside the singularity we have 
h ~ < @ i / ~ a n d A < a .  

Thus, near the singularity the last term in Eq. (81) is 
always small. Neglecting it, we rewrite (8 1 ) in the form 

This equation describes the motion of the captured particles 
in a specified potential Y ( r ) ,  and, as is well known,'' does 
not have growing solutions. In time, the distribution func- 
tion Sf is merely smeared out over the phase volume. 

Thus, the solution that we have obtained in the vicinity 
of the singularity is stable against small perturbations, at 
least over a period of time many times greater than the oscil- 
lation time. 

6. THE HIERARCHICAL STRUCTURE OF THE DEVELOPED 
TURBULENCE 

It was shown above that, because ofthe nonlinear devel- 
opment of the Jeans instability, initial density peaks ofa non- 

dissipative gravitating gas arrange themselves, in a time ex- 
ceeding the Jeans time ( I ) ,  into stationary and stable 
dynamical NGS structures. These are characterized by a 
well defined scaling law (79), (80) for the density distribu- 
tion, velocity and field potential that depends only weakly on 
the initial conditions. However, the scale of each of these 
formations remains arbitrary-it is determined by the spa- 
tial dimension L of the initial density peak, or, equivalently, 
by the ratio of the squared mass of the density peak to the 
total energy: L-GM2 /8 (56). 

We now consider the case when the initial density of the 
gravitating gas has a random distribution containing a broad 
spectrum of fluctuations, which are assumed to be homogen- 
eous and isotropic. The dynamics of the system is described 
as before by Eqs. (3)  with the initial conditions ( 14), where, 
as usual, V, ( r )  = 0 (60), andp, ( r )  is now a random func- 
tion with a broad spectrum of scales L. We introduce the 
distribution function averaged over the scale L: 

Performing the corresponding averaging in Eqs. (28 ) , we 
obtain 

Below it will be shown that the correlation integral S ,  is 
small, and can be neglected in the first approximation. In 
this approximation Eqs. (86) essentially coincide with the 
starting equations (28). The only difference is that the initial 
density distributionp, (r)is averaged: 

1 
P ~ L ( R )  = I Po (R+\) exp (-Fz/Lz) a. (87) 

This means that all the peaks of the initial density on scales 
smaller than L are smoothed out. Therefore, the solution of 
Eqs. (86) with the initial distribution (87) leads to the ap- 
pearance of NGS that are only of scale L or larger. 

We now consider a scale L ,  )L. The equations for f,, 
have the same form (86), but, by virtue of the averaging 
(87), the initial inhomogeneities can contain density maxi- 
ma only with scales I? X L, . The dynamical development of 
such systems will lead to the formation of stationary gravita- 
tional singularities with scale L ,, which contain singularities 
(describable by the function f of scale L )  in the form of 
small elements trapped in the field of the NGS of scale L , .  
The same also applies to the singularities of scale L 2  4 L cap- 
tured in the field of the NGS with scale L and describable by 
the function fL2. 

As a result, the complete solution is a hierarchical 
structure consisting of nested NGS of different scales, 
smaller-scale singularities being trapped in the field of a larg- 
er-scale NGS and moving along finite trajectories in this 
field. The potential of the gravitational field in this case is 
everywhere continuous, but the density of the gas becomes 
infinite at each singularity. The number of NGS of different 
scales that are formed depends essentially on the distribution 
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of the initial fluctuations. At the same time, the scaling rela- 
tions (79),  (80) for the gas density, potential, and velocity 
do not depend on the initial fluctuations, and remain the 
same on all scales. Moreover, by virtue of the homogeneity 
and isotropy of the initial fluctuations the number density p,  
of NGS of each scale is proportional to the total density of 
the gas: pL -p. It follows from this that the number density 
of the smaller-scale NGS trapped in the field of a larger-scale 
NGS, like the gas density p ,  always obeys the scaling law 
(79):  

pLmpWr-", a=2411s~1.85. (88) 

We shall call such a hierarchical structure developed iso- 
tropic and homogeneous nondissipative gravitational turbu- 
lence. It develops simultaneously on all scales. However, the 
time T of its development can be different for different 
scales-it is determined by the magnitude of the initial den- 
si ty~,,  on the given scale L: r ( L )  > t, (poL ). The maximum 
scale L,,, of the turbulence is determined, generally speak- 
ing, by the size of the entire region occupied by the gravitat- 
ing gas at the initial time. I t  can, however, be limited by the 
time t that has elapsed since the initial time, if the instability 
has not had time to develop on all scales by the given time t. 
In this case, the scale L,,, is determined by the relation 

t= t  (po,,,,) -ktg(po~,,,), k-3-5. (89) 

The minimum scale L,, is determined by the thermal mo- 
tion in the gas: L,, -c,t,, where c, is the velocity of sound. 
Developed turbulence is established on scales 

L,,,KLKL ,,,. (90) 

We now estimate the magnitude of the correlation inte- 
gral SL (86).  Taking into account the existence of NGS of 
scale L, their motion in the field of an NGS of larger scale L , 
>L, and the Coulomb-law interaction between the NGS, we 
find that 

S L - I I t L ,  tr.=ptg, 

p-  (L , /L )  "r/L,)"l';\-'. (91) 

Here A is the Coulomb logarithm. It can be seen that the 
parameterp is always 1arge:p- 10'-lo5 for L,/L- 10-lo2. 
Therefore, the correlation integral S, in Eq. (86) is indeed 
small, and in the first approximation it can be neglected. 
This is valid only over a limited time t 4 t,. For t 2 t, the 
interaction S, between NGS of the given scale becomes im- 
portant, and this should lead to distortion of the distribution 
(79),  (80).  The first distortions, as can be seen from (91 ), 
should appear in the region of the singularity. 

We also recall that in the solutions considered above we 
completely neglected the possibility of the presence of dis- 
persion of the initial velocities in the density peaks of the 
gravitating gas [see (60)]. It should be expected that the 
presence of a small dispersion V i  4 GM /L will not change 
the general structure of the steady-state NGS, but can influ- 
ence the magnitude of the scaling parameter a [see (79 ) ,  
(8811. 

In conclusion we note that the above picture of turbu- 
lence in an ideal gravitating medium has, apparently, a di- 
rect relation to the actually observed structure of the distri- 
bution of matter in the Universe. Indeed, the condition (89) 
determines a maximum scale L,,, , which turns out to be 

t I I. I 
0.07~ I I '  5 20 100 500 

'; M P ~  

FIG. 6. The pair correlation function { ( r ) :  a )  for the distribution of gal- 
axies in  cluster^'^; b )  for the distribution of clusters of galaxies in Abell 
clusters." The solid curve corresponds to the theory (88 ) .  

equal to L,,, - 20-40 Mpc; the minimum scale L,,,, - 1--10 
pc, on the other hand, corresponds to the average distance 
between stars. It is on these scales 10 pc < L  < 10 Mpc that 
one observes the hierarchical pattern of the "crowding" of 
matterlv2 (galaxy clusters, galaxies, and spherical star clus- 
ters inside galaxies)-a pattern which corresponds fully t o  
the above-described hierarchical structure of gravitational 
turbulence. 

A specially important point is that the density distribu- 
tion of smaller-scale objects captured by larger-scale objects 
that is observed in these structures can be characterized by a 
single law: 

For the distribution of galaxies in clusters we have the value 
a s  1.8 (Refs. 1, 2 ) ,  while for the distribution of spherical 
clusters in galaxies we have a = 1.7-2.4 (Ref. 17) .' 

As an example, in Fig. 6 we show the pair correlation 
functions f (r)  for the distribution of galaxies in c1~ster .s '~  
and for the distribution of clusters of galaxies in rich Abell 
clusters of class 0 - 4  (Ref. 19). In the hierarchical structure 
the functions l ( r )  ccp(r) (Ref. 2 ) ,  and therefore these cor- 
relation functions are compared with the theoretical for- 
mula (88).  Their good agreement with the theory is evident. 
We note that in the previously developed correlation theory 
of gravitational turbulence2 the distribution law (92) for 
galaxies in clusters was related uniquely to the spectrum of 
the initial fluctuations. According to the results obtained 
here, the law (79),  (88) is the same for all structures of 
nondissipative turbulence [over the limited time ( 9  1 ) ] and 
does not depend on the spectrum of the initial fluctuations. 
The reason for the discrepancy is that the correlation thi.o:'y 
always assumed the presence of random ph;lses ot' tile Four- 
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FIG. 7. The distribution of dynamical mass M in the vicinity of spiral 
galaxies; R ,  and M ,  are normalization con~tan ts .*~The  solid curve cor- 
responds to the theory (88). 

ier components, which is essentially equivalent to the as- 
sumption of the absence of dense dynamical formations (see 
Ref. 2, Sec. 57). The basis of the present theory, on the other 
hand, includes the fact of the appearance of dense stationary 
dynamical NGS formations, which have a decisive influence 
on the structure of the turbulence. 

Furthermore, observations of rotations curves make it 
possible to establish the distribution of dynamical mass on 
the periphery of galaxies and thereby to determine the pres- 
ence of hidden mass. The density of dynamical mass in the 
vicinity of spiral galaxies is found to be distributed in accor- 
dance with the law (92) with a s  1.8-2.0 (Ref. 20), while in 
the vicinity of elliptical galaxies it is distributed by the same 
law with a = 1.5-2.0 (Refs. 2 1, 17). As an example, observa- 
tional data are compared with the formula (88) in Fig. 7, 
and their fairly good agreement is evident. The law (92) 
with a = 1.7-2.0 also characterizes the distribution of matter 
density in the central part of a g a l a ~ y . ' ~ . ~ ~  

The existence of a single power law (92) both for the 
matter-density distribution and for the distribution of 
trapped objects in the hierarchical structures, and the rather 
good agreement of the observed magnitude of the scaling 
parameter a with its theoretical value (88), (79), are evi- 
dence that the structure of the Universe on the scales under 
consideration may be developed gravitational turbulence. 

It should also be noted that, starting from the scaling 
law (79) obtained, one can show that under gravitational 
compression of a nondissipative gas with a distribution of 
initial perturbations of the general form (23) black holes are 
not formed. This question, however, requires a more de- 

tailed treatment with allowance for relativistic effects. 
The authors are grateful to V. L. Ginzburg for a useful 

discussion and for his interest in the work, and to S. F. Shan- 
darin for fruitful debate. 

"Initial states close to equilibrium lead to weak gravitational turbulence 
with Sp (p , ,  which has been considered, e.g., in Ref. 3. The linear theory 
of the Jeans instability was developed in the well-known paper of Lif- 
~ h i t z . ~  

"In a uniformly expanding Universe the relative velocities within small 
volumes of matter that was previously in a state of thermodynamic equi- 
librium with radiation are small. 

"We have in mind spherical clusters in elliptical galaxies and in the central 
part of spiral galaxies (in the bulge). 
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